第一篇:怎樣證明直線與圓相切?
怎樣證明直線與圓相切?
在直線與圓的各種位置關系中,相切是一種重要的位置關系.
現介紹以下三種判別直線與圓相切的基本方法:
(1)利用切線的定義——在已知條件中有“半徑與一條直線交于半徑的外端”,于是只需直接證明這條直線垂直于半徑的外端.
例1:已知:△ABC內接于⊙O,⊙O的直徑AE交BC于F點,點P在BC的延長線上,且∠CAP=∠ABC.
求證:PA是⊙O的切線.
證明:連接EC.
∵AE是⊙O的直徑,∴∠ACE=90°,∴∠E+∠EAC=90°.
∵∠E=∠B,又∠B=∠CAP,∴∠E=∠CAP,∴∠EAC+∠CAP=∠EAC+∠E=90°,∴∠EAP=90°,∴PA⊥OA,且過A點,則PA是⊙O的切線.
(2)利用切線的判定定理——在已知條件中,有“一條直線過圓上某一公共點(即為切點),但沒有半徑”,于是先連接圓心與這個公共點成為半徑,然后再證明這條直線和這條半徑垂直.
例2:以Rt△ABC的直角邊BC為直徑作⊙O交斜邊AB于P,Q為AC的中點. 求證:PQ必為⊙O的切線.
證明 連接OP,CP.
∵BC為直徑,∴∠BPC=90°,即∠APC=90°.
又∵Q為AC中點,∴QP=QC,∴∠1=∠2.
又OP=OC,∴∠3=∠4.
又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°,∴∠OPQ=90°.
∵P點在⊙O上,且P為半徑OP的端點,則QP為⊙O的切線.
說明:要證PQ與半徑垂直,即連接OP.這是判別相切中添輔助線的常用方法.
(3)證明“d=R”——在已知條件中“沒有半徑,也沒有與圓有公共交點的直線”,于是過圓心作直線的垂線,然后再證明這條垂線的長(d)等于圓的半徑(R).
例3:已知:在△ABC中,AD⊥BC與D,且AD=BC,E、F為AB、AC的中點,O為EF2的中點。
求證:以EF為直徑的圓與BC相切.
證明:作OH⊥BC于H,設AD與EF交于M,又AD⊥BC,∴OH∥MD,則OHDM是矩形.
∴OH是⊙O的半徑,則EF為直徑的圓與BC相切.思考題:
1.AB是⊙O的直徑,AC是弦,AC=CD,EF過點C,EF⊥BD于G.
求證:EF是⊙O的切線.
提示:連接CO,則OC是⊙O的半徑,再證OC⊥EF.
2.DB是圓的直徑,點A在DB的延長線上,AB=OB,∠CAD=30°.求證:AC是⊙O的切線.
提示:∵AC與⊙O沒有公共點,∴作OE⊥AC于E,再證OE是⊙O的半徑.
第二篇:證明直線與圓相切的常見方法(定稿)
證明直線與圓相切的常見方法
學習了直線與圓的位置關系,常會遇到證明一條直線是圓的切線的題目,如何證明一條直線是圓的切線,一般會出現以下三種情況.一、若證明是圓的切線的直線與圓有公共點,且存在連接公共點的半徑,此時可根據“經過半徑的外端并且垂直于這條半徑的直線是圓的切線”來證明.簡記為“見半徑,證垂直”.例1如圖1,已知AB為⊙O的直徑,直線PA過點A,且∠PAC=∠B.求證:PA是⊙O的切線.圖 1分析:要證明PA是⊙O的切線,因為AB是⊙O的直徑,所以只要證明AB⊥AP.可結合直徑所對的圓周為直角進行推理.證明:因為AB為⊙O的直徑,所以∠ACB=90°,所以∠CAB+∠B=90°,因為∠PAC=∠B,所以∠CAB+∠PAC=90°,即∠BAP=90°,所以PA是⊙O的切線.二、若給出了直線與圓的公共點,但未給出過這點的半徑,則連結公共點和圓心,然后根據“經過半徑外端且垂直這條半徑的直線是圓的切線”來證明.簡記為“作半徑,證垂直”.例2如圖2,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB的延長線上的一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.
求證:DE是⊙O的切線.
證明:連接OC,則OA=OC,所以∠CAO=∠ACO,因為AC平分∠EAB,所以∠EAC=∠CAO=∠ACO,所以AE∥CO,又AE⊥DE,所以CO⊥DE,所以DE是⊙O的切線.
三、若直線與圓的公共點不明確時,則過圓心作該直線的垂線段,然后根據“圓心到直線的距離等于圓的半徑,該直線是圓的切線”來證明.簡記為“作垂直,證相等”.例3如圖3,已知,O為正方形ABCD對角線上一點,以O為圓心,OA的長為半徑的⊙O與BC相切于M,與AB、AD分別相交于E、F.求證:CD與⊙O相切.
圖3
分析:要識別“CD與⊙O相切”,由于不知道CD經過圓上哪一點,所以先過點O作:ON⊥CD于N,再證明ON是⊙O半徑。易知OM是⊙O的半徑,只要證明:OM=ON即可.證明:連結OM,作ON⊥CD于N,因為 ⊙O與BC相切,所以 OM⊥BC.因為四邊形ABCD是正方形,所以 AC平分∠BCD.所以OM=ON.圖 4
所以CD與⊙O相切.總結: 切線判斷并不難,認真審題是重點;直線與圓有交點,連接半徑是關鍵,推得垂直是切線;若沒明確是切點,作過圓心垂線段,半徑相等得切線.
第三篇:圓錐曲線與直線相切的條件教案
圓錐曲線與直線相切的條件教案
教學目的(1)掌握圓錐曲線與直線相切的條件及圓錐曲線切線的定義;
(2)使學生會用初等數學方法求圓錐曲線的切線;
(3)應用相切的公式解題,從而培養學生綜合應用能力.
教學過程
一、問題提出
1.有心的二次曲線包括哪些?無心的二次曲線包括哪些?
(答:有心的二次曲線是圓、橢圓及雙曲線;無心的二次曲線是拋物線.)
(由教師啟發下,讓學生共同討論.)
(1)當α>0,β>0且α=β時,方程表示為圓;
(2)當α>0,β>0且α≠β時,方程表示為橢圓;
(3)當α、β為異號時,方程表示為雙曲線.
因此,這個方程可以統一表示有心的二次曲線.
3.圓錐曲線與直線的相切的條件是什么?
設直線l′與圓錐曲線相交于P、Q兩點(圖1),將直線l′繞點P旋轉,使點Q逐漸靠近點P,當l′轉到直線l的位置時,點Q與點P重合,這時,直線l叫做圓錐曲線在點P的切線.也就是圓錐曲線與直線l相切.根據這個定義,于是圓錐曲線方程
f(x,y)=0
與直線方程
y=kx+m
組成的方程組應有兩個相同的實數解.實系數一元二次方程有兩個相同的實數解的充要條件是判別式Δ=0,根據條件轉化為求Δ=0.
(啟發學生回答,由教師歸納,然后板書課題.)
今天我們要研究“圓錐曲線與直線相切的條件”.
二、講述新課
根據上面分析,得
由②代入①,化簡、整理得(αk2+β)x2+2αkmβ+α(m2-β)=0.③
當αk+β≠0時(二次項系數),Δ=4αkm-4α(αk+β)(m-β)
=4α2k2m2-4α2k2m2+4α2k2β-4αβm2+4αβ2
=4αβ(αk2+β-m2).
(啟發學生討論.)
由于α、β均不為零,因此當Δ=0時可知有心二次曲線與直線y=kx+m相切的充要條件為
m2=αk2+β,(αk2+β≠0)④
這里αk2+β恰是方程③的二次項系數.
(引導學生對結論④,在圓、橢圓、雙曲線各種情況下變化規律進行討論,教師邊歸納,邊板書.)
(1)對于圓x2+y2=γ2,可寫成
222
222
即有α=β=γ2,于是相切條件為m2=γ2(k2+1).
(2)對于橢圓(焦點在x軸上)
即有α=a,β=b,于是相切條件為m=ak+b.
(3)對于橢圓(焦點在y軸上)
即有α=b2,β=a2,于是相切條件為m2=b2k2+a2.
(4)對于雙曲線(焦點在x軸上)
即有α=a2,β=-b2,于是相切條件為m2=a2k2-b2.
(5)對于雙曲線(焦點在y軸上)
即有α=-b2,β=a2,于是相切條件為m2=a2-b2k2.
[應用有心曲線統一公式,這樣就不必從圓、橢圓、雙曲線一個一個地去求,可避免一個一個冗長復雜的計算,使問題的解決變得簡捷.]
2.無心的二次曲線y2=2px與直線y=kx+m相切的條件
根據上面的分析,得
由②代入①,化簡整理,得
(kx+m)2=2px,k2x2+(2mk-2p)x+m2=0.
當二次項系數k2≠0時,Δ=(2mk-2p)2-4k2m2=4p2-8mkp
=4p(p-2mk)=0.
無心的二次曲線x2=2py與直線y=kx+m相切的條件,應為
(讓學生獨立完成.)
三、鞏固新課
(讓學生直接對照上述結論,設所求公切線的斜率為k,截距為m,再根據橢
解 設所求的公切線斜率為k,截距為m,根據相切條件有
由②代入①,化簡整理,得
81k4+36k2-5=0,(9k2-1)(9k2+5)=0,∵9k2+5≠0,∴9k2-1=0,代入②,得m=±5.
因此,所求的公切線方程為
即
x+3y+15=0或x-3y+15=0.
求雙曲線的兩條互相垂直的切線交點的軌跡方程.
(幫助學生分析解題的幾個要點,然后由學生上黑板解,教師巡視指點.)
y=kx+m,則由相切條件,可知m2=a2k2-b2.
(2)設兩切線交點為P(x0,y0),則切線方程為
y-y0=k(x-x0),即
y=kx+(y0-kx0).
(3)y=kx+m,y=kx+(y0-kx0)表示同一直線,就有
m=(y0-kx0),∴(y0-kx0)=ak-b.
整理得
(4)k1k2=-1,用韋達定理從方程①求得k1k2,即
因此,點P的軌跡方程為
x+y=a-b.
這里a>b,點P的軌跡是一個實圓;
a=b,點P的軌跡是一個點圓;
a<b,點P無軌跡(虛圓).
解略.
法,不難得出軌跡方程為圓方程
x+y=a+b;
這題若改為求拋物線y=2px的兩條互相垂直的切線的交點的軌跡方程,方法也類似,不難得出軌跡方程為
即點P一定在準線上.
[這樣改變一下題目,可讓學生開拓思路,舉一反三.]
四、練習
1.已知l為橢圓x+4y=4的切線并與坐標軸交于A、B兩點,求|AB|的最小值及取得最小值時切線l的方程.
2解 如圖2,設切線方程為
y=kx+m,根據相切條件有m2=4k2+1,即①
|OA|2=4k2+1.
在y=kx+m中,令y=0,得
即
于是得
代入m=4k+1,求得 2
因此,所求的切線共有四條(圖3),它們的方程為
求四邊形ABCD的最大面積.
則由相切條件,知
m2=a2k2+b2,故兩切線方程為
即
兩切線間的距離
∴四邊形ABCD的最大面積為
五、補充作業
軌跡方程.
2.求出斜率為k的圓錐曲線的切線方程.
教案說明
這一節課的指導思想是:根據現代教育理論,強調在教學的過程中培養能力,特別是思維能力.數學思維結構與科學結構十分相似,學習數學的過程,就是從一種思維結構過渡到另一種思維結構的過程,數學知識只是進行思維結構訓練的材料.二次曲線與直線相切的條件若從上述結構進行訓練,就是使學生形成完整的思維結構,使對數學的認識有新的突破.這一點已成為我在課堂教學中進行探索和研討的課題.
這節課的整個教學過程中,著重于講解——啟導——探究,培養學生的分析能力.講解時,突出重點:“相切條件”,并以此為中心,達到舉一反
三、觸類旁通.其中也穿插了自學討論,而不是教師滿堂灌.
在練習中,注意到了再現性練習、鞏固性練習,同時也留有發現性練習,使學生以新帶舊,鞏固新知,發展智力,反過來從思維結構上形成完整體系,以認識數學本身.
第四篇:蘇教版直線與圓單元測試(A級)
蘇教版直線與圓單元測試(A級)
一、填空題(共70分)
1、已知過兩點A(4,y),B(2,-3)的直線的傾斜角是135°,則y=_______。
2、過點(3,1),且斜率是4的直線方程為_______________。
3、原點到直線的距離為___________;
4、過點(1,0)且與直線x-2y-2=0平行的直線方程________________.5、直線與的交點坐標是___________;
6、已知過點A(-2,m)和B(m,4)的直線與直線平行,則m的值為______________;
7、圓心為A(2,-3),半徑長為5的圓的方程為______________;
8、點(0,2)關于直線x+y=0的對稱點是_________;
9、空間兩點P(3,-2,5),Q(6,0,-1)間的距離PQ為________;
10、在空間直角坐標系中,點關于坐標平面的對稱點的坐標為_______________;
11、以線段A(-4,-5),B(6,-1)為直徑的圓的方程是______________;
12、設直線過點,其斜率為1,且與圓相切,則。
13、經過三點A(-1,5),B(5,5),C(6,-2)的圓的方程是____________________;
14、一束光線從點出發,經x軸反射到圓上的最短路徑是。
二、解答題
15、已知半徑為5的圓過點P(-4,3),且圓心在直線上,求這個圓的方程。
16、已知△ABC的頂點坐標為A(-1,5),B(-2,-1),C(4,7),求BC邊上的中線AM的長和AM所在直線的方程。
17、求過兩條直線和的交點,且垂直于直線的直線方程。
18、已知直線與,則當為何值時,直線:
(1)平行?(2)垂直?(3)相交?
19、求過點A(2,4)向圓所引的切線方程;并求出切線長。
20、已知圓C:,直線。
(1)求證:對直線與圓C總有兩個不同的交點;
(2)若直線與圓C交于不同的兩點A、B,且,求直線的方程。
第五篇:直線與圓的位置關系教案
《直線與圓的位置關系》教案
教學目標:
根據學過的直線與圓的位置關系的知識,組織學生對編出的有關題目進行討論.討論中引導學生體會
(1)如何從解決過的問題中生發出新問題.(2)新問題的解決方案與原有舊方法之間的聯系與區別.通過編解題的過程,使學生基本了解、把握有關直線與圓的位置關系的知識可解決的基本問題,并初步體驗數學問題變化、發展的過程,探索其解法.重點及難點:
從學生所編出的具體問題出發,適時適度地引導學生關注問題發展及解決的一般策略.教學過程
一、引入:
1、判斷直線與圓的位置關系的基本方法:
(1)圓心到直線的距離
(2)判別式法
2、回顧予留問題:
要求學生由學過知識編出有關直線與圓位置關系的新題目,并考慮下面問題:
(1)為何這樣編題.(2)能否解決自編題目.(3)分析解題方法及步驟與已學過的基本方法、步驟的聯系與區別.二、探討過程:
教師引導學生要注重的幾個基本問題:
1、位置關系判定方法與求曲線方程問題的結合.2、位置關系判定方法與函數或不等式的結合.3、將圓變為相關曲線.備選題
1、求過點P(-3,-2)且與圓x2+y2+2x-4y+1=0相切的直線方程.備選題
2、已知P(x, y)為圓(x+2)2+y2=1上任意一點,求(1)(2)2x+3y=b的取值范圍.備選題
3、實數k取何值時,直線L:y=kx+2k-1與曲線: y=兩個公共點;沒有公共點.三、小結:
1、問題變化、發展的一些常見方法,如:
(1)變常數為常數,改系數.(2)變曲線整體為部分.有一個公共點;=m的最大、最小值.(3)變定曲線為動曲線.2、理解與體會解決問題的一般策略,重視“新”與“舊”的聯系與區別,并注意哪些可化歸為“舊”的方法去解決.自編題目:
下面是四中學生在課堂上自己編的題目,這些題目由學生自己親自編的或是自學中從課外書上找來的題目,這些題目都與本節課內容有關.①已知圓方程為(x-a)2+(y-b)2=r2,P(x0, y0)是圓外一點,求過P點的圓的兩切線的夾角如何計算?
②P(x0, y0)是圓x2+(y-1)2=1上一點,求x0+y0+c≥0中c的范圍.③圓過A點(4,1),且與y=x相切,求切線方程.④直線x+2y-3=0與x2+y2+x-2ay+a=0相交于A、B兩點,且OA⊥OB,求圓方程?
⑤P是x2+y2=25上一點,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圓方程x2+y2=4,直線過點(-3,-1),且與圓相交分得弦長為3∶1,求直線方程.⑦圓方程x2+y2=9,x-y+m=0,弦長為
2,求m.⑧圓O(x-a)2+(y-b)2=r2,P(x0, y0)圓一點,求過P點弦長最短的直線方程?
⑨求y=的最值.圓錐曲線的定義及其應用
[教學內容]
圓錐曲線的定義及其應用。
[教學目標]
通過本課的教學,讓學生較深刻地了解三種圓錐的定義是對圓錐曲線本質的刻畫,它決定了曲線的形狀和幾何性質,因此在圓錐曲線的應用中,定義本身就是最重要的性質。
1.利用圓錐曲線的定義,確定點與圓錐曲線位置關系的表達式,體現用二元不等式表示平面區域的研究方法。
2.根據圓錐曲線定義建立焦半徑的表達式求解有關問題,培養尋求聯系定義的能力。
3.探討使用圓錐曲線定義,用幾何法作出過圓錐曲線上一點的切線,激發學生探索的興趣。
4.掌握用定義判斷圓錐曲線類型及求解與圓錐曲線相關的動點軌跡,提高學生分析、識別曲線,解決問題的綜合能力。
[教學重點]
尋找所解問題與圓錐曲線定義的聯系。
[教學過程]
一、回顧圓錐曲線定義,確定點、直線(切線)與曲線的位置關系。
1.由定義確定的圓錐曲線標準方程。
2.點與圓錐曲線的位置關系。
3.過圓錐曲線上一點作切線的幾何畫法。
二、圓錐曲線定義在焦半徑、焦點弦等問題中的應用。
例1.設橢圓+=1(a>b>0),F1、F2是其左、右焦點,P(x0, y0)是橢圓上任意一點。
(1)寫出|PF1|、|PF2|的表達式,求|PF1|、|PF1|·|PF2|的最大最小值及對應的P點位置。
(2)過F1作不與x軸重合的直線L,判斷橢圓上是否存在兩個不同的點關于L對稱。
(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是橢圓上三點,且x1, x2, x3成等差,求證|PF1|、|PF2|、|PF3|成等差。
(4)若∠F1PF2=2?,求證:ΔPF1F2的面積S=btg?
(5)當a=2, b=最小值。
時,定點A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知雙曲線-=1,F1、F2是其左、右焦點。
(1)設P(x0, y0)是雙曲線上一點,求|PF1|、|PF2|的表達式。
(2)設P(x0, y0)在雙曲線右支上,求證以|PF1|為直徑的圓必與實軸為直徑的圓內切。
(3)當b=1時,橢圓求ΔQF1F2的面積。
+y=1 恰與雙曲線有共同的焦點,Q是兩曲線的一個公共點,2例3.已知AB是過拋物線y=2px(p>0)焦點的弦,A(x1, y1), B(x2, y2)、F為焦點,求證:
(1)以|AB|為直徑的圓必與拋物線的準線相切。
(2)|AB|=x1+x2+p
(3)若弦CD長4p, 則CD弦中點到y軸的最小距離為
2(4)+為定值。
(5)當p=2時,|AF|+|BF|=|AF|·|BF|
三、利用定義判斷曲線類型,確定動點軌跡。
例4.判斷方程=1表示的曲線類型。
例5.以點F(1,0)和直線x=-1為對應的焦點和準線的橢圓,它的一個短軸端點為B,點P是BF的中點,求動點P的軌跡方程。
備用題:雙曲線實軸平行x軸,離心率e=,它的左分支經過圓x+y+4x-10y+20=0的2
2圓心M,雙曲線左焦點在此圓上,求雙曲線右頂點的軌跡方程。