第一篇:特殊四邊形的證明題
題型一:矩形
1.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連結BF。(1)求證:BD=CD;(2)如果AB=AC,試判斷
四邊形AFBD的形狀,并證明你的結論。
2.如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內.
求證: PA=PQ.
Q
B
D C
3.如圖,△ABC中,AB=AC,AD、AE分別是∠BAC和∠BAC和外角的平分線,BE⊥AE.
試判斷AB與DE是否相等?并證明你的結論.
C
4.如圖,在矩形ABCD中,AB=2BC,E在AB延長線上,∠BCE=60°,求∠ADE.1 E A FB E
5.已知:如圖,在矩形ABCD中,E、F分別是邊BC、AB上的點,且EF=ED,EF⊥ED.求證:AE平分∠BAD.(第23題)
6.如圖,矩形ABCD中,點E是BC上一點,AE=AD,DF⊥AE于F,連結DE,求證:DF=DC. D
B E
7.在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,將三角板繞點E按順時針方向旋轉,當三角板的兩直角邊與AB、BC
分別相交于點M,N時,觀察或測量BM與CN的長度,你能得到什么結論?并證明你的結論。
題型二:菱形
8.將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′ 處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.
BE C D
9.如圖,在菱形ABCD中,E是AB的中點,且DE⊥AB,AB=a.(1)求∠ABC的度數;(2)求對角線AC的長;(3)求菱形ABCD的面積。
10.如圖,在△ABC和△DCB中,AB = DC,AC = DB,AC與DB交于點M.
過點C作CN∥BD,過點B作BN∥AC,CN與BN交于點N,試判斷線段BN與CN的數量
關系,并證明你的結論.
11.如圖,在△ABC中,∠A、∠B的平分線交于點D,DE∥AC交BC于點E,DF∥BC交AC于點F.求證:四邊形DECF為菱形. BN B C
題型三:正方形
12.四邊形ABCD、DEFG都是正方形,連接AE、CG.(1)求證:AE=CG;(2)觀
察圖形,猜想AE與CG之間的位置關系,并證明
13.把正方形ABCD繞著點A,按順時針方向旋轉得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.
F
E
14.如圖①,四邊形ABCD是正方形, 點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.(1)求證:DE-BF = EF.(2)當點G為BC邊中點時, 試探究線段EF與GF之間的數量關系,并說明理由.(3)若點G為CB延長線上一點,其余條件不變.請你在圖②中畫出圖形,寫出此時DE、BF、EF之間的數量關系(不需要證明). C
題型四:綜合證明題
15.如圖,已知平行四邊形ABCD中,對角線AC,BD交于點O,E是BD延長線上的點,且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若?AED?2?EAD,求證:四邊形ABCD是正方形.
E
A
BC
第二篇:特殊四邊形證明題(正方形)
特殊四邊形證明題(正方形)
1.如圖,四邊形ABCD是正方形, 點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.求證:DE-BF = EF.
2.如圖,ABCD是正方形.G是 BC 上的一點,DE⊥AG于 E,BF⊥AG于 F. A D
(1)求證:△ABF≌△DAE;(2)求證:DE?EF?FB.
3.如圖,在正方形ABCD中,CE?DF.若CE?10cm,求DF的長.
4.正方形ABCD中,MN?GH,求證:MN=HG。
5.在正方形ABCD的邊CD上任取一點E,延長BC到F,使CF=CE,求證:BE?DF
6.在正方形ABCD的CD邊上取一點G,在CG上向原正方形外作正方形GCEF,求證:DE?BG,DE=BG。
F B C
A
E B
F
C
_B _C_E
7.已知如圖,四邊形ABCD是正方形,F、E分別為BC、CD上的點,且EF=BF+DE,AM⊥EF,垂足為M,求證:(1)AM=AB;(2)連AF,連AE,求∠FAE.
D
E
8.正方形ABCD中,∠EAF=45?.求證:BE+DF=EF。
9.若分別以三角形ABC的邊AB、AC
為邊,在三角形外作正方形ABDE、ACFG,求證:BG=EC,BG?EC。
10.若以三角形ABC的邊AB、AC為邊 向三角形外作正方形ABDE、ACFG,求證:S?AEG
=S?ABC。
C
_ F
B_
_ E
_ B
_C
11.若以三角形ABC的邊AB、BC為邊向 三角形外作正方形ABDE、BCFG,N為AC 中點,求證:DG=2BN,BM?DG。
12.正方形ABCD的邊AD上有一點E,滿足BE=ED+DC,如果M是AD的中點,求證:∠EBC=2∠ABM,_B_
C
_A_
N_C
_B
_C
13.正方形ABCD中,E是邊CD的中點,F是線段CE的中點
求證:∠DAE=∠BAF。
_ E _ B
_C
14.已知,如圖,正方形ABCD中,AC、BD交于O點,EA平分∠BAC交BD于F點.求證:FO=
D
C
EC.
215.如圖,正方形ABCD對角線BD、AC交于O,E是OC上一點,AG⊥DE交BD于F,B求證:EF∥DC。A
C DG
16.如圖,正方形ABCD中對角線AC、BD相交于O,E為AC上一點,AG⊥EB交EB于G,AG交BD于F。(1)說明OE=OF的道理;
(2)在(1)中,若E為AC延長線上,AG⊥EB交EB的延長線于G,AG、BD的延長線交于F,其他條件不變,如圖2,則結論:“OE=OF”還成立嗎?請說明理由。
AD
D
B
C
F
G
E
17.在正方形ABCD中,直線EF平行于對角線AC,與邊AB、BC的交點 為E、F,在DA的延長線上取一點G,使AG=AD,若EG與DF的交點為H,求證:AH與正方形的邊長相等。
_B
_ F
_
C
18.若以直角三角形ABC的邊AB為邊,在三角形ABC的外部作正方形ABDE,AF是BC邊的高,延長FA使AG=BC,求證:BG=CD。
19.正方形ABCD,E、F分別是AB、AD延長線上的一點,且AE=AF=AC,EF交BC于G,交AC 于K,交CD于H,求證:EG=GC=CH=HF。
20.在正方形ABCD的對角線BD上,取BE=AB,若過E作BD的垂線EF交CD于F,求證:CF=ED。
21.在正方形ABCD中,P是BD上一點,過P引PE?BC交BC于E,過P 引PF?CD于F,求證:AP?EF。
22.過正方形ABCD的頂點B引對角線AC的平行線BE,在BE上取一點F,使AF=AC,若作菱形CAFé,求證:AE及AF三等分∠BAC。
_ B_ F_C
_A
_ B_ E
_D
_ F
_ B
_C
_D
_F
_C
_ E
23.正方形ABCD中,M為AB的任意點,MN?DM,BN平分∠CBF,求證:MD=NM
24.從正方形ABCD的一個頂點C作CE平行 于BD,使BE=BD,若BE、CD的交點為F,求證:DE=DF。
_
_ B
C_
25.如圖,M、N分別是正方形ABCD兩邊AD、DC的中點,CM與BM交于點P.求證:PA=AB.
26.如圖,邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個小矩形,EF與GH交于點P。(1)若AG=AE,證明:AP=AH;
(2)若∠FAH=45°,證明:AG+AE=FH;
(3)若Rt△GBH的周長為1,求矩形EPHD的面積;
(4)若矩形AEGP的面積為矩形PFCH面積的一半,求∠FAH的度數。
27.已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.(1)求證:EG=CG;
(2)將圖①中△BEF繞B點逆時針旋轉45o,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)將圖①中△BEF繞B點旋轉任意角度,如圖③所示,再連接相應的線段,問(1)中的結論是否仍然成立?通過觀察你還能得出什么結論?(均不要求證明)
第24題圖①
第24題圖②
第24題圖③
D
D
28.如同,在正方形ABCD中,對角線AC與BD
相交于點E,AF平分∠BAC,交BD于點F。(1)EF+0.5AC =AB;
(2)點C1從點C出發,沿著線段CB向點B運動(不與點B重合),同時點A1從點A出發,沿著BA的延長線運動,點C1與點A1運動速度相同,當動點C1停止運動時,另一動點A1也隨之停止運動。如圖,AF1平分∠B A1 C1,交BD于F1,過F1作F1E1⊥A1 C1,垂足為E1,試猜想F1E1,0.5 A1 C1與AB之間的數量關系,并證明你的猜想。
(3)在(2)的條件下,當A1 C1=3,C1 E1=2時,求BD的長。
第三篇:特殊四邊形證明題習題
特殊四邊形證明題
1.(2009年湖北十堰市)如圖①,四邊形ABCD是正方形, 點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.求證:DE-BF = EF.
2.(2009年山東青島市)已知:如圖,在ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點E與點C重合,得△GFC.
(1)求證:BE?DG;
(2)若?B?60°,當AB與BC滿足什么數量關系時,四邊形ABFG是菱形?證明你的結論.
【關鍵詞】全等三角形的性質與判定、菱形的性質與判定
D
B C
E F
?
3.(2009 年佛山市)如圖,在正方形ABCD中,CE?DF.若CE?10cm,求DF的長.
A
E
B
F C
4.(2009年婁底)如圖,在△ABC中,AB=AC,D是BC的中點,連結AD,在AD的延長線上取一點E,連結BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數量關系時,四邊形ABEC是
菱形?并說明理由.
5.(2009年佳木斯)如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落到點B′的位置,AB′與CD交于點E.(1)試找出一個與△AED全等的三角形,并加以證明.(2)若AB=8,DE=3,P為線段AC上的任意一點,PG⊥AE于G,PH⊥EC于H,試求PG+PH的值,并說明理由
.【關鍵詞】矩形的性質,全等三角形的判定
6.(2009年安順)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連結BF。
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。
?ACD?30°,BD?6.7.(2009肇慶)如圖 5,ABCD是菱形,對角線AC與BD相交于O,A(1)求證:△ABD是正三角形;
(2)求 AC的長(結果可保留根號).
8.(2009肇慶)如圖,ABCD是正方形.G是 BC 上的一點,DE⊥AG于 E,BF⊥AG于 F.
A D
B F C
(1)求證:△ABF≌△DAE;
(2)求證:DE?EF?FB.
9.(2009年廣西欽州)(1)已知:如圖1,在矩形ABCD中,AF=BE.求證:DE=CF;
【關鍵詞】矩形性質、全等三角形判定
A B
D圖
110.(2009年廣西梧州)如圖,△ABC中,AC的垂直平分線MN交AB于
點D,交AC于點O,CE∥AB交MN于E,連結AE、CD.
(1)求證:AD=CE;
(2)填空:四邊形ADCE的形狀是
【關鍵詞】垂直平分線、全等三角形、菱形判定
A
M
N
B11.(2009年宜賓)已知:如圖,四邊形ABCD是菱形,過AB的中點E作AC的垂線EF,交AD于點M,交CD的延長線于點F.(1)求證:AM=DM;(2)若DF=2,求菱形ABCD的周長.
【關鍵詞】菱形的性質,全等三角形的判定
B
FD第21題圖C
AB?5,AC?6.12.(2009年廣東省)在菱形ABCD中,對角線AC與BD相交于點O,過
點D作DE∥AC交BC的延長線于點E.
(1)求△BDE的周長;
(2)點P為線段BC上的點,連接PO并延長交AD于點Q.
求證:BP?DQ.
Q
P C E
【關鍵詞】菱形的性質;勾股定理;平行四邊形的判定;利用平行四邊形證明線段相等;全等三角形的性質與判定
第四篇:四邊形證明題
四邊形證明題
已知E.F分別為平行四邊形ABCD一組對邊ADBC的中點,BE與AF交于點G,CE與DF交于點H求證四邊形EGFH是平行四邊形
解:在三角形ABF和三角形EDC中
因為:AB=CD
角DAB=角DCB
AE=FC
所以:三角形ABF全等于三角形EDC
所以:EB=FD
所以:四邊形BEDF為平行四邊形
同理可證:四邊形AEFC為平行四邊形
在三角形EHD和三角形CHF中
因為:角EHD=角CHF
角DEH=角HCF
ED=FC
所以:角形EHD全等于三角形CHF
在三角形BGF和三角形FHC中
因為:角EBF=角DFC
BF=FC
角AFB=角ECF
所以:三角形BGF全等于三角形FHC
所以:三角形BGF全等于三角形EHD
所以:GF=EH
同理可證:GE=FH
所以:四邊形EGFH是平行四邊形
如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE。已知∠BAC=30o,EF⊥AB,垂足為F,連結DF。
求證:四邊形ADFE是平行四邊形。
設BC=a,則依題意可得:AB=2a,AC=√3a,等邊△ABE,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a
∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD2+AF2)=2a
∴AE=DF=2a,EF=AD=√3a=>四邊形ADFE是平行四邊形
1兩組對邊分別平行的四邊形是平行四邊形(定義)2兩組對邊分別相等的四邊形是平行四邊形3一組對邊平行且相等的四邊形是平行四邊形4對角線互相平分的四邊形是平行四邊形5兩組對角分別相等的四邊形是平行四邊形
1、兩組對邊分別平行的四邊形是平行四邊形
2、一組對邊平行且相等的四邊形是平行四邊形
3、兩組對邊分別相等的四邊形是平行四邊形
4、對角線互相平分的四邊形是平行四邊形
21.畫個圓,里面畫個矩形2.假設圓里面的是平行四邊形3.因為對邊平行,所以4個角相等4.平行四邊四個角之和等于360,5.360除以4等于906.所以圓內平行四邊形為矩形..3判定(前提:在同一平面內)(1)兩組對邊分別相等的四邊形是平行四邊形;
(2)一組對邊平行且相等的四邊形是平行四邊形;(3)兩組對邊分別平行的四邊形是平行四邊形;(4)兩條對角線互相平分的四邊形是平行四邊形(5)兩組對角分別相等的四邊形為平行四邊形(注:僅以上五條為平行四邊形的判定定理,并非所有真命題都為判定定理,希望各位讀者不要隨意更改。)(第五條對,如果對角相等,那么鄰角之和的二倍等于360°,那么鄰角之和等與180°,那么對邊平行,(兩組對邊分別平行的四邊形是平行四邊形)所以這個四邊形是平行四邊形)編輯本段性質(矩形、菱形、正方形都是特殊的平行四邊形。)(1)平行四邊形對邊平行且相等。(2)平行四邊形兩條對角線互相平分。(3)平行四邊形的對角相等,兩鄰角互補。(4)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)(5)平行四邊形的面積等于底和高的積。(可視為矩形)(6)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。(7)對稱中心是兩對角線的交點。
性質9(8)矩形菱形是軸對稱圖形。(9)平行四邊形ABCD中(如圖)E為AB的中點,則AC和DE互相三等分,一般地,若E為AB上靠近A的n等分點,則AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一種特殊的平行四邊形。(10)平行四邊形ABCD中,AC、BD是平行四邊形ABCD的對角線,則各四邊的平方和等于對角線的平方和。(11)平行四邊形對角線把平行四邊形面積分成四等分。(12)平行四邊形是中心對稱圖形,但不是軸對稱圖形。(13)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。(14)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。編輯本段平行四邊形中常用輔助線的添法
一、連接對角線或平移對角線。
二、過頂點作對邊的垂線構成直角三角形。
三、連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構成線段平行或中位線。
四、連接頂點與對邊上一點的線段或延長這條線段,構造相似三角形或等積三角形。
五、過頂點作對角線的垂線,構成線段平行或三角形全等。編輯本段面積與周長
1、(1)平行四邊形的面積公式:底×高(推導方法如圖);如用“h”表示高,“a”表示底,“S”表示平行四邊形面積,則S平行四邊=ah(2)平行四邊形的面積等于兩組鄰邊的積乘以夾角的正弦值;如用“a”“b”表示兩組鄰邊長,@表示兩邊的夾角,“S”表示平行四邊形的面積,則S平行四邊形=ab*sin@
2、平行四邊形周長可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四邊形周長,則平行四邊的周長c=2(a+b)底×1X高
第五篇:四邊形證明題
1.如圖,BD是□ABCD的對角線,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.
求證:△ABE≌△CDF.
E
ABFC
2.如圖已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長 .
3. 如圖,在□ABCD中,E、F分別為邊ABCD的中點,BD是對角線,過A點作AGDB
交CB的延長線于點G.
(1)求證:DE∥BF;
(2)若∠G=90,求證四邊形DEBF是菱形.
4.如圖5所示,在菱形ABCD中,∠ABC= 60°,DE∥AC交BC的延長線于點E.求
證:DE=
A1BE 2D
BCE
5.如圖,將□ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
⑴求證:△ABF≌△ECF
⑵若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
D
B
6.如圖,E、F分別是矩形ABCD的對角線AC和BD上的點,且AE=DF。求證:BE=CFE
7.如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30?,菱形OCED的面積為8,求AC的長.
E
C
?B 8.如圖,在梯形ABCD中,DC‖AB,AD=BC, BD平分?ABC,?A?60.過點D作DE?AB,過點C作CF?BD,垂足分別為E、F,連接EF,求證:△DEF為等邊三角形.9.如圖,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=600,M是BC的中點。
(1)求證:⊿MDC是等邊三角形;
(2)將⊿MDC繞點M旋轉,當MD(即MD′)與AB交于一點E,MC即MC′)同時與AD交于一點F時,點E,F和點A構成⊿AEF.試探究⊿AEF的周長是否存在最小值。如果不存
在,請說明理由;如果存在,請計算出⊿AEF周長的最小值.A
DC'B
MC
10.如圖,梯形ABCD中,AD∥BC,∠DCB=45°,CD =2,BD⊥CD .過點C作CE⊥AB
于E,交對角線BD于F.點G為BC中點,連結EG、AF.
(1)求EG的長;
(2)求證:CF =AB +AF.