久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

畢業論文附錄

時間:2019-05-13 14:28:28下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《畢業論文附錄》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《畢業論文附錄》。

第一篇:畢業論文附錄

太陽能熱水器營銷環境分析

目前,我國熱水器市場是三分天下,其一是電熱水器,占據市場50%左右;其二是燃氣熱水器,占據著市場25—30%,但近年來呈下降趨勢;其三是太陽能熱水器,占據著市場的20—25%的份額,隨著國家對可再生能源的重視,太陽能熱水器市場正在不斷的上升。但隨著太陽能熱水器行業競爭的加劇,“洗牌”已成為了太陽能熱水器行業發展的必然,從無序到有序,從分散走向集中,太陽能熱水器行業正日趨成熟。面對未來競爭激烈的太陽能市場,現有的太陽能企業的營銷又該如何應對呢?

一、行業分析

隨著國家對太陽能等環保、節能行業發展的大力支持,消費者對太陽能產品的認知度不斷提高,太陽能行業遇到了千載難逢的發展良機。在“財富效應”的帶動下,國內眾多企業開始大舉進入太陽能產業,使得太陽能產品“品牌”越來越多,競爭也日益激烈,行業的發發展面臨瓶徑,行業發展的瓶頸嚴重阻礙了太陽能熱水器的產業健康高速發展,解決這些瓶頸問題是當務之急。要解決太陽能熱水器產業存在的問題,需要行業內有影響力的企業聯合起來,引領行業的發展方向。太陽能熱水器安裝困難主要是受自身產品特性的制約,可以試著改變策略,由以消費者個體為銷售單位轉向以消費群體為銷售單位,例如與地產商合作進行小區整體安裝。

二、政策分析

從2006年1月1日起開始實施的《可再生能源促進法》,為普通市民使用太陽能熱水器掃清了一定的障礙,該法明確規定,任何單位和個人不能限制使用合格的太陽能產品。當然,在和諧社會的建設中,還有許多地方規章制度都在鼓勵使用太陽能,如一些地區在新農村的建設中為安裝太陽能提供補貼。促進推廣應用太陽能熱水器產業的發展有賴政策引導,一方面要制定標準,如政府職能部門要強制推行建筑節能標準規范,施工圖審查應按建筑節能強制性條文進行,并指導行業協會制定太陽能熱水器與建筑緊密結合的設計規范。特別對于政府性資金投資的工程項目,如體育場館、醫院、學校等,當需要供應熱水時,在項目審批時應明確使用太陽能熱水器節能技術。對于有研發能力,有專利技術和獨立知識產權的企業,要給予貸款上的支持;培育一批大型骨干企業。另一方面要搭臺,如通過舉行太陽能熱水器展覽、具備相關的行業論壇等來為企業和商家、消費者三者搭建一個好的平臺,培育和鼓勵引導太陽能熱水器的購買與應用。

三、市場分析

從市場類型去分析,工程市場、農村市場、城市社區市場等是三大主要戰場:

對于小區,由于太陽能熱水器的購買有一定的時機性,在搬入新家的時候是購買太陽能熱水器的最佳時機,有很多潛在消費者嫌麻煩也不愿意專門前往賣場選購。這就啟迪我們應

該把目光瞄準這些小區、新開發的樓盤,相信很多人愿意在搬入新家時安裝一臺太陽能熱水器。具體可印做一些單張、小冊子,給潛在消費者散發。同時,在當地的一些地產專業雜志上刊登廣告,或者同開發商、物業等進行合作,在廣告傳播、捆綁銷售等方面鎖定購樓者這一潛在消費人群。

對于工程市場,如酒店、單位集體宿舍等,應該采取試點營銷,讓成功的案例告訴消費者,通過選一個示范點,免費或收取一點成本,為該區域消費者全部安裝太陽能熱水器。最后通過社會、媒體的報道,讓這一成功的試點案例消費者,這樣消費者更容易接受和相信。如在三四線市場圍繞鄉鎮開展樣板小區建設活動,使用后村民覺得太陽熱水器安全、環保、節約能源、使用方便,其口碑的宣傳將進一步促進太陽能熱水器的銷售與推廣。

對于農村市場,由于各大中城市里太陽能品牌的市場爭奪戰已趨于白熱化,許多企業紛紛將戰場轉移到農村,當前,廣大農村消費者對太陽能熱水器已經有了相當的認識,對產品的需求也有了明顯的增多,對太陽能熱水器的要求是從無到有,從小到大,對產品的外觀、容量、品質、功能及服務的要求也在不斷的進步,隨著鄉鎮居民消費水平和消費意識的提高,農村太陽能市場即將進入一個快速發展時期。在農村市場的開拓中,要開發了適合農村消費者的太陽能熱水器,如使用方便,維修方便等;要結合新農村建設,善于“借道”和整合資源,與“三下鄉”結合起來,開展“農村屋頂計劃”等,讓太陽能進入廣大的農村家庭。

四、技術分析

從膽到管,從色彩到款式,太陽能的技術在不斷演進,“變頻”、“變容”、“抗寒”、“鎖熱”、“健康”等概念不斷推陳出新,作為太陽能熱水器企業,產品通過技術創新是贏取市場的關鍵,要以不斷的技術創新提升品牌形象,如榮事達太陽能與中國科技大學聯合組建產學研一體化的研究實驗室,主攻太陽能光伏產品與太陽能薄膜電池產品;與教育部光電系統工程研究中心合作,設立安徽太陽能科研中心,共同研發太陽能光電一體化熱水器,如皇明通過技術研發開發出不同緯度與區位的太陽能,從發展趨勢去看,原裝一體將是未來發展的趨勢與潮流。與此同時,太陽能熱水器的服務也成了關鍵,在太陽能熱水器行業,不僅要售后服務好,而且要售后跟進服務更好,否則將會影響太陽能熱水器行業的健康發展。現在好多企業只是意識到太陽能熱水器安裝負責,對售前宣傳、售中安裝比較重視,而對售后跟進機會沒做什么工作,他們認為,只有東西壞了才有售后服務。事實上,太陽能熱水器應該進行一些定期的檢修或回訪等活動,提供快捷方便的服務,并塑造服務品牌。

總之,作為具有廣大發展空間的太陽能熱水器市場,未來的競爭肯定更加激烈,區域品牌、外來的品牌、替代品等將會決戰不同區域市場,作為太陽能熱水器企業,應該在激烈的環境中突圍,通過知己知彼的分析,借力借勢,整合資源,系統策劃,塑造差異和培育競爭力,不斷搶占“奶酪”,贏取更大的市場。

太陽能熱水器市場現狀分析

太陽能熱水器已悄然成為第五大家電,以其省電、使用方便、環保節能等優點正在走進千家萬戶。綜觀目前太陽能行業的現狀,散、雜、亂等現象是非明顯,主要是由太陽能行業門檻較低,技術含量不高等原因造成的,筆者僅從個人對行業的簡單調查情況來反思太陽能熱水器的營銷與策劃。

市場現狀分析

對終端的調查和小區的走訪后筆者發現,以購買或安裝太陽能熱水器的用戶,曾經使用過太陽能熱水器的用戶反映目前存在的主要問題如下:

1、品牌較雜。作為勞動密集型的產業,太陽能熱水器品牌眾多,李貴與李逵并存,造成消費者在購買時的混亂。用戶對太陽能熱水器使用現狀的總體評價并不是很高,只有1/5的用戶對使用情況表示非常滿意,1/3的用戶表示一般,近一半的用戶表示不滿意。

2、售后服務差。服務確實已成為當前太陽能熱水器領域的頭等問題。用戶對太陽能熱水器的服務滿意度非常低,需對中小企業品牌的產品根本就沒有售后服務體系,造成消費者對整個行業的不滿。

3、許多產品存在質量問題。消費者希望自己的太陽能熱水器隨時能用,但絕大多數的太陽能熱水器一到冬天就“冬眠”,僅能吸熱,不能儲熱,或者是吸熱的強度不夠。冬季太陽能熱水器集熱管破裂、凍裂的現象時有發生,只有極少的產品一年四季都可以使用。冬季天寒地凍,消費者最需要熱水,也最能體現太陽能熱水器的使用價值,而產品若在這個時候“掉鏈子”,的確會給消費者造成不少的麻煩。

4、壽命較短。有的太陽能熱水器雖然還放在屋頂,但已經不能生產熱水;有的太陽能熱水器雖然還能生產熱水,但生產的熱水已經不能達到洗浴的溫度,或者生產的熱水量越來越少。這些看似沒有問題的太陽能熱水器,都已經達不到正常的使用效果。據相關調查結果顯示,只有10%的太陽能熱水器能夠基本滿足用戶的用水要求。而一半用戶反映,太陽能熱水器還在“服役”,但是已經不好用了,要么水溫不高,要么提供的熱水量太少,無法滿足日常生活的需要。

5、熱水不夠用。調查發現,就是有多戶用戶反映,目前太陽能熱水器提供的熱水量不夠用,希望能早日用上熱水量充足、使用方便的新型太陽能產品。當前,市場中50%以上的太陽熱水器根本無法滿足消費者的要求,這些產品雖然價格很低,但是存在著很多先天性不足,如得熱量低、規格小、提供的熱水非常有限。

營銷策劃與思考

從產品的角度分析:一是產品的品質和產品功能創新。太陽能熱水器需要形成差異化的品質特征,如萬家樂的儲熱、申豪的抗菌、賽奧的抗寒,皇明的去水垢等;二是品牌。品牌是企業的無形資產,隨著消費者理性的增加,在購買過程中的品牌意識越來越強,因此應該注重品牌,加強傳播;三是在質量方面應該進一步加強,確保太陽能熱水器的質量和內在的品質,四是安裝與快速的售后服務。在產品安裝過程中,安裝應考慮固定牢固和結構安全、防風、防雷及屋面排水等因素,同時,提供快速的售后服務通道,降低消費者購后風險。從市場細分和消費行為方面分析,由于太陽能熱水器不同于一般的家電,并非都要進賣場,用戶群體一般是新開發的小區、更新換代的用戶,在這是作為贈品或者禮品。因此,要針對不同的客戶開發不同的渠道:如將其作為陪嫁品或者禮品就應該進商場或者賣場;將其作為工程開拓或者針對民用,就應該直接與工程部門、物業等聯系,或走專賣的道路。不同群體的消費行為也不同,如作為陪嫁品的可能關注品牌或者價位,作為工程的可能考慮安裝和美觀,作為民用的可能考慮售后和價格等。因此,太陽能熱水器在營銷過程中,應該正確定位,對位營銷。

從定位和促銷的角度分析,隨著新農村運動的開展,太陽能下鄉也是未來的發展趨勢和趨勢。如何開拓農村市場?這需要產品在影響策略方面進行定位,特別要考慮到農村市場的特殊性,如產品要使用方便,傳播要及時到位,價格要低等,同時需要促銷創新,一方面將產品的性能、特點、作用即可提供的服務等信息傳遞給消費者,引起消費其注意,激發其購買;另一方面通過促銷可以快速提高企業聲譽,提升企業形象,從而擁有穩定的市場占有率,鞏固產品的市場地位。在具體的銷售過程中,太陽能熱水器可采取售后服務促銷、廣告促銷、方便促銷、捆綁促銷、有獎促銷等策略,為企業帶來盈利和好的聲譽。

總之,在變革和競爭激烈的環境下,太陽能熱水器的銷售需要突圍,進行產品和營銷策略的創新,通過創新產品、準確定位、有效促銷等來促進銷售,同時需要整合營銷傳播,將文化和科技融入太陽熱水器,塑造強勢品牌,促進企業的快速增長。

市場調查:太陽能熱水器今后發展何去何從?

提起家用熱水器,就不得不關注太陽能產品,來自各種渠道的消息表明:近年來,太陽能熱水器一直迅猛發展,目前,太陽能熱水器已經占據了整個熱水器市場的11.2%的份額,并以每年20%~30%的高增長率成為令業界矚目的后起之秀。從節能環保的角度來說,太陽能熱水器無疑是熱水器的首選商品—但大部分中國人似乎還不具備這種觀念。要想擁有“三分天下”甚至更美好的未來,太陽能熱水器似乎還要走很長一段路。

競爭激烈根據國家經貿委資源與綜合利用司的資料,我國已經是世界上最大的太陽能熱水器生產和使用國,全國太陽能熱水器行業現有3500多家企業,年產量在850萬平方米左右,年產值超過100億元,從業人員達10多萬人—但目前行業排名前10位的只占太陽能熱水器市場份額的17%,行業集中度低,產品眾多難辨別。眾多的廠商參與生產,使太陽能熱水器競爭加劇,而電、燃氣與太陽能截然不同的技術特點和使用特性,則使太陽能熱水器行業競爭表現得更為復雜。特別是近年來,一些家電企業,例如澳柯瑪、萬家樂、小鴨等介入,使太陽能熱水器行業逐漸帶上了家電業競爭的色彩,廣告戰、渠道戰、技術戰、概念戰,都被派上了用常相關機構統計數據表明,2002年,我國太陽能熱水器廠家的廣告費用達124億元,高居三種熱水器之首。皇明太陽能有限公司總經理黃鳴認為:對于太陽能熱水器行業來說,家電企業的介入應該是有益的,因為他們可加大競爭的力度,從而促進行業發展。但是由于這些企業初涉太陽能行業,缺少經驗和技術,取得成功還需要時間。業內行家分析說,太陽能熱水器的利潤空間從10%~50%不等,比電、燃氣熱水器都要大,高額的利潤回報是眾多廠家紛紛介入的主要因素;其次,太陽能熱水器能源費用消耗近乎于零,相對更容易為消費者接受,市場前景較好。該人士還指出,目前,幾乎還沒有家電企業在太陽能行業取得突出業績。

一些小廠用質次價低的材料,生產成本低,產品價格也比優質產品低,但產品質量不能保證,更談不上提供周到的售后服務。例如,在選材和制作工藝上,用0.6mm的不銹鋼做出的內膽成本肯定比0.3mm的高,再如真空管的制造技術工藝水平的高低,也直接影響著產品的價格。馮建華強調:“質次價低的產品充斥市場,既給消費者帶來損害,也影響了行業發展”。有企業還反映,由于各地都有自己的太陽能熱水器生產廠家,外省企業的銷售、安裝工作在部分省市受阻,克服地方保護主義也是很多企業希望解決的問題。

業內人士指出,如果能抑制小企業的產生,將會有效地改善目前競爭較混亂的局面。目前國內外都沒有太陽能熱水器企業運作經驗可以借鑒,所以很多行業標準欠缺,尤其是現代化的制造流水線根本沒有標準可以參照,全行業大部分企業幾乎還沒有成熟的流水線,正因為這樣,整個行業進入的門檻比較低,造成大量小企業進入。所以,目前規避太陽能熱水器行業信譽風險的最主要的方式是,國家需要盡快出臺質量保證、維修服務、理賠標準等行業標準規范,提高行業進入門檻的高度,同時引導太陽能熱水器產品的品牌消費觀念。發展受限來自電、燃氣熱水器方面的競爭使一些太陽能熱水器廠家感到壓力很重,消費者的認同度也使廠家覺得任重而道遠。業內人士指出:太陽能熱水器的發展目前還受到一些非良性因素限制,如何尋求行業的出路是許多太陽能熱水器廠家必須思考的問題。

第二篇:畢業論文附錄英文翻譯

附錄

SLAC-PUB-3620 April 1985(A)APPLICATION OF GPS IN A HIGH PRECISION ENGINEERING SURVEY NET WORK

ROBERT RULAND, ALFRED LEICK ABSTRACT.A GPS satellite survey was carried out with the Macrometer to sup-port construction at the Stanford Linear Accelerator Center(SLAC).The networkconsists of 16 stations of which 9 stations were part of the Macrometer network.The horizontal and vertical accuracy of the GPS survey is estimated to be l-2 m m and2-3 m m respectively.The horizontal accuracy of the terrestrial survey,consisting of angles and distances,equals that of the GPS survey only in the“loop”portion ofthe network.All stations are part of a precise level network.The ellipsoidal heightsobtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations.A geoid profile along the linac was computed by the National Geodetic Survey in 1963.This profile agreed with the observed geoid within the standard deviation of the GPS survey.Angles and distances were adjusted together(TERRA),and all terrestrial observations were combined with the GPS vector observations in a combination adjustment(COMB).A comparison of C O M B and TERRA revealed systematic errors in the terrestrial solution.A scale factor of 1.5 ppm f.8 ppm was estimated.This value is of the same magnitude as the over-all horizontal accuracy of both networks.INTRODUCTION At the Stanford Linear Accelerator Center a new project is under construction,the Stanford Linear Collider(SLC).The shape of the completed SLC will be like a tennis racket with the handle being the existing linac and the curved parts being the new North and South collider arcs.The diameter formed by the loop will be about 1 km.To position the approximately 1000 magnets in the arc tunnels,a network of nearby reference marks is necessary(Pietryka 1985).An error analysis has shown that a tunnel traverse cannot supply reference points with the required accuracy.Therefore,a control.network with vertical-penetrations will support the tunnel traverses.-The required absolute positional accuracy of a control point is f 2 m m(Friedsam-1984).This two-dimensional surface net must be oriented to the same datum as defined by the design coordinate system.This design coordinate system is used to express the theoretical positions of all beam guiding elements.Since this coordinate system defines the direction of the existing two mile long linear accelerator(linac)as its Z-axis,the SLC coordinate system must integrate points along the linac in order to pick up its direction.Therefore,three linac stations have been added to the SLC net.Figure 1 shows the resulting network configuration.The disadvantageous configuration is obvious,especially since there is no intervisibility between linac stations 1,10 and 19 to stations other than to 42 and 20.To improve this configuration,one would have to add stations northerly and southerly of the linac.However,due to local topography,doing that would have tripled the survey costs.This was the situation when it was decided to try GPS technology,although it was at that time not yet proven that the required 2 m m standard deviation positional accuracy could be obtained.SURVEY DESIGN The horizontal control network consists of 16 stations,12 in the?loop?,and 4 along the linac.Because of financial considerations,not all 16 stations have been included in the GPS survey.Only the 4 linac and 5?loop?stations were occupied by the GPS survey.The intent was to determine the coordinates of the loop stations,including station 42,by conventional means,i.e.triangulation and trilateration,followed by an inner constraint adjustment.Then the GPS information would be used to orient the net to the direction of the linac(Ruland 1985).Conventional Horizontal Net All monuments are equipped with forced centering systems and built either as massive concretears or steel frame towers,both with independant observation platforms.The observation schedule consists of directions and distances with standard deviations of 0.3 mgon and 2 mm,respectively.Conventional Vertical Net All 16 stations are part of a high precision level network.To minimize errors and simplify repeated leveling,both benchmarks and turning points are permanently monumented.Doublerunning the entire net requires about 700 setups.The standard deviation for a 1 km double-run line is 0.3 mm.GPS Survey

The GPS survey,which utilized the five available satellites,was carried out in August 1984 by Geo-Hydro Inc.The whole observation window was used for each station.In general three Macrometers were put to use.Linac Laser Alignment System

For the frequent realignment of the linear accelerator,the linac laser alignment system was designed and installed.This system is capable of determining positions perpendicular to the axis of the linac(X and Y)to better than f.l m m over the total length of 3050 m.To do so,a straight line is defined between a point source of light and a detector.At each of the 274 support points,a target is supported on a remotely actuated hinge.To check the alignment at a desired point,the target at that point is inserted into the lightbeam by actuating the hinge mechanism.The target is actually a rectangular Fresnel lens with the correct focal length so that an image of the light source is formed on the plane of the detector.This image is then scanned by the detector in both the vertical and the horizontal directions to determine the displacement of the target from the predetermined line.The targets are mounted in a 60 cm diameter aluminum pipe which is the basic support girder for the accelerator.The support girder is evacuated to about 10/.Lof Hg to prevent air refraction effects from distorting or deflecting the alignment image(Hermannsfeldt 1965).Using this system it was possible to determine the X-coordinates of the four linac stations,independant of terrestrial or GPS survey techniques,to better than ±0.l mm.ANALYSIS OF LEVELING DATA

To check for blunders,the L-l norm adjustment technique was applied(FUCHS 1983).Several blunders have been identified and cleared.A L-2 norm adjustment was then carried out with CATGPS(Collins 1985)in a minimally constrained fashion by fixing the height of station 41 to its published value of 64.259m.The choice of this particular station as well as the specific numerical value is,of course arbitrary for the purpose of the adjustment.CATGPS is suitable for adjusting leveling data if the latitudes and longitudes of the stations are fixed.The results of the level adjustment are summarized in Table 1(Column Level).ANALYSIS OF GPS DATA

All GPS vectors and their respective(3x3)covariance matrices as received from Geo-Hydro were subjected to an inner constraint least squares solution for the purpose of blunder detection and to get an unconstraint estimate of the obtained accuracy.Table 1 Summary of Adjustment Results

Inner Constraint GPS Solution

Applying data

snooping(Baarda

1976)on

the

residuals

the

vector observation(39-42)was suspected-of containing a blunder of about 1.3 cm.A recomputation was carried out at GeoHydro and,indeed,the time bias was not fixed in the original computation.Fixing the time biasin the case of short vectors is the standard procedure in Macrometer vector computation.The components of the recomputed vector agreed within 2 m m with the adjusted values of the original network solution.Upon implementing the corrected observations the residuals did not suggest the existence of other blunders.The inner constraint solution was carried out with MAC(Leick 1984);the results are documented in Table 1,Table 2,and Fig.2.The quality and homogeneity of the GPS network is well documented by the tables and the figure.The standard deviations for the horizontal positions are between 1 and 2 m m and for the vertical positions between 2 and 3 mm respectively.If one computes the standard deviations and the adjusted length for all observed vectors and their ratios,then the average ratio is 1:690000.This value yields another characterization of the horizontal accuracy achieved in this GPS survey.Minimum Constraint GPS Solution This solution defines the reference datum.The most simple set of minimal constraints are i imposed by fixing one station to account for the translatory component of the GPS polyhedron.The rotation and the scale are inherent in the Macrometer vector measurement and processing technique.The published geodetic latitude and longitude(NAD 1927)are adopted for station 41.The ellipsodial height for this station is equated to its orthometric height given above.Thus_the defined ellipsoid differs only slightly from the classical definition of a local reference ellipsoid(At the initial point the geodetic latitude and longitude equal astronomical latitude and longitude respectively;one geodetic and one astronomical azimuth are equated,and the ellipsodial height is taken as zero.)This classical definition makes the ellipsoid tangent to the equipotential surface at the initial point.Since the choice of the numerical values for station 41 are totally immaterial as far as the adjustment of GPS vectors is concerned,the classical definition of the local reference ellipsoid could have been used as well.The deflections of the vertical happen to be known in his adequate for this project as long as the correction of the measured horizontal angles due to deflections of the vertical are negligible since no attempt is made to apply these corrections.Table 2 Standard Deviations of GPS Solution

Figure 2 Error Ellipses from GPS Inner Constraint Solution

SHAPE OF THE GEOID The shape of the geoid in the area of the survey follows readily from a comparison of the ellipsoidal and orthometric heights according to

H=h-N

Figure3 shows the geoidal profile along the linear accelerator.The figure shows an unexpected dip of the-observed geoid at station 20.It so happens that this station required an observation tower of 20 m for the terrestrial measurements and that the height above the ground monument was measured trigonometrically.Assuming that the geoid follows the dashed line one can deduce an error in the height of the tower platform of about 8mm.In the context of an earlier survey for the construction of the linear accelerator the Coast and Geodetic Survey computed a geoid profile between stations 1 and 42.The report(Rice 1966)lists the components of the deflection of the vertical for stations 1 and 42,and for a non-existing station halfway between stations 10 and 19.From these values the Coast and Ge9detic Survey computed a function for the undulation.All linear values are in feet.The variable z is measured from station 1.It is stated in the report that this function gives undulations with an accuracy estimate of better than 0.001 ft.No procedure is given as to how this accuracy estimate was obtained.The undulation curve,derived from the following function,is shown in Fig.3.:

?6?102?14310(x)?11.4331*10(x)?6.0629*10(x)N =11.102*

The.deviation between this curve and the observed geoid just barely exceeds,at station 10,the standard deviation for the Macrometer determined height difference from 1 to 10,and is within the standard deviation at stations 19 and 42.Figure 3 Geoid Profile Incidentally,the over-all slope of the observed geoid is a consequence of adopting geodetic rather than astronomic positions as minimal constraints at station 41.The east-west component of the deflection of the vertical at station 42 is 1.84 arcsec which accounts for 27 m m of the 22 mm geoidal slope between stations 1 and 42.Figure 4 Geoid Undulation Contours Figure 4 shows an attempt to draw contours of equal geoid heights.The small number of G P S stat&rs and their area1 distribution effects the accuracy of the contours.ANALYSIS OF THE TERRES TRIAL OBSERVATIONS The triangulation and trilateration data were also checked for blunders applying the L-l norm technique(Fuchs 1980).The terrestial observations are then adjusted using the S-dimensional model of CATGPS.The reference ellipsoid is the one defined above for the minimal constraint G P S vector solution,i.e.the same numerical values for station 41 are held fixed.The orientation in azimuth is achieved by holding the latitude of station 35 fixed to the numerical value computed for the minimal constraint GPS solution.The height of station 41 is constrained to the GPS solution as well.A consequence of this definition is that the terrestrial system(U)and the satellite system(S)coincide.Since the triangulation and trilateration observations do not contain much information in the third dimension,the ellipsoidal heights of the remaining stations are introduced as observed parameters.The heights are shown in Table 3.Table 3 Orthometric Height H and Ellipsidal Height H The elliposidal heights for the GPS stations follow immediately from the&iinrmal c&straint GPS vector adjustment,whereas the ellipsoidal heights of the remaining points are computed from the orthometric heights and the interpolated geoid undulations.The standard deviations for the latter set of heights are derived from a guess for the accuracy of the geoid interpolations.In order to investigate the relative weighting of theles and the distances,two separate adjustments are ried out with CATGPS,each having only one type observation.The result is shown in Table 1.The le for the angle adjustment is provided by fixing the gitude of station 35.The stations 1,10,and 19 are luded from these adjustments because of the weak of that part of the network.In the next step angles and distances are combined in a common ustment which excludes(TERRA A)and includes(TERRA B)th e 1m?at stations 1,10,and 19 respectively

COMBINED ADJUSTMENT CATGPS is finally used to adjust the terrestrial observations and the GPS vectors together.The minimal constraints are implemented by assigning to the latitude and longitude of station 41,to the latitude of station 35,and to the ellipsoidal heights of stations 1,33,and 39 the minimum constraint GPS results as constants.In this way the GPS vector observations will determine the heights of all stations,i.e.the leveled orthometric heights do not enter this adjustment at all.Table 1 shows that the estimated rotation parameters differ only insignificantly from zero.Their theoretical value is zero because of the specific choice of the numerical values of the coordinates held fixed.A different selection for the fixed coordinate values at station 41,e.g.astronomical positions,would have resulted in estimated rotation parameters significantly different from zero.The estimated scale factor is 1.5 ppm which is about twice its estimated standard deviation.INTERPRETATION Table 1 shows the a-posteriori variances of unit weight for all adjustments.It is seen that these values for the adjustments GPS,ANGLES,and DIST are all slightly above one,but are acceptable at a significance level of.05.Since the three variances of unit weight(1.13,1.11.1.17)are of nearly the same size,one could scale the variance of the GPS vectors,the angles,and the distances by a common scale.This would formally reduce the a-posteriori variances for TERRA(A),TERRA(B),and COMB,but would not change the outcome..of the adjustments.There appears to be no need to scale the variance for the GPS vector observation,the terrestrial angles and distances by separate(different)factors.Table 4 Compilation of Adjustment Results Table 4 shows the adjusted coordinates for the GPS vector adjustment,the combined angle and distance adjustment TERRA(B),and the combination solution COMB.The column“COMB-TERRA”shows for each coordinate the discrepancies in milhmeters between the cornbinedmsolution and the terrestrial solution.The comparison is permissable since solutions in the same terrestrial system(U)are compared.There is a large discrepancy in latitude at station1.However,this discrepancy can be readily explained by a weakness of the terrestrial solution TERRA.The lateral position(with respect to the linac)is only determined by the angles(33-20-1)and(20-N-l).Note that the separation of stations 20-l and 10-l is 3500m and 2500m respectively.The discrepancies COMB-TERRA(B)are shown in Fig.5.There appears to be a systematic effect along the linac in the ter-I I Irestrial observations.The deviation definitely exceeds what can be expected from the formal standard deviations of the terrestrial solution TERRA(B).Several partial solutions were carried out and the residuals were inspected in all cases.No evidence could be found for the existance of blunders in the data.If one excludes the stations 1,10,and 19,then the combination solution and terrestrial solution agree within 1 mm.A verification of whether either the GPS or the terrestrial observations along the linac are systematically debased could finally be obtained through utilizing the linac laser alignment system.A comparison of the X-coordinates of the linac stations from the TERRA and COMB solution with those determined using the linac alignment system was done by means of a seven parameter transformation after the ellipsoidal coordinates had been converted into Cartesian coordinates.The results are shown in table 5.Looking at the(LINAC-COMB)CO~UIIUI,the values of the differences are insignificant with respect to the standard deviations of the COMB-solution.In other words,the COMB-solution reflects the correct geometry of the linac;whereas the significant differences in the(LINAC-TERRA)column indicate that the geometry of the stations in the systems is not congruent.The column GPS-COMB shows only small discrepancies.The latitudinal differences are all smaller than 2 mm.The discrepancies in the east-west direction are somewhat larger.A proper interpretation of these discrepancies requires that one distinguish between the two coordinate systems involved.The combination solution C O M B(as well as TERRA)refers to the terrestrial coordinate system(U).B ecause of the specific choice of the coordinates of the fixed station 41 and the futed latitude of station 10,the terrestial coordinate system(U)and the satellite system(S)are parallel.This is confirmed by the estimates of the rotation angles listed in Table 1.However,the same table lists a scale of±l.5 ppm.Going back to the definition of these transformation parameters it is seen that a positive scale estimate implies that the polyhedron determined by GPS observations(satellite system)is bigger than the one determined from the terrestrial observations.This is readily confirmed by comparing the longitudes of stations 1,41,and 35 for the GPS and the C O M B solutions in Table 4.The scale factor is,of course,also present in the latitudinal discrepancies,but to a lesser extent,because of the predominently east-west extension of the whole network.The longitudinal effect of the scale factor onaation 1 relative to station 41 is 1.5 ppm*3200 m=5.4 mm.This is the value by which the longitudinal separation of stations 1 and 41 should be increased in COMB.In fact,the effect of the scale on the longitudes of all stations is computed as(-5,-3,-2,0,-1,0,1,2)in millimeters.Differencing these values with those listed in Table 4 under column“GPS-COMB”yields the discrepancies in which the effect of the scale is eliminated.The values are(O,O,-l,O,-,-l,-l,O,-3)in millimeters.These values and those listed for the latitude are of the same size.They reflect the“non-scale”discrepancies between the GPS solution and the combination solution.Their smallness reflects the dominance of the GPS vector observations in the combination solution.Table 5 Linac Comparison

CONCLUSIONS The leveling data were used only to compute(interpolate)the geoid undulations.The accuracy of these undulations depends directly on the accuracy of the leveling and the vertical components of the GPS survey.Processing the phase observations“line by line”yielded a completely acceptable accuracy for this project.Comparison with the terrestrial observations demonstratesthat the_GPS accuracy statements(standard deviations)are,indeed,meaningful and not toooptimistic.Compared against the standard of the precise network and especially the linac laser alignment system measurements,it could be proven that the GPS technique in a close range application is capable of producing results with standard deviations in the range of l-3 m m and,therefore,can be applied for engineering networks.The GPS survey has made it possible for the weak network of the linac(stations 1,10,19,42)to be tied accurately to the loop network.The terrestrial observations did not control the latitudinal position of station 1 accurately.To determine station 1 accurately with terrestrial observations would have required the design of a“classical”network which would have been difficult and expensive because of the visibility constraints due to topography and buildings(which did not exist during the first survey for the linac).The GPS survey served as a standard of comparison for the terrestrial solution and revealed the existence of systematic errors in the latter solution even though a thorough analysis of the terrestrial observations did not reveal such errors.Since the estimated scale factor of 1.5 ppm f.8 ppm is of the same magnitude as the over-all horizontal accuracy of both networks,no conclusion can be drawn as to internal scale problems of either the electronic distance measurement devices or the Macrometer.REFERENCES Baarda,W.(1976):Reliability and Precision of Networks,Presented Paper to the VIIth International Course for Engineering Survey of High Precision,Darmstadt.Collins,J.,Leick A.(1985):Analysis of Macrometer Network with Emphesis on the Montgomery(PA)County Survey,Presented Paper to the First International Symposium on Precise Positioning with the Global Positioning System,Rockville.Fuchs,H(31980):Untersuchungen

zur

Ausgleichung

durch

Minimierender Absolutsummeder Verbesserungen,Dissertation,Technische Universitlt Graz.Fuchs,H.,Hofmann-Wellenhof,B.,Schuh W.-D.(1983):Adjustment and Gross Error Detection of Leveling Networks,in:H.Pelzer and W.Niemeier(Editors):Precise Levelling,Diimmler Verlag,Bonn,pp.391-409.Friedsam,H.,OrenW.,PietrykaM.,PitthanR.,Ruland

Hermannsfeldt,W.(1965):L?mat Alignment Techniques,Paper presented to the IEEE Particle Accelerator Conference,Washington D.C.Leick A.(1984):M August 1984.acrometer Surveying,Journal of Surveying Engineering,Vol.110,No.2

Pietryka,M,Friedsam H.,Oren W.,Pitthan R.,Ruland R.(1985):The Alignment of Stanford?s new Electron-Positron Collider,Presented Paper to the 45th ASP-ASCM Convention,Washington D.C.Rice,D.(1966):Vertical Alignment-Stanford Linear Accelerator-,in:Earth Movement Investigations

Ruland,R.,Leick,A.(1985):Usability of GPS in Engineering Surveys,Presented Paper to the 45th ASP-ASCM Convention,Washington D.C.and

Geodetic

Control

for

Stanford

Linear

Accelerator Center,Aetron-Blume-Atkinson,Report No.ABA 106.R.(1984):SLC-Alignment Handbook,in:Stanford Linear Collider Design Handbook,Stanford,pp.8-3-8-85.附錄

斯坦福直線加速器中心-3620 1985年4月

(A)

GPS在精密工程測量網中的應用

RobertRuland,AlfredLeiek 摘要:測距儀被用來進行GPS衛星測量,以支援斯坦福直線加速器中心(SLAC)的建設。該測量網由16個測站組成,其中有9個是瓦lacrometer網的測站。GPS測量的平面和高程精度,估計分別為1mm到2mm和2mm到3mm。由邊角測量組成的地面測量的平面精度僅在該網的“環形”部分與GPS測量精度相同。所有測站都是精密水準網的一部分。由GPS測得的大地高和水準測量網的正高,可用來計算大地水準面差距。美國大地測量局于1963年對一條沿直線加速器方向的大地水準面剖面進行了計算。此剖面與上述水準面的吻合程度在GPS測量的標準差允許范圍以內。之后將其角度和邊長一起進行了平差,還將全部地面觀測值與GPS向量觀測值一起,進行了一次聯合平差。比較COMB和TERRA的結果,發現在地面網的解算中存在著系統誤差。估計尺度因子為1.5ppm?0.8ppm。此值與兩網總的平面精度具有相同的量值。

引言

斯坦福直線加速器中心(SLAC)正在建設一項新的工程——斯坦福直線碰撞器(SLC)。它建成后的形狀如同一把帶把的網球拍。拍柄是已有的直線加速器,而彎曲部分是新碰撞器的北、南兩條弧,其環形的直徑約一公里。為了在弧形隧道內定出近千塊磁鐵的位置,有必要由附近的參考標志組成一個控制網(pietryka 1985)。誤差分析表明,僅用一條隧道導線是不能以所需要的精度提供參考點的。因此,建立了一個(可從頂部)垂直貫通的控制網,以支持隧道導線。控制點所需要的絕對定位精度為?2mm(Friedsman 1984)。

這個二維地面網應根據設計坐標系時所規定的那個基準進行定向。所設計的這個坐標系,是用來表示所有的射束導向元件的理論位置的。該坐標系規定,將現有兩英里長的直線加速器(linac)的方向作為其Z軸,SLC坐標系必須與沿直線加速器的那些點結合起來,以得到它的方向。因此,三個直線加速器測站也被納入SLC網。圖1表示了該網最后的形狀。

該網的形狀不佳是顯而易見的,特別是由于直線加速器上測站1、10和19到其它測站之間不存在通視條件(除了40號測站和20號測站以外)。為了改善該網的構形,必須在直線加速器的北面和南面增設一些測站。但由于局部地形的限制,將使測量費用增加兩倍。

以上就是當時決定試驗GPS方法的背景,盡管當時GPS能否達到所要求的2mm標準差的定位精度尚未被證實。

測量方案

平面控制網由16個測站組成:環形部分12個測站,沿直線加速器4個測站。出自經濟方面的考慮,并非全部16個點都被納入了GPS測量網,只有直線加速器部分4個站和環形部分5個站進行了GPS測量。這樣做的目的,是用常規方法——三角測量和三邊測量方法定出包括42號測站在內的環形部分測站的坐標,隨之再進行一次內約束平差,然后用GPS信息將網調整至直線加速器的方向(Ruland,1955)。

1、常規平面網

全部標石都裝有強制對中系統,并建造了堅固為混凝土測墩或鋼架結構的站標。測墩和標石都建立了獨立的觀測臺。觀測項目包括方向和距離,其標準分別為0.3mgon和0.2mm。

2、常規高程網

全部15個測站都是精密水準網的一個組成部分。為將誤差減至最小程度,并簡化重復水準測量作業,水準點和轉點上都埋沒了永久性標石。整個網的雙程測量大約需要設站700個。雙程每公里標準差為0.3mm。

3、GPS測量

1984年8月,Geo-Hydro公司利用5個可用的衛星進行了GPS測量。每個測站都利用了整個觀測窗口,通常使用三臺測距儀。

4、直線加速器的激光準直系統 為了對直線加速器進行反復的經常性的調整,我們設計并安裝了直線加速器的激光準直系統。該系統可用來測定直線加速器軸線之垂線方向的數值(X和Y),在全長305米的范圍內精度可優于?0.lmm。這樣,點光源與探測器之間的直線即可確定。在274個支持點的每個點上,均有一個由遙控驅動關節支持的站標。為了檢查待測點是否在準直線上,只要驅動關節機械,使該點的站標移至光束中。站標實際上是一個矩形Fresnel透鏡,它具有已調準的焦距,以使光源在探測器平面上成像,然后再由探測器在垂直和水平方向對該成像進行掃描,以確定站標自預定直線的偏移量。站標安置在一個60cm直徑的鋁管內,而鋁管又是加速器的基本支承梁。支承梁抽空到大約1加水銀柱的大氣壓,以防止空氣折射效應對準直成像產生畸變和偏轉(Hermannsfeldt 1965)。

利用這一系統可以不依賴于地面測量或GPS測量技術,獨立地確定直線加速器部分的四個測點的X坐標,其精度均優于±0.1mm。

水準測量資料的分析

為了檢核粗差,曾使用了L-1范數平差技術(Fuchs,1983),并檢出和剔除了一些粗差。之后,將41號測站的高程固定在已知值64.259M上,用CATGPS(Collins,1985)程字按最小約束條件形式進行了一次L-2范數平差。就平差目的而言,選擇這一特定點以及這樣的特定數值,當然是任意的。如果測站的經緯度被固定,那么對水準測量數據平差來說,CATGPS將是非常適用的,水準網平差結果匯總于表1中(見水準測量一欄)。

GPS資料分析

為了檢驗粗差并得到所獲精度的非約束條件估值,曾對從Geo-hydro公司接收到的全部GPS向量及它們各自的協方差矩陣,進行了一次內約束條件的最小二乘解算。

1、內約束條件的GPS解算

根據對殘差進行的數據探測,懷疑39到42的向量觀測包含著大約1.3cm的粗差。Geo-Hydro公司對此進行了二次重算。在初始計算中,時偏實際上未加固定。對短向量情況來說,固定時偏是計算測距儀向量的一種標準處理方法。重算向量的分量同初始網的解算的平差值符合程度在2mm以內。完成觀測量改正后,其殘差并不能使人聯想到其它粗差的存在。內約束條件的解算可借助于MAC程序來完成,計算結果列于表

1、表2和圖2中。以上圖表充分表明了GFS網的質量和均勻性。平面位置和高程位置的標準差,分別為1~2mm和2~3mm。如果對所有觀測向量計算標準差和平差后的長度,以及它們的比率的話,則其平均比率為1:690000。此值給出了這次GPS測量所達到的平面測量精度的另一特性。

2、極小約束條件的GPS解算

這一解算確定了參考基準。最簡單的一組極小約束條件是強制固定一個測站,以計算GPS多面體的平移分量。旋轉和尺度(因子)是Hacromoter向量測量和數據處理技術中固有的。41號測站采用已公布的大地緯度(北美1927年基準),并令該點的大地高與上面所給的正高相等。因此這樣定義的橢球與經典定義的某一局部參考橢球(在原點上大地緯度和經度分別等于其天文緯度和經度,大地方位角與天文方位角相等,并取大地高為零)將相差甚微。這一經典定義使得橢球在原點與等位面相切。因此就GPS向量平差而論,對41號測站選擇什么數值根本無關緊要,故局部參考橢球的定義同樣可以利用。在這種情況下,垂線偏差恰好是已知的(見下文)。只要是垂線偏差而引起的水平角觀側的改正是微不足道的,任何關于局部參考系的定義對于這一方案都是適用的,更何況并沒有打算利用這些改正數。

大地水準面形狀

比較大地高和正高,根據H=h-N可容易得到測區的大地水準面形狀。圖3表示了沿直線加速器方向的大地水準面剖面圖。

上圖表明,所測得的大地水準面在20號側站上出現了意料不到的凹陷。為了進行地面側量正巧需在該測站上建一座20米高的觀測站標。該坐標相對于地面標石的高度是用三角法測量的。假定大地水準面隨虛線延伸,從而可以推斷站標平臺的高度約含有8mm的誤差。由于這個原因,為了建造直線加速器早先曾進行過一次測量。在那次測量中,美國海岸大地測量局計算了1至42號測站之間的大地水準面剖面。Rioe在1966年的報告中列舉了1號側站和42號測站,以及10至19號測站正中的一個不存在的點的垂線偏差分量。根據這些值,海岸大地測量局對大地水準面的差求得一個函數。所有線值均以英尺為單位。變量x從一號測站開始度量。報告指出該函數給出的大地水準面差距具有優于0.001英尺的估計精度,但并未給出怎樣得到這一精度估值的過程。圖3表示了按函數

N=11.102*10?6(x)?11.4331*10?10(x)2?6.0629*10?14(x)3

求得的大地水準面差距曲線。這一曲線與測得的大地水準面之間的偏差,在10號測站上明顯地超出了用測距儀測定的1至10號測站的高差的標準差,但是19和42號測站則在標準差范圍內。

順便要說明的是,所測得的大地水準面的總斜率,與其說是采用了41號測站的天文坐標作為最小約束條件,倒不如說是采用其大地坐標作為最小約束條件的結果。42號測站上東西方向的垂線偏差分量為1.84弧秒。此值正是在1至42號測站之間導致大地水準面傾斜27mm的原因。

圖4是試圖描繪大地水準面高程的等值線圖。由于GPS測站數目太少,其在測區的分布亦欠佳,因而影響了等值線的精度。

六、地面測量分析

對于三角測量和三邊測量同樣也用L-1范數技術(Fuehs1980)進行了粗差檢驗。然后利用CATGPS三維模型將地面測量值進行平差。采用的參考橢球是上面解算最小約束條件的GPS向量時所定義的橢球,即對41號測站采用同樣的數值并固定不變。確定方位時是把35號測站的緯度值固定到從最小約束條件之GPS答解中求得的數值。此外,41號側站的高程亦受到GPS解算的約束。這樣定義的結果,使得地面測量系統(U)與衛星系統(S)互相重合。既然三角測量和三邊測量中沒有包含許多第三維的信息,那末其余點的大地高將作為觀測參數而被采用。這些高程參數可參看表3。

對于GPS測站來說,大地高可以從極小約束條件的GPS向量平差中直接得到,而其余點的大地高則要由正高和內插得到的大地水準面差距計算得到。后者的標準差可由大地水準面內插精度的估值推知。為了研究角度和距離為相對權,利用CATGPS分別進行了兩次平差,每次只包含一種觀測量。平差結果可參看表1。對角度平差來說,其尺度是以固定35號測站的經度來保證的。

1、10和19號點被排除在這些平差之外,其原因是網的那一部分構形過于單薄。下一步是把角度和矩離聯合起來,分別按不包含直線加速器測站1、10及19(TERRA-A)和包含這些測站(TERRA-B)的兩種方案進行邊角共同平差。

七、聯合平差

最后,用CATGPS進行地面觀測資料和GPS向量的總體平差。最小約束是這樣完成的:規定41號測站的經緯度、35號測站的緯度,以及1、33和39號測站的大地高作為常量,并等于極小約束條件的GPS結果。按照這種方法,GPS向量的觀測值將決定所有測站的高程,即水準測量測得的正高根本不參予平差計算。表1說明,估算的旋轉參數與零的差異僅僅是微不足道的。由于專門選定的坐標數值保持不變,故它們的理論值應為零。在41號測站上選擇不同的坐標固定值,例如選擇天文坐標,將會使旋轉參數的估值明顯不等于零。估算的尺度因子為1.5ppm,這大約是其標準差估值的2倍。我們就可以把GPS向量、角度和邊長的方差用一個共同的比例加以改變。這樣,形式上將使TERR(A)、TERRA(B)以及COMB的后驗方差減小,但并不改變其平差結果。對GPS向量觀測資料、地面角度測量和距離測量方差乘以不同的因子看來是不必要的。表4給出了GPS向量平差、邊角聯合的TERR八(B)平差,以及聯合解算COMB平差后為坐標。“COMB一TERRA”一欄對各坐標給出了聯合解算與地面觀測解算之間以毫米為單位的不符值這樣比較是允許的,因為這些解算是在同一地面坐標系(U)內完成的。在1號測站的緯度中出現了大的不符值,但該不符值出現的原因,很容易用地面測量解TERRA比較弱予以解釋,橫向位置(相對于直線加速器而言)僅決定于角度(33-20-1)和(20-10-1)。注意到測站20到1和10到1之間的距離分別為35O0m和2500m。COMB-TERRA(B)的差值見圖5

在沿直線加速器的地面觀測中,看來存在著系統性的影響。其偏差無疑超過了從地面測量解算TERRA(B)求得的正規的標準差之預期值。已進行了一些局部解算,并檢查了所有情況下的殘差,但在數據中未找到存在粗差的證據。如果不把1、10和19號測站包括進去,則聯合解算和地面測量解算的符合程度在lmm以內。無論是對GPS,還是對地面測量,要證明沿直線加速器的觀測精度是否系統地下降,最終都可利用直線加速器上的激光準直系統加以解決。曾把從地面解算(TERRA)和聯合解算(COMB)得到的直線加速器測點的X坐標,和利用準直系統(LINAC)所確定的同名點的坐標進行了一次比較。這次比較是把橢球坐標轉化為笛卡爾坐標后,利用七參數轉換的方法進行的,其結果參看表5。其差值與聯合解算的標準差相比較是微不足道的,換句話說,聯合解算COMB反映了直線加速器的正確幾何形狀。而在(LINAC-TERRA)一欄中有重大差異,說明在該系統中測點的幾何位置是不適合的。

GPS-COMB一欄顯示出二者僅有一些小的不符值。緯向差均小于2mm。東西方向的不符值稍大一些。要恰當地解釋這些不符值尚需對有關的兩個坐標系加以區分。聯合解算COMB(TERRA也一樣)是以地面坐標系(U)為參考的。由于對41號測站的坐標和10號測站緯度之固定值進行了專門選擇,故地面坐標系和衛星坐標系是平行的。這可由表1所列旋轉角之估值加以證實。但是在同一表中卻給出了±1.5ppm尺度因子。回顧這些轉換參數的定義,可以看出,正的尺度因子估值意味著由GPS觀測(衛星系統)確定的多面體,大于地面觀測所確定的多面體。把表4中所列的利用CPS和COMB所確定的1、41和35號測站的經度進行比較,就很容易證實這一點。尺度因子當然也存在于緯度不符值之巾,但僅在很小的程度上有影響,因為整個網基本上是按東西方向延伸的。尺度因子對1號測站相對于41號測站的經向影響為1.5ppm·3200m=5.4mm。這就是在聯合平差中1號測站和l1號測站之間的經度差所應該增大的數值。事實上,經計算尺度對各測站的經度影響分別為(-5,-3,-2,0,-1,0,1,2)毫米。取這些值與表4“GPS-COMB”一欄中所列值之差即得不符值,在這些新不符值中尺度影響被消除。這些值以毫米為單位分別為(0,0,-1,0,-1,-1,0,-3)。它們與表中對緯度所列之值大小相同,這反映了在GPS和聯合解算之間“無尺度影響”不符值。這些值很小,恰恰說明GPS向量觀測資料在聯合解算中的權威性。

九、結論

水準測量資料僅用于計算大地水準面差距。大地水準面差距的精度直接取決于水準測量和GPS測量垂直分量的精度。逐條處理基線相位觀測資料,得到了對該工程來說完全滿意的精度。與地面測量的比較證明,CPS精度的說明(標準差)是有意義的,其精度估計是合適的。

與精密網的標準比較,特別是與直線加速器激光準直系統的測量結果進行比較可以證明,GPS測量技術在近距離測量中能給出標準差在1到3毫米范圍內的結果,因此可用于工程測量網。

GPS測量使得構形較差的直線加速器測量網(1、10、19和42號測點)能夠精確地連接到環形網上。地面觀測資料不能精確地控制1號測站的緯向位置。為了用地面觀測資料精確求定1號測站,需設計一個“經典”測量網。但由于地形和建筑物(在對直線加速器進行第一次測量期間它們是不存在的)對通視條件的限制,實現此方案將是很困難、很昂貴的。縱然對于地面觀測資料詳細的分析沒有顯露出系統誤差,但GPS測量卻為地面測量的解算提供了一個比較標準,并揭示了后者解算中存在系統誤差。

鑒于尺度因子的估值1.5ppm±0.8ppm與兩網的綜合平面精度具有同一量級,故就內部的尺度問題而言,不能作出結論,是電子測距儀器所致,還是由光學測距儀所致。

第三篇:出租車計價器畢業論文附錄

北京信息科技大學

畢業設計(論文)附錄

題 目:

學 院: 專 業:

學生姓名: 班級/學號 指導老師/督導老師:

起止時間:2012 年 月 日 至 2012 年 月 日

目錄

附件1 原理圖············································共 1 頁

附件2 PCB圖 ··········································· 共 1頁

附件3 程序代碼 ········································· 共 19 頁

附件4 外文資料翻譯 ····································· 共 11 頁

原理圖

PCB圖

程序代碼

#include #define uchar unsigned char #define uint unsigned int

uchar table2[]=“0123456789abcdef”;

sbit lcdwr=P2^6;sbit lcdrs=P2^5;sbit lcden=P2^7;sbit beep=P2^4;sbit sclk=P3^7;sbit io=P3^6;sbit rst=P3^5;sbit scl=P3^0;sbit sda=P3^1;

uchar model;//模式標志位

uchar yue,ri,xq,shi,fen,miao;//月,日,星期,時,分,秒 uchar qibu=50,danjia=5;uint zongjia,lucheng,zzongjia,zlucheng;uchar xiugai;//修改時間和起步價單價標志 uint zj;uint zlc;uchar zu;//組數 uint count;//定時器中的數

uint waitmiao,waitfen;//等待時間 uint count1,count2;//外部中斷中的數 uchar xsfen,xsmiao;//行駛時間 uchar wait;//等待標志 uint speed;//速度標志

uchar cycount;//速度采樣值

void delayms(uint x){ uint i,j;for(i=x;i>0;i--)

for(j=110;j>0;j--);} void delay(){;;} /****************************** 1602液晶部分

******************************/ void yjwrite_com(uchar com){ lcdrs=0;P0=com;delayms(5);lcden=1;delayms(5);lcden=0;} void yjwrite_date(uchar date){ lcdrs=1;P0=date;delayms(5);lcden=1;delayms(5);lcden=0;} void yjinit(){ lcdwr=0;lcden=0;yjwrite_com(0x38);

yjwrite_com(0x0c);yjwrite_com(0x06);yjwrite_com(0x01);//顯示清0,指針清0 } /*************************************************************************************** DS1302時間部分

***************************************************************************************/ void write_byte(uchar com,uchar date)//向DS1302模地址寫數據 { uchar i;rst=0;sclk=0;rst=1;for(i=0;i<8;i++){

if(com&0x01)io=1;

else io=0;

com>>=1;

sclk=0;

delayms(1);

sclk=1;} sclk=0;for(i=0;i<8;i++){

if(date&0x01)io=1;

else io=0;

date>>=1;

sclk=0;

delayms(1);

sclk=1;} sclk=0;rst=0;} uchar read_byte(uchar com){ uchar i,date;rst=0;sclk=0;rst=1;for(i=0;i<8;i++){

if(com&0x01)io=1;else io=0;

com>>=1;

sclk=0;

delayms(1);

sclk=1;} for(i=0;i<8;i++){

if(io)date|=0x80;

date>>=1;

sclk=1;

delayms(1);

sclk=0;} sclk=0;rst=0;return date;} void ds1302init(){ sclk=0;rst=0;write_byte(0x8e,0);//寫保護寄存器,最高位WP=1,寫保護,WP=0,不寫保護 // write_byte(0x90,0);//充電控制寄存器(此處為不充電)

write_byte(0x90,0xa5);//充電控制寄存器,設置為充電狀態 } /*void reset_1302(){ write_byte(0x8e,0);write_byte(0x80,0);//秒

write_byte(0x82,0x43);//分

write_byte(0x84,0x13);//時

write_byte(0x86,0x14);//日

write_byte(0x88,0x10);//月

write_byte(0x8a,0x05);//星期

write_byte(0x8c,0x11);//年

write_byte(0x8e,0x80);//寫保護

} */

/****************************************************************************** AT24C02存儲與讀取部分

******************************************************************************/ void start1(){ sda=1;delay();scl=1;delay();sda=0;delay();} void stop1(){ sda=0;delay();scl=1;delay();sda=1;delay();} void respons(){ uchar i;scl=1;delay();while((sda==1)&(i<250))i++;scl=0;delay();} void init(){ sda=1;delay();scl=1;delay();} void write_byte1(uchar date){ uchar i,temp;temp=date;for(i=0;i<8;i++){

temp=temp<<1;

scl=0;

delay();

sda=CY;

delay();

scl=1;

delay();} scl=0;delay();sda=1;delay();} uint read_byte1(){ uchar i,k;scl=0;delay();sda=1;delay();for(i=0;i<8;i++){

scl=1;

delay();

k=(k<<1)|sda;

scl=0;

delay();} return k;} void write_add(uchar address,uint date){ start1();write_byte1(0xa0);respons();write_byte1(address);respons();write_byte1(date);respons();stop1();} uint read_add(uchar address){ uchar date;start1();write_byte1(0xa0);respons();write_byte1(address);respons();start1();write_byte1(0xa1);respons();date=read_byte1();stop1();return date;} /***************************************************************************************** 鍵盤檢測

*****************************************************************************************/ uchar key_scan(){ uchar k=0,temp;static uchar key_up=1;P1=0xff;temp=P1;if(temp!=0xff&&key_up){

delayms(10);

key_up=0;

temp=P1;

if(temp!=0xff)

{

temp=P1;

switch(temp)

{

case 0xfe:k=1;break;

case 0xfd:k=2;break;

case 0xfb:k=3;break;

case 0xf7:k=4;break;

case 0xef:k=5;break;

case 0xdf:k=6;break;

case 0xbf:k=7;break;

case 0x7f:k=8;break;

}

} } temp=P1;if(temp==0xff){

key_up=1;} return k;} void display_time();/**************************************************************************************** 時間起步價和單價調整部分

****************************************************************************************/ void tiaoshi(){ uchar i;uchar t=0,n=1;write_byte(0x8e,0);//寫保護寄存器,最高位WP=1,寫保護,WP=0,不寫保護

yue=read_byte(0x89);ri=read_byte(0x87);xq=read_byte(0x8b);shi=read_byte(0x85);fen=read_byte(0x83);miao=read_byte(0x81);yue=(yue/16)*10+yue%16;ri=(ri/16)*10+ri%16;xq=(xq/16)*10+xq%16;shi=(shi/16)*10+shi%16;fen=(fen/16)*10+fen%16;miao=(miao/16)*10+miao%16;t=key_scan();if(t==6){ n++;if(n==10){

n=0;

xiugai=0;} } if(t==8){n=0;xiugai=0;} while(n){ t=key_scan();if(t==8){n=0;xiugai=0;} if(t==6){

n++;

if(n==10)

{

n=0;

xiugai=0;

goto a;

}

} switch(n){

case 1:

yjwrite_com(0x80);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

yue++;

if(yue==13)yue=1;

write_byte(0x88,((yue/10)*16+yue%10));//

break;

case 3:

;

;

yue--;

if(yue==-1)yue=12;

write_byte(0x88,((yue/10)*16+yue%10));

break;

}

yjwrite_com(0x80);yjwrite_date(table2[yue/10]);yjwrite_date(table2[yue%10])

break;

case 2:

yjwrite_com(0x80+3);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

ri++;

if(ri==32)ri=0;

write_byte(0x86,((ri/10)*16+ri%10));//日

break;

case 3:

ri--;

if(ri==-1)ri=31;

write_byte(0x86,((ri/10)*16+ri%10));

break;

}

yjwrite_com(0x80+3);yjwrite_date(table2[ri/10]);yjwrite_date(table2[ri%10])

break;case 3: yjwrite_com(0x80+6);yjwrite_com(0x0f);delayms(5);switch(t){

case 2:

xq++;

if(xq==8)xq=1;

write_byte(0x8a,((xq/10)*16+xq%10));//星期

break;

case 3:

xq--;

if(xq==-1)xq=7;

write_byte(0x84,((xq/10)*16+xq%10));

break;} yjwrite_com(0x80+5);yjwrite_date('-');yjwrite_date(table2[xq%10]);

break;

case 4:

yjwrite_com(0x80+0x40);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

shi++;

if(shi==24)shi=0;

write_byte(0x84,((shi/10)*16+shi%10));

break;

case 3:

shi--;

if(shi==-1)shi=23;

write_byte(0x84,((shi/10)*16+shi%10));

break;

}

yjwrite_com(0x80+0x40);yjwrite_date(table2[shi/10]);yjwrite_date(table2[shi%10]);

break;

case 5:

yjwrite_com(0x80+0x43);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

fen++;

if(fen==60)fen=0;

write_byte(0x82,((fen/10)*16+fen%10));//分

break;

case 3:

fen--;

if(fen==-1)fen=59;

write_byte(0x82,((fen/10)*16+fen%10));//分

break;

}

yjwrite_com(0x80+0x40+3);yjwrite_date(table2[fen/10]);yjwrite_date(table2[fen%10]);

break;

case 6:

yjwrite_com(0x80+0x46);yjwrite_com(0x0f);delayms(5);

switch(t)

{

case 2:

miao=0;

write_byte(0x80,((miao/10)*16+miao%10));//秒

break;

case 3:

miao=0;

write_byte(0x80,((miao/10)*16+miao%10));//秒

break;

}

yjwrite_com(0x80+0x40+6);yjwrite_date(table2[miao/10]);yjwrite_date(table2[miao%10]);

break;

case 7: //起步價調整

yjwrite_com(0x80+11);yjwrite_com(0x0f);

qibu=read_add(2);

switch(t)

{

case 2:qibu++;write_add(2,qibu);break;

case 3:qibu--;write_add(2,qibu);if(qibu==-1)qibu=0;break;

}

yjwrite_com(0x80+11);

//顯示起步價

yjwrite_date(table2[qibu/100]);

yjwrite_date(table2[qibu%100/10]);

yjwrite_date('.');

yjwrite_date(table2[qibu%10]);

break;

case 8: //單價調整

yjwrite_com(0x80+0x40+11);yjwrite_com(0x0f);

danjia=read_add(0);

t=key_scan();

switch(t)

{

case 2:danjia++;write_add(0,danjia);break;

case 3:danjia--;write_add(0,danjia);if(danjia==-1)danjia=0;break;

}

yjwrite_com(0x80+0x40+11);

//顯示單價

yjwrite_date(table2[danjia/100]);

yjwrite_date(table2[danjia%100/10]);

yjwrite_date('.');

yjwrite_date(table2[danjia%10]);

break;

case 9:zu=0;yjwrite_com(0x01);write_add(250,zu);

yjwrite_com(0x80);

yjwrite_date('C');yjwrite_date('l');yjwrite_date('e');yjwrite_date('a');

yjwrite_date('r');yjwrite_date('.');yjwrite_date('.');

for(i=3;i<247;i++)

{

write_add(i,0);

delayms(5);

}

yjwrite_com(0x80+0x40);yjwrite_date('O');yjwrite_date('K');

break;

} // display_time();} a: xiugai=0;write_byte(0x8e,0x80);//ds1302寫保護

yjwrite_com(0x0c);//1602液晶取消光標閃爍 } /*********************************************** 按鍵處理函數

***********************************************/ void key_do(){ uchar num1,num2;uchar key=0;key=key_scan();switch(key){

case 1:model++;if(model==3)model=0;break;

case 4:

//啟動按鍵

TR0=1;

EX0=1;

count=0;count1=0;lucheng=0;zongjia=0,count2=0;

waitmiao=0;

waitfen=0;

xsfen=0;

xsmiao=0;

break;

case 5:

//停止按鍵

TR0=0;

EX0=0;

num1=lucheng/256;

write_add((7+zu*2),num1);

num2=lucheng%256;

delayms(5);

write_add((8+zu*2),num2);

num1=zongjia/256;

delayms(5);

write_add((127+zu*2),num1);

num2=zongjia%256;

delayms(5);

write_add((128+zu*2),num2);

delayms(5);

zu++;

if(zu==60)zu=0;

write_add(250,zu);

zzongjia=zzongjia+zongjia;

num1=zzongjia/256;

write_add(5,num1);

delayms(5);

num2=zzongjia%256;

write_add(6,num2);

delayms(5);

zlucheng=zlucheng+lucheng;//計算出累計的總路程

num1=zlucheng/256;//當總路程超過255時,一個字節就存儲不下了,需要分成兩個字節存儲

write_add(3,num1);

num2=zlucheng%256;//分離出總路程的低位字節

delayms(7);

write_add(4,num2);//存儲總路程的低位字節

break;

case 6:xiugai=!xiugai;break;

case 7:

wait=!wait;

if(wait==1)EX0=0;

else EX0=1;

break;

case 8:model=0;xiugai=0;break;} } void chaxun(){ static uchar n=0;uchar key=0,num,num1,a=0;num=read_add(3);//讀取總路程的高位

num1=read_add(4);//讀取總路程的高位

zlucheng=num*256+num1;num=read_add(5);//讀取總總價的高位 num1=read_add(6);//讀取總總價的高位 zzongjia=num*256+num1;yjwrite_com(0x80);yjwrite_date(table2[qibu/100]);//顯示起步價 yjwrite_date(table2[qibu%100/10]);yjwrite_date('.');yjwrite_date(table2[qibu%10]);yjwrite_com(0x80+8);

//顯示單價 yjwrite_date(table2[danjia/100]);yjwrite_date(table2[danjia%100/10]);yjwrite_date('.');yjwrite_date(table2[danjia%10]);yjwrite_com(0x80+0x40);yjwrite_date(table2[zlucheng/1000]);//顯示總路程 yjwrite_date(table2[zlucheng%1000/100]);yjwrite_date(table2[zlucheng%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zlucheng%10]);yjwrite_date('k');yjwrite_date('m');yjwrite_com(0x80+0x40+8);

//顯示總總價 yjwrite_date(0x5c);//顯示人民幣的符號 yjwrite_date(table2[zzongjia/1000]);yjwrite_date(table2[zzongjia%1000/100]);yjwrite_date(table2[zzongjia%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zzongjia%10]);

key=key_scan();switch(key){ case 1:a=0;model=0;break;case 2:a=1;n++;if(n==60)n=0;break;case 3:a=1;n--;if(n==-1)n=59;break;case 8:a=0;model=0;break;} while(a){ key=key_scan();switch(key){

case 1:a=0;model++;break;

case 2:n++;if(n==60)n=0;break;

case 3:n--;if(n==-1)n=59;break;

case 8:a=0;break;

}

if(key==2||key==3)

{

yjwrite_com(0x01);

num=read_add(7+2*n);//讀取總路程的高位

num1=read_add(8+2*n);//讀取總路程的高位

zlc=num*256+num1;

num=read_add(127+2*n);//讀取總總價的高位

num1=read_add(128+2*n);//讀取總總價的高位

zj=num*256+num1;

yjwrite_com(0x80);

//顯示組數

yjwrite_date(table2[(n+1)/10]);

yjwrite_date(table2[(n+1)%10]);

yjwrite_com(0x80+0x40);

//顯示路程

yjwrite_date(table2[zlc/100]);

yjwrite_date(table2[zlc%100/10]);

yjwrite_date('.');

yjwrite_date(table2[zlc%10]);

yjwrite_date('k');

yjwrite_date('m');

yjwrite_com(0x80+0x40+8);

//顯示總價

yjwrite_date(0x5c);

yjwrite_date(table2[zj/100]);

yjwrite_date(table2[zj%100/10]);

yjwrite_date('.');

yjwrite_date(table2[zj%10]);

} } } void display_time(){ uchar i;uchar time[11];yue=read_byte(0x89);ri=read_byte(0x87);xq=read_byte(0x8b);shi=read_byte(0x85);fen=read_byte(0x83);miao=read_byte(0x81);time[0]=yue/16;//提取月的第一位數據,讀出來的時間是16進制的,所以對16取模

time[1]=yue%16;//提取月的第二位數據 time[2]=ri/16;time[3]=ri%16;time[4]=xq%16;time[5]=shi/16;time[6]=shi%16;time[7]=fen/16;time[8]=fen%16;time[9]=miao/16;time[10]=miao%16;yjwrite_com(0x80);for(i=0;i<2;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date('-');for(i=2;i<4;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date('-');yjwrite_date(table2[time[4]]);yjwrite_com(0x80+11);

//顯示起步價 yjwrite_date(table2[qibu/100]);yjwrite_date(table2[qibu%100/10]);yjwrite_date('.');yjwrite_date(table2[qibu%10]);yjwrite_com(0x80+0x40+11);

//顯示單價 yjwrite_date(table2[danjia/100]);yjwrite_date(table2[danjia%100/10]);yjwrite_date('.');yjwrite_date(table2[danjia%10]);yjwrite_com(0x80+0x40);for(i=5;i<7;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date(':');for(i=7;i<9;i++){ yjwrite_date(table2[time[i]]);} yjwrite_date(':');for(i=9;i<11;i++){

yjwrite_date(table2[time[i]]);}

} void main(){ uchar fristtime=0,fristtime1=0,fristtime2=0;ds1302init();//ds1302初始化

init();//24c02初始化

yjinit();//1602液晶初始化 // reset_1302();danjia=read_add(0);qibu=read_add(2);TMOD=0X01;TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;ET0=1;IT0=1;zu=read_add(250);PT0=1;while(1){

key_do();

switch(model)

{

case 0:

fristtime1=0;

fristtime2=0;

if(fristtime==0)

{

yjwrite_com(0x01);

fristtime=1;

}

if(lucheng>30)

zongjia=(qibu*10+(danjia*(lucheng-30)))/10;

else

zongjia=qibu;

yjwrite_com(0x80);

//顯示行駛時間

yjwrite_date(table2[xsfen/10]);

yjwrite_date(table2[xsfen%10]);

yjwrite_date('-');

yjwrite_date(table2[xsmiao/10]);

//

yjwrite_date(table2[xsmiao%10]);yjwrite_date(' ');yjwrite_date(table2[waitfen/10]);//顯示等待時間

yjwrite_date(table2[waitfen%10]);yjwrite_date('-');yjwrite_date(table2[waitmiao/10]);yjwrite_date(table2[waitmiao%10]);yjwrite_date(' ');yjwrite_date(table2[speed/100]);//顯示速度

yjwrite_date(table2[speed%100/10]);yjwrite_date('.');yjwrite_date(table2[speed%10]);if(speed>650)beep=0;else beep=1;yjwrite_com(0x80+0x40);

//顯示路程的yjwrite_date(table2[lucheng/100]);yjwrite_date(table2[lucheng%100/10]);yjwrite_date('.');yjwrite_date(table2[lucheng%10]);yjwrite_date('k');yjwrite_date('m');yjwrite_date(' ');yjwrite_date(table2[(zu+1)/10]);//顯示當前組數

yjwrite_date(table2[(zu+1)%10]);yjwrite_date(' ');yjwrite_com(0x80+0x40+10);

//顯示總價

yjwrite_date(0x5c);yjwrite_date(table2[zongjia/1000]);yjwrite_date(table2[zongjia%1000/100]);yjwrite_date(table2[zongjia%1000%100/10]);yjwrite_date('.');yjwrite_date(table2[zongjia%10]);break;case 1: fristtime=0;fristtime2=0;if(fristtime1==0){

yjwrite_com(0x01);

fristtime1=1;} display_time();if(xiugai==1){

tiaoshi();

}

break;

case 2:

fristtime=0;

fristtime1=0;

if(fristtime2==0){yjwrite_com(0x01);fristtime2=1;}

chaxun();

break;

}

}

} void timer0()interrupt 1 { TH0=(65536-50000)/256;TL0=(65536-50000)%256;count1++;if(count1==20){

speed=cycount*9;

cycount=0;

count1=0;

xsmiao++;

if(wait==1)

{

waitmiao++;

if(waitmiao==60){waitmiao=0;waitfen++;}

}

if(xsmiao==60)

{

xsmiao=0;

xsfen++;

}

} } void ex0()interrupt 0 { count++;cycount++;if(count==12){

} count=0;count2++;} lucheng=count2*1;

外文資料翻譯

ABSTRACT In this paper, a multi-channel taximeter that is able to deal with more than one passenger simultaneously is proposed.In order to demonstrate the theory of operation of the proposed system, a complete design for an experimental three-channel taximeter(whose prototype has been built under grant from the Egyptian Academy for Scientific and Technological Research)is presented.System location, outline, block diagrams as well as detailed circuit diagrams for the experimental taximeter are also included.1.INTRODUCTION Transporting people in the morning from their homes to their works and back in the afternoon has become a big problem in big cities especially in undeveloped countries.As a partial solution of this problem, the authorities in some countries had, unofficially, left the taxicab drivers to carry different passengers to different places at the Same time.For example, a taxicab with four seats may carry four different passengers without any relation between them except that their way of travelling is the same.Accordingly, it has become very difficult to rely on the present conventional single-channel taximeter to determine the fare required from each passenger separately.Accordingly, an unfair financial relation was created between the taxicab driver, owner, passengers and the state taxation department.Under these circumstances, taxicab drivers force the passengers to pay more than what they should pay.In some cases passengers had to pay double fare they should pay.With the present conventional single-channel taximeter, taxicab owners are not able to determine the daily income of their taxicab.In some cases(a taxicab with four seats)they may only get one quarter of the income of the taxicab(collected by the taxicab driver).From which they should pay the salary of the taxicab driver as well as the cost of fuel, minor and major repairs in addition to the car depreciation.As a matter of fact the position of the taxicab owners is not so bad as it seems.A general agreement has been reached between the taxicab drivers and owners such that the drivers should guarantee a fixed daily income to the owners as well as the paying for the cost of fuel as well as the minor repaires.Even though the taxicab drivers still share the large portion ofthe income of the taxicab.Also with the presence of the single-channel taximeter, it has become very difficult for the state taxation department to know the yearly income of the taxicab and accordingly it has become very difficult to estimate the taxes to be paid by the taxicab owners.In order to face this problem, the state taxation department had to impose a fixed estimated taxes for each seat of the taxicab whatever the income of the taxicab.In this paper, we introduced a multichannel taximeter that can deal with more than one passenger simultaneously.I t should be pointed out that by the term passenger we mean a one person or a group of related persons.I t should also be pointed out that our proposed multi-channel taximeter is not, simply, a multi display readouts.As a matter of fact it contains logic circuits that automatically changes the fare per killometer of travelling distance or per minutes of 'waiting time according to the number of passengers hiring the taxicab.In the following part and as an example, we will present a complete design for a three-channel taximeter.Block diagrams as well as detailed circuit diagrams of the experimental three-channel taximeter are also included.A prototype has been built under grant from the Egyptian Academy for Scientific and Technological Research.2.AN EXPERIMENTAL THREECHANNEL TAXIMETER Theory of operation of our experimental device to work as an electronic digital taximeter is based on t h e fact thathe speedometer cable rotates one revolution for each meter of travelling distance.Accordingly, if the speedometer cable is coupled with a speed sensor that generates a single pulse for each meter of travelling distance, then our taximeter could be three up counter modules associated with a speed sensor unit.However, our experimental taximeter is not simply a three display readouts.As a matter offact it contains logic circuits that automatically changes the fare per kilometer of travelling distance or per minutes of waiting time according to the number of passengers hiring the taxicab.The device may be splitted into two main parts: The first is the speed sensor unit which may be located anywhere in the taxicab such that an easy coupling to the speedometer cable can be achieved.The second unit contains the main electronic circuit, the displayand control panel.The unit should be located somewhere in front of both the driver and the passengers.A possible components locations is shown in Figure 1.A.Speed Sensor Unit The main function of this unit is to supply train of pulses whose frequency is proportional to the angular rotation of the wheels.A possible form of a speed sensor is shown in Figure 2.If may consist of a tj.pica1 permanent magnet sine wave generator with its output connected to a pulse shapping circuit(two general purpose silicon diodes, 1K ohms resistor and a schmit trigger inverter).In order to find some way to detect the movement of the taxicab, the output of the sine wave generator is rectified through a general purpose silicon diode Dl then smoothed by a 1000 F capacitor.The output voltage at terminal Q is then limited to the value of 4.7 volts by using a Ik ohms resistor as well as a zener diode ZD.The level of the voltage at terminal Q would be high whenever the taxicab is moving and will be zero otherwise.This voltage can be used for the automatic switching from distance fare to time fare.B.Main Electronic and Display Unit A suggested shape for the main electronic and display unit is shown in Figure 3.The control and display panel contains all ' controls necessary for operating the taximeter as well as four readout displays.The first channel will give the sum of money required from the first passenger, while the second and third readouts are for the second and third passengers, respectively.The fourth readout will give the total income of the taxicab.The contents of the last readout should be nonvolatile and be able to be retained even during parking the taxicab.The channel rotary selector switchs 1 , 2 and 3 have fully clockwise/anticlockwise positions.In the fully anticlockwise position, the counter of the corresponding readout is blancked and disabled.In the fully clockwise position, the counter is unblanked, cleared to zero and enabled to be ready for counting the sum of money required from the first, second and third passengers, respectively.Pushing the total sum pushbutton 4 unblanks the fourth readout enabling any person to retain the readout corresponding to the total income.After the release of the pushbutton, the fourth readout will be blanked again.This unit also contains the main electronic circuit which will be fully described in the following section.3.DESCRIBTION OF THE MAIN ELECTRONIC CIRCUIT The general block diagram of the main electronic circuit is shown in Figure 4.It consists of five subcircuits designated by the symboles CTI up to CT4supporting circuits, these are: The number of passenger deticition circuit CTI, travelling distance scaling circuit CT2, waiting time scaling circuit CT3, circuit CT4 which generates clock pulses for the display circuit.A.Number of Passengers Detection Circuit CT1 As shown from the general block diagram, the circuit CTI has three inputs I, 2 and 3 as well as three outputs J, K and L.The function of the circuit is to supply a high level voltage at terminals J, K or L if and only if one, two or three passengers are hiring the taxicab, respectively.The term passenger, here, means one person or a group of related persons.When a passenger is getting into the cab, we simply turn on a free readout display by turning the corresponding rotary selector switch to a fully clockwise direction.This will automatically disconnect the corresponding terminal I, 2 or 3 from ground.The logical relation between various input terminals I, 2 and 3 and the output terminals J, K and L is shown in Table 1.As a combinational circuit we start the design by deriving a set of boolean functions.A possible simplified boolean functions that gives minimum number of inputs to gates may be obtained from Table I.A possible logical diagram that is based on the above derived expressions is shown in Figure 5.It consists of two inverters, four 2-input AND, to3-input AND two 3-input OR gates B.Tavelling Distance Scaling Circuit CT2 As shown from the block diagram of Figure 4, the circuit CT2 has four input J, K, L and E and one output M.The function of the circuit is to supply a single pulse at the output M for a certain number of pulses generated at the output of the speed sensor(certain number of meters travelled by the taxicab), according to the number of passengers hiring the car.A suggested fare per kilometer of travelling distance is shown in colomn two of Table 2.the circuit, in this case, should supply a single pulse at the output M for every 100, 125 or 143 pulses generated at the input terminal E according to the level of voltage at input terminale 3, K or L, respectively.Our circuit could be, as shown in Figure 5, three decade counters, connected as a three digit frequency divider whose dividing ratios 100, 125 and 143 are automatically selected by the voltage level at terminals J, K and L, respectively.A possible circuit diagram that may verify the above function is shown in Figure 6.It consists of three decade counters type 7490, one BCD-to decimal decoder type 7445, three 4-input AND, one 3-input ANDone 2-input AND two 3-input OR gates.C.Time Scaling Circuit CT3 As shown in the block diagram, the time scalingcircuit will have four inputs J, K, L and F and one output N.The function of this circuit and accordingto colomn three of Table 2(fare per 2 minuts of waiting time)is to supply a single pulse at the output N for every 120, 240 or 360 pulses supplied at the input terminal F from the I Hz clock according to level of voltage at inputs J, K and L, respectively.Time scaling circuit would be similar to the distance scaling circuit but with different diving ratios.A Possible circuit diagram is shown in figure 7.It consists, in this case, of three decade counter type 7490, two 3-input AND, one 5-input AND, one 2-input AND one 3-input OR gates.D.Circuit CT4 Which Generates Clock Pulses for Display Circuit The function of this circuit is to supply one, two or three pulses at the output terminal R for each pulse generated at any of the terminals N or M, according to the voltage level at the input terminals J, K or L, respectively.The output P will receive a pulse for each pulse generated at any of the input terminals N or M.This function can be performed by the circuit shown in Figure 8, it consists of one ripple counter type 7493, one half of a dual JK masterslave flip-flops circuit type 7476, three inverters, three 2-input AND, one 3-input AND, one 2-input OR and one 3-input OR gates.When a pulse is generated at either input terminals N or M, a high level voltage will be generated at the output Q of the flip-flop.This will g a t e t h e I Khz signal to be connected to the input A of the ripple counter as well as to the output terminal R.When one, two or three pulses are counted by the ripple counter, according to the level of voltage at the input terminals J, K and L, respectively, a high is generated to reset the counter and change the state of the flip-flopsuch that Q becomes low.Hence, the 1 KHz signal is disabled to reach the outputerminal R or the input A of the ripple counter.In order to ensure the proper function of the circuit, the flip-flop should be cleared whenever a new channel is operated.This has been achieved by the input 5 and will be explained later when describing the function of the channels rotary selector switchs.E.Display Circuit As shown in Figure 2, the display panel would contain three 4-digit displays that give the sum of money required from each passenger separately as well as a one six-digit display that gives the total income of the taxicab.A possible wiring diagram for the display circuit is shown in Figure 9.Rotating any of the rotary selector switches to fully clockwise direction will supply the corresponding display by5 volts through terminals 1, 2 and 3, respectively.The corresponding display will be unblanked by supplying a low level of voltage through terminals A, C and G, respectively.Keeping terminals 8, D and H, respectively, at low level will keep them reset to zero.The corresponding display is then enabled by removing the low voltage from terminals B, D, and H, respectively, to be ready for counting the sum of money required from the corresponding passenger starting from zero.The counting pulses for these three displays are supplied through terminal P.The total sum display will be enabled whenever any of the three displays is enabled(this is done by a 3-input OR gate as shown in Figure 8).Retaining the contents of the last display will be done by unblanking it by supplying a low level of voltage to terminal I as shown in Figure 10 b.F.Changing Over Between Time and Distance Fares In the following part, two different methods for changing over between time andistance fares are suggested: The first is to switch to time fare whenever the distance fare is less than the time fare.Hence, a simple look to fares table(Table 2)can show that time fare should be used whenever the taxicab moves with speed less than 50 m/min.A possible circuit that can perform this switching action is shown in Figure IO c.It contains one rpm limit switch and a one inverter as well as two 2-input AND gates.The contacts of the limit switch are normally closed and will be opened whenever the angular speed of the speedometer cablexceeds 50 rmp.The second alternation is to connect the input of the inverter in Figure 10 c.to the output terminal Q of the speedometer circuit, Figure 2.In this case, the switching into time fare will be done whenever the taxicab is at stand still.G.Function of the Rotary Selector Switches The voltage levels that should be supplied by the terminals of the rotary selector switches in order to ensure proper operation by the electronic circuit are given in Table 3.Connection of three rotary selector switches each witb four decks of five poles each, that satisfy the logic function of Table 3, is shown in Figure 10 a.Rotating any of the three switches into fully clockwise direction will pass through five positions.The function of the rotary selector switches can be described starting from the first position passing through variousteps until reaching the final position as follows: Initial position: In this position a low voltage level is applied to terminals I, 2 and 3, this will disconnect the 5 volts supply from the three first displays, set the three inputs of the number of passenger detection circuit CTI to low level.A low voltage level is applied to terminals 8, D and H, this is to ensure that the total income display is disabled.Voltage levels at terminals A, C, G and S are at no care condition.Step I: Rotating any of the rotary selector switches one step toward clockwise direction will supply 5 volts to the corresponding display, provides a high level voltage at terminals 1, 2 or 3 indicating that one passenger have entered the taxicab.A high level voltage should be applied to terminals A, C or G in order to ensure that the corresponding display is still blanked.Other terminals B, D, H and S are kept unchanged.Step 2: Rotating the rotary selector switch one step further, will change the state of voltages at terminal A, C or G to be at low level and unblanks the corresponding display.States of voltages at terminals I, 2, 3 and S are remained unchanged.Terminals B, D and H should be remained at low level to ensure that the corresponding readout is cleared to zero while unblanking the display.二、中文翻譯

摘要

本文提出了一種出租車多通道計價的方案,能同時處理一個以上乘客的情形。為了從理論上說明本方案,提出了一個實驗上的三通道型的士的完整設計(其原型是根據埃及科學和技術研究學院的研究而建成得)。.導言

在不發達的國家,早上把人們從他們家送到工作的地方,然后下午送回來已成為一個大問題,尤其是在大城市。

作為解決這個問題的一個部分,在某些國家出租車用來解決這個問題,送人們從一個地方到另外一個地方。例如,出租車的四個席位可攜帶四個不同的沒有任何關系的乘客,除了他們的路線是相同的。

因此,依靠目前的傳統的單車道計價以確定所需的票價,把每個乘客的計費分開,這已成為一個非常困難的問題。因此,在出租車司機,車主,乘客和國家稅務部門之間存在著不公平的財政關系。

在這種情況下,出租車司機強迫乘客支付多于他們所應付的。在某些情況下乘客支付了他們應付車費的雙倍。

本常規單頻道計程車,出租車司機不能夠確定出租車日常收入。在某些情況下(出租車的4個席位),他們可能只有出租車四分之一的收入(大部分的出租車司機)。從這些支付工資的出租車司機以及作為燃料費用外,還要維修以及汽車折舊等費用。事實上,出租車業主并非似乎如此糟糕。一項在出租車司機和車主之間的協議已經達成,司機應保證每天固定收入,以及向業主支付燃料以及維修的費用。即使如此,還是有的出租車司機的很大一部分份額之收入的出租車。現在還存在的單聲道計價,已經變得非常,國家稅務部門也知道這種困難 每年估計出租車業主的收入支出,以及應支付的稅務也很困難。

為了應對這一問題,國家稅務部已實行固定估計稅,每個座位的出租車不論收入。在本文中,我們介紹了多通道的士計程表,可處理超過一名乘客同時進行的情況。我應該指出,我所說的長期旅客指一個人或一組相關的人。我同時也應指出,我們提出的多渠道的計價,不是簡單地說,一個多顯示讀數。作為一個先進的事項,事實上它包含邏輯電路,可以自動計算變化的車費以及每公里行走距離或每分鐘的候車時間按照乘客人數雇用出租車。在下面的部分,我舉出一個例子,我們將介紹一個完整的三通道計價。框圖以及詳細的電路圖,實驗三通道計價功能也包括在內。原型下已建成 埃及贈款科學學院 和技術研究。.實驗THREECHANNEL 出租車計價器理論的運作我們的實驗裝置從事電子數字計價依據。事實上速度電纜旋轉1 圈的每米距離行駛。因此,如果車速電纜耦合與速度傳感器,產生一個單脈沖每平方米的旅行距離,那么,我們的的士可以三倍于反模塊相與速度傳感器的單位。然而,我們的實驗是計價而不僅僅是只顯示三個讀數。事實上,它包含邏輯電路,可以根據每公里的行駛距離或每分鐘等候時間按照乘客人數雇用出租車來自動改變車費。該裝置可能會分成兩個主要部分組成:第一是速度傳感器,這個傳感器可位于任何地方,在出租車內進行這樣一個簡單的耦合車速電纜是可以實現的。

單位包含了主要的電子電路,顯示器以及控制面板。該單位應位于前排的司機和乘客之間。

A. 速度傳感器

其主要職能是本單位提供脈沖的培訓,這個脈沖的頻率會于旋轉角度相適合。一種可能的形式一個速度傳感器。如果可以包含正弦波發生器的輸出連接到脈沖整形電路的永磁器件(2通用芯片二極管,1000歐姆的電阻和施密特觸發逆變器)。

為了找到某種方式來檢測出租車的運動,正弦波發生器的輸出是糾正通過一個通用的硅二極管延胡索乙然后平滑的1000年F電容。那個輸出電壓在終端Q是當時限于價值4.7伏特用益歐姆的電阻以及一個齊納二極管ZD。出租車的終端電壓在終端Q將高電壓降為零。這電壓可作為改變出租車從距離計費到時間計費方式的開關電壓。

主要的電子和顯示單元

一個建議是主要形式的電子和顯示單元。控制和顯示器面板包含所有'控制所必需的經營的士以及四個可讀顯示器。第一頻道將給出從第一乘客,第二乘客,第三乘客分別應付的費用,第四個會給出總收入給予出租車。最后讀出的數據會包括停車的費用等等費用。頻道選擇器開關1,第2和第3個,按順時針/逆時針的立場。在充分逆時針的立場,反相應的讀出是未標明和殘疾人。以順時針方向則是未定義的,清除為零,對于第一第二第三的乘客分別計費。第四號推進總鈕第四次讀出,使任何人保留讀出相應的總收入。經過釋放按鈕,第四次讀出將再次保留。這個單位還包含主要電子電路將在下一節充分描述。描述的主要電子電路

它由五個部分指定的電腦符號與電話系統整合成為4個支撐電路,它們是:判斷乘客數量電路CT1,旅行距離電路CT2,等待時間電路CT3,時鐘脈沖顯示電路CT4。

乘客人數檢測電路CT1如圖所示的一般框圖,該電路電腦與電話系統整合有三個輸出:1,2和3相對應于三個輸出J,K和L。

這個循環電路函數包含高電壓的終端 J,K或L,如果有1個或者2,3個乘客分別租用出租車。這個組里的任意乘客都是一組相關的人。當一個乘客進入出租車后,我們只是表示這樣一種情況,自由讀出顯示在談到相應的旋轉選擇開關,以一個完全順時針方向。這將自動斷開相應的終端1,2或3個從地面。邏輯關系各種輸入端子之間第1,第2和第3個輸出端J,K和L是列于表1。作為一個組合電路,我們開始設計產生了一系列布爾函數。

一種可能的邏輯圖的基礎上,它包括兩個變頻器,4個2輸入和3輸入以及2個3輸入或門。B.行駛距離標量環路CT2,電路CT2有4個輸入J,K,L及E和1個輸出M,輸出功能的電路是供應單脈沖的輸出M的某一些脈沖產生的輸出的速度傳感器(出租車行駛了一定得距離),根據乘客的人數租用的汽車。我們建議票價按每公里行駛距離顯示在兩個表格2里面。

表2 這個環路,在這種情況下,應提供單脈沖的輸出M的每100,125或143脈沖所產生的輸入端根據級別的電壓輸入終端3,K或L。

我們的電路按圖5顯示,三個十年的計數器,作為一個三位數分頻器的分比率100,125和143個自動選定的電壓一級終端J,K和L分別。一種可能的線路圖可被驗證,它包括三個十年的計數器7490,一個聲BCD-以杜威解碼器輸入7445,3個4輸入和1個3輸入以及1個2輸入和2個3輸入或門。

時間縮放電路CT3.時間縮放電路含有4個輸入端 J,K,L及F和一個輸出端N,這個電路的函數根據表格2的意思(車費每2分鐘的等待時間)是在J,K和L分別供應單脈沖到輸出端N時,提供單脈沖的輸出N。時間縮放電路將類似于距離標量環路,但是有不同的行駛比率。它包括3個十進制計數器7490,2個3輸入與門和一個5輸入與門,1個2輸入與門和一個3輸入或門。

電路產生時鐘脈沖的顯示電路CT4 這條電路的作用根據電壓電平在輸入終端J、K或者L,分別供應1,2或者脈沖在每脈沖的輸出終端R引起在任何終端N或M。無論輸入端N或者M中的誰發送脈沖,都只有一個脈沖能被輸出端P接收。它由一個反向計數器7493構成,其中一半是雙JK主從觸發器電路,型號為7476,包括三個變頻器,三個2輸入與門,一個3輸入與門,1 2輸入或門以及一個3輸入或門。當脈沖引起在輸入的終端N或M,觸發器的輸入Q上將產生高級電壓。這個門信號將被連接到計數器的輸入A并且連接到輸出終端R。當第一,第二或第三個脈沖由漣波計數器開始計數,J,K,L端會分別根據電壓的大小來使產生重置或者翻轉來改變狀態,然后Q端變為輸出低電壓。因此,1 KHz信號沒有能力到達輸出端R或是計數器的輸入端A。為了確保電路的函數準確無誤,當切換到新頻道時,觸發器要清零。對于功能選擇開關旋轉渠道的描述,稍后會以一個成功的5輸入門函數來解釋。顯示電路

該顯示面板將包含三個4位數顯示器,這樣可以給出每個乘客應付車費的總和,一個六位數顯示器可以給出出租車的總收入。以順時針方向旋轉所選擇的開關將提供相應的顯示,這可以通過5伏電壓來分別控制1,第2和3終端。對應的顯示通過供應低級電壓通過終端A、C和G,分別。保持終端D和H在低級狀態下重置為零對應的顯示分別通過終端B,D,H而改變低壓狀態,并準備好從對應的乘客那里計算出相應的計數款額,計數脈沖這三個顯示器通過終端提供總額。計數器還將通過終端P為3個顯示器提供脈沖只要這三個顯示器中任意一個是正常的,那么總額將被顯示出來。

時間和距離變化時車費的改變

在下面的部分,兩種不同的方法使得時間和距離改變從而導致車費發生變化,有如下建議:首先是當以路程計價的費用低于以時間計費的費用時,采用時間計費。從此,一個簡單的票價表顯示當出租車移動速度小于50米/分時應該采用時間計費方式。一種可能的電路可以執行此開關行動如圖10c,它包含一個轉速限位開關和一個反轉器以及兩個2輸入與門。接觸的限位開關通常是封閉,只有當角速度超過50RMP的時候才會打開。第二個改變將中斷連接到圖10C的輸入端,輸出端Q連接速度的電路。在這種情況下,只要出租車的狀態保持靜止,那么計費開關就會處于關閉狀態。

功能選擇旋轉開關

功能選擇開關旋轉的電壓應提供的該終端的旋轉選擇開關,以確保正常運行的電子電路列于表3。每5個桿就有4個板連接著3個旋轉選擇開關,每個符合邏輯功能表3,旋轉任何三個切換到完全順時針方向將通過5個職位。功能的旋轉選擇開關可以說是從第一的位置通過直到達到最后的立場如下:

初始位置:在這個位置上的低電壓電平適用于第一第二和第三終端,浙江斷開來自三個中一個顯示器的5伏特電壓供應,設置三個顯示器,乘客檢測電路并與電路系統整合到較低的水平。終端D,H采用低電壓,這是為了確保顯示的總收入選項已被禁用。

步驟1:以順時針方向旋轉任何旋轉選擇開關一格將提供5伏特電壓到相應的顯示,提供一個高等級的電壓終端1,2或3,這表明一名乘客已經進入了出租車。終端C,G應為高電平,以確保相應的顯示仍然是籠罩。其他端口,如D,H端口保持不變。

步驟2:旋轉旋轉選擇開關1,然后將在終端A,C或G上改變電壓使其處于低電壓狀態,并會產生相應的顯示。終端1,2,3以及S上的電壓狀態保持不變。終端B,D和H應保持在較低水平,以確保當顯示為無數據時相應的讀出清除為零。

第四篇:附錄3:畢業論文正文格式

北京聯合大學

畢業論文

引 言(宋體小三加粗居中段前段后1行)

(內容宋體小四首行縮進2字符)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX(畢業論文正文內所有頁面的頁邊距設置為上:3cm、下:2.5cm、左:3cm、右:2.5 cm、頁眉:2cm、頁腳:1.7cm,行距為20磅,裝訂線在左側。頁眉的線條寬度為1磅,頁眉上的“北京聯合大學”字樣為隸書小五號加粗、“畢業論文”字樣為宋體五號。正文內的頁碼格式為“--23--”、“-2-”等、字體為Times New Roman小五號居中。)

3北京聯合大學

畢業論文XXXXXXXXXXXXXXXXXX(宋體小三加粗段前段后1行)

(內容宋體小四首行縮進2字符)XXXXXXXXXXXXXXXXXX

2.1 XXXXXXXXXXXXXXXXXX(宋體四號加粗段前段后0.5行)

(內容宋體小四首行縮進2字符)XXXXXXXXXXXXXXXXXX

5北京聯合大學

畢業論文

致 謝(宋體小三加粗居中段前段后1行)

(內容宋體小四首行縮進2字符)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

7北京聯合大學

畢業論文

參考文獻(宋體小三加粗居中段前段后1行)

(內容宋體小四)參考文獻按在正文中出現的順序列于文末,請采用 GB7714 - 87 《文后參考文獻著錄規則》的新規定,其中包括作者、書名 / 文章名、出版社(需要加城市名)/ 刊名、出版年份 / 刊發卷期、起止頁碼。其中:專著 [M]、期刊文章 [J]、報紙文章 [N]、論文集 [C]、學位論文 [D]、報告 [R]、析出文獻 [A]、未說明的文獻 [Z]。體例如下:

[1]黃濟.教育哲學通論[M].太原:山西教育出版社,1998: 9-10.[2]〔美〕約翰·杜威.民主主義與教育[M].王承緒譯.北京:人民教育出版社,2001:5.[3]Clark Kerr.The Uses of the University 4th [M].Cambridge: Harvard University Press,1995: 50.[4]顧明遠.現代生產與現代教育[J].外國教育動態,1981,2(1):1.[5]George Pascharopoulos.Returns to Education: A Further International Update and Implications[J].The Journal of Human Resources , 1985, 20(4):36-38.[6]潘懋元.開展高等教育理論的研究[N].光明日報,1978-12-07(4).[7]魯潔.超越與創新[C].北京:人民教育出版社,2001:8-9.[8]陳洪捷.德國古典大學觀及其對中國的影響[D].北京:北京大學高等教育科學研究所,1998:7-8.[9]魏新.關于擴大高等教育規模對短期經濟增長作用的研究報告[R].北京:北京大學高等教育科學研究所,1999:13.[10]Martin Trow.The Transition from Elite to Mass Higher Education [R].Paris: OECD,1974:7.[11]葉瀾.關于加強教育科學“自我意識”的思考[A].瞿葆奎.教育學文集·教育與教育學[C].瞿葆奎,沈劍平選遍.北京:人民教育出版社,1993:758-759.[12]Roger Geiger.The Ten Generations of American Higher Education[A].Philip G.Altbach et al.American Higher Education in the Twenty-first Century: Social, Political, and Economic Challenges [C].Baltimore: Johns Hopkins University Press,1999: 38-39.[13]王明亮.關于中國學術期刊標準化數據庫系統工程的進展[EB/OL].http://,1998-08-16.注釋格式一并參考上述格式。

第五篇:大學生畢業論文正文、參考文獻、附錄(圖)、致謝

論文題目

引言

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

?????????????.XXXXXXXXX(一級標題另起一頁,居中)

1.1XXXXX

?????.1.1.1XXXXXXXXX

?????.XXXXXXXXXX(一級標題另起一頁,居中)

2.1XXXXXXXXXXXXX

??????

參 考 文 獻(一級標題另起一頁,居中)

[1]陳有民.園林樹木學[M].北京:中國林業出版社,1999.376~377.

[2]李曉丹,司龍亭,劉志勇,等.黃瓜組織培養中外植體的選擇及播種方式[J].蔬菜,2004

(7):2~3.說明:凡論文中引用的主要文獻,均應在“參考文獻”標題下按規定的格式列出,并以在文中引用的先后為序編號排列。各類文獻的表達形式按教務處《畢業論文指導手冊》的有關要求進行。

附錄(一級標題另起一頁,居中)

????

致謝(一級標題另起一頁,居中)

????????

2010年x月x日

下載畢業論文附錄word格式文檔
下載畢業論文附錄.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    大學生畢業論文正文、參考文獻、附錄(圖)、致謝范文

    論文題目 引 言 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。 ?????????????. 1 XXXXXXXXX(一級標題......

    附錄Ⅲ實驗報告參考格式范文大全

    附錄 Ⅲ實驗報告參考格式一、低碳鋼拉伸實驗報告學院(系)專業 班 實驗日期 姓名 學號 同組者姓名一、實驗目的 二、實驗設備 儀器名稱及型號:、、;三、試件尺寸及有關數據(畫出......

    春游策劃書附錄

    附錄一:長興游樂園地圖附錄二:長興游樂園機動游戲匯總碰碰車、旋轉飛機、水上樂園、過山車、飛越壕溝、水中漫步、活鬼城、...宇宙飛船、彩虹飛車、巧奪天宮、飛天轉椅、青蛙跳、......

    最新易錯字附錄(范文模版)

    附錄一:100個最常見易錯字詳解 (注:下列詞語中加粗的黑體字為容易寫錯的字) 1.安裝: “安”與“裝”同義,都指按照一定的方法、規格把機械或器材(多指成套的)固定在一起的地方。 2......

    投標函及投標函附錄(范本)

    一、投標函及投標函附錄(一)投標函致:1.根據你方招標工程項目工程招標文件,遵照《中華人民共和國招標投標法》等有關規定,經踏勘項目現場和研究招標文件的投標須知、合同條款、圖......

    附錄:調查報告封

    江蘇城市職業學院供應鏈調查報告調查報告題目 辦 學 點 (系)財經系專班學學起地指導教生訖姓日 業物流管理級物流(1)班號092101350440名蔣琳期2011.11.12點江蘇城市職業學院定淮......

    投標函及投標函附錄

    一、投標函及投標函附錄(一)投標函(招標人名稱):1.我方已仔細研究了(項目名稱)(標段編號)施工招標文件的全部內容,愿意以人名幣(大寫)元(¥)的投標總報價(此處價格應從投標報價匯總表中自動讀......

    投標函及投標函附錄

    一、投標函及投標函附錄 (一) 投標函致:(招標人名稱)在考察現場并充分研究 人民幣(大寫):元 RMB¥:元的投標價格和按合同約定有權得到的其他金額,并嚴格按照合同約定,施工、竣工和交......

主站蜘蛛池模板: 丁香五月欧美成人| 成人无码av片在线观看蜜桃| 亚洲av无码一区二区三区乱子伦| 中文字幕无码毛片免费看| 日韩一区二区三区精品| 野花社区www视频最新资源| 亚洲youwu永久无码精品| 无码一区二区免费波多野播放搜索| 亚洲一区二区三区小说| 真实的国产乱xxxx在线| 国产熟人av一二三区| 午夜福利影院私人爽爽| 色欲国产精品一区成人精品| 久久精品无码一区二区app| 精品无码久久久久久尤物| 国内露脸中年夫妇交换| 亚洲日韩中文字幕无码一区| 无码乱人伦一区二区亚洲一| 亚洲精品无码成人| 国产黄在线观看免费观看不卡| 成人国产三级在线观看| 丰满人妻一区二区三区视频53| 青青草国产久久精品| 国内揄拍国内精品少妇| 鲁丝片一区二区三区免费| 久久99精品国产.久久久久| 国产超碰人人做人人爽av动图| 国内老熟妇对白xxxxhd| 国产成年码av片在线观看| 国产精品国产三级国产专区50| 国产麻豆剧果冻传媒白晶晶| 国内高清久久久久久| 18禁成人黄网站免费观看| 亚洲色大成影网站www永久| 婷婷成人丁香五月综合激情| 欧美级特黄aaaaaa片| 97色伦97色伦国产| 国产精品亚洲а∨怡红院| 无码三级在线看中文字幕完整版| 亚洲色大成永久ww网站| 国产三级a三级三级|