第一篇:數學解題方法談:復數與平行四邊形家族
復數與平行四邊形家族
菱形、矩形等特殊的平面四邊圖形與某些復數式之間存在某種聯系,復數的幾何意義架起了“形”與“數”相互轉化的橋梁.下面略舉幾例,以供參考. 友情提示:若復數z?a?
bi,則z?
一、復數式與矩形
例1 復數z1,z2滿足z1z2?0z1?z2?z1?z2,證明:證明:設復數z1,z2在復平面上對應的點為Z1,Z2,由z1?z2?z1?z
2z1z2
稱為z的模,它在復數中有廣泛的應用.
z
122
z2
?0.
????????????????????
知,以OZ1,OZ2為鄰邊的平行四邊形為矩形,OZ1⊥OZ2,可設
z1z
2?ki(k?R,k?0),所以
?ki??k?0.
222
例2 已知復數z1,z2滿足z1?1z2?1,且z1?z2?4,求
z1z2
與z1?z2的值.
解:設復數z1,z2在復平面上對應的點為Z1,Z2,由
于z1
1)?7?1)?4故,?z2
?z1?2,2
??????????
故以OZ1,OZ2為鄰邊的平行四邊形是矩形,??????????z
從而OZ1⊥
OZ2,則1??
z2
14?3i;z1?z2?z1?z2?4.
??
例3 已知復數z1,z2滿足z1?z2?
1,且z1?z2?
z1?z2?
證明:設復數z1,z2在復平面上對應的點為Z1,Z2,由條件知z1?z2?1?
??????????
以OZ1,2,OZ2
為鄰邊的平行四邊形為正方形,而z1?z2在復平面上對應的向量為正方形的一條對角線,所
以
z1?z2?
點評:復數與向量的對應關系賦予了復數的幾何意義.復數加法幾何意義的運用是本題考查的重點.
二、復數式與菱形
例4
已知z1,z2?Cz1?z2?1z1?z2?
z1?z2.
??????????
解:設復數z1,z2,z1?z2在復平面上對應的點分別為Z1,Z2,Z,由z1?z2?1知,以OZ1,OZ2為
鄰邊的平行四邊形是菱形,在△OZ1Z中,由余弦定理,得
z1
cos?OZ1Z?
?z
2?z?1z
2z1z2
?
?
??
12,??OZ1Z?120,??Z1OZ2?60,因此,△OZ1Z2是正三角形.
?z1?z2
?????
?Z1Z2?1.
點評:本題通過復數模的幾何意義的應用來判斷四邊形的形狀,并且應用到了余弦定理,使得問題解決的很巧妙,其中例1~例4均可用z1?z2例5 求使
z?az?a
222
?z1?z2
?2(z1
?z2)處理.
(a?0)為純虛數的充要條件.
解:∵
z?az?a
是純虛數,∴可設
z?az?a
222
??i(??R,??0),將其改寫為
z1?z2z1?z2
??i(??R,??0).
??????????
設復數z,a在復平面上對應的點為Z1,Z2,以OZ1,OZ2為鄰邊的平行四邊形是菱形,∴z?a,?z?a,考慮到z??a時,z?az?a
222
?0;
z??aiz?a
222
z?a
無意義,故使
z?az?a
222
且z??a,z??a(a?0)為純虛數的充要條件是z?a,i,即z是模為a的虛數(非純虛數).
點評:復數的加減法符合平行四邊形法則,是復數與平行四邊形家族聯姻的前提.深入抓住復數加減法的幾何意義的本質,可使我們求解復數問題的思路更加廣闊,方法也更加靈活.
第二篇:數學經典解題方法
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
第三篇:一般數學解題方法
初中數學解題方法之我見
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程根的判別,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以討論二次方程根的符號,解對稱方程組,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
第四篇:數學證明題解題方法
數學證明題解題方法
第一步:結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環環相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
第三步:逆推。從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
第五篇:初中數學解題方法
初中數學選擇題解題方法與技巧
胡橋一中許鎖林
初中數學選擇題解題方法
胡橋一中許鎖林
對于選擇題,關鍵是速度與正確率,所占的時間不能太長,否則會影響后面的解題。提高速度與正確率,方法至關重要。方法用得恰當,事半功倍,希望大家靈活運用。做選擇題的主要方法有:直接法、特值法、代入法(或者叫驗證法)、排除法、數形結合法、極限法、估值法等。
(一)直接法:
有些選擇題是由計算題、應用題、證明題、判斷題改編而成的.這類題型可直接從題設的條件出發,利用已知條件、相關公式、公理、定理、法則通過準確的運算、嚴謹的推理、合理的驗證得出正確的結論,從而確定選擇支的方法叫直接法.這種解法最常用,解答中也要注意結合選項特點靈活做題,注意題目的隱含條件,爭取少算.這樣既節約了時間,又提高了命中率。9001500?例:方程的解為()x?300x
ABCD
解:直接計算,同時除以300,再算的x=750。
(二)特值法:
用特殊值(特殊圖形、特殊位置)代替題設普遍條件,得出特殊結論,對各個選項進行檢驗,從而作出正確的判斷.常用的特例有特殊數值、特殊數列、特殊函數、特殊圖形、特殊角、特殊位置等。特值法一般和排除法結合運用,達到少計算的目的,從而提高速度。
例:如圖,在直角坐標系中,直線l對應的函數表達式是()
A.y?x?1B.y?x?1C.y??x?1 D.y??x?
1解:看圖得,斜率k>0,排除CD,再在AB中選,取特值
x=0,則y=-1,結果選A。
(三)代人法:
通過對試題的觀察、分析、確定,將各選擇支逐個代入題干中,進行驗證、或適當選取特殊值進行檢驗、或采取其他驗證手段,以判斷選擇支正誤的方法.
例3.(2007年安徽)若對任意x∈R,不等式圍是()
(A)<-1(B)||≤1(C)||<1(D)≥1 解:
化為化為,顯然恒成立,由此排除答案A、D,也顯然恒成立,故排除C,所以選B;
恒成立,則實數的取值范
此解法也可以稱之為特值法。
(四)排除法:
從題設條件出發,運用定理、性質、公式推演,根據“四選一”的指令,逐步剔除干擾項,從而得出正確的判斷。它與特例法(特值法)、圖解法等結合使用是解選擇題的常用方法。
例:直線y?kx?b經過A(0,2)和B(3,0)兩點,那么這個一次函數關系式是()
2A.y?2x?3B.y??x?2C.y?3x?2D.y?x?1
3解:當x=0時,y=2,可以排除AD,當x=3時,y=0,直接選A。
(五)數形結合法:
據題設條件作出所研究問題的曲線或有關圖形,借助幾何圖形的直觀性作出正確的判斷.有的選擇題可通過命題條件的函數關系或幾何意義,作出函數的圖象或幾何圖形,借助于圖象或圖形的作法、形狀、位置、性質,綜合圖象的特征,得出結論.
(2007年江西)若0<x<,則下列命題中正確的是()
A.sin x< B.sin x> C.sin x< D.sin x>
與解:sin x
等三角函數會在九下學。在同一直角坐標系中分別作出的圖象,便可觀察選D
(六)極限法:
從有限到無限,從近似到精確,從量變到質變.應用極限思想解決某些問題,可以避開抽象、復雜的運算,降低解題難度,優化解題過程。它是在選擇題中避免“小題大做”的有效途徑.它根據題干及選擇支的特征,考慮極端情形,有助于縮小選擇面,計算簡便,迅速找到答案. 例:對于任意的銳角
(A)
(C),下列不等關系式中正確的是()(B)(D),時
排除 解:(九年級下學期學)當當,時
排除選D.(七)估值法:
由于選擇題提供了唯一正確的選擇支,解答又無需過程.因此可以猜測、合情推理、估算而獲得.這樣往往可以減少運算量,當然自然加強了思維的層次.例:如圖,在多面體ABCDEF中,已知面ABCD是邊長為3的正方形,EF∥AB,EF,EF與面AC的距離為2,則該多面體的體積為()
(A)(B)5(C)6(D)
解:由已知條件可知,EF∥平面ABCD,則F到平面ABCD的距離為2,∴VF-ABCD
=*底面積*高
=·32·2=6,而該多面體的體積必大于6,故選(D).