第一篇:論數(shù)學(xué)課堂提問的類型 (論數(shù)學(xué)課堂提問的類型.doc 33KB)
論數(shù)學(xué)課堂提問的類型
王平
摘 要:課堂提問可依據(jù)所提問題的類型不同而進(jìn)行分類,也可根據(jù)提問的目的和作用分類。實(shí)際上,提問是師生雙方的共同活動,教師更要關(guān)注的是提問對于學(xué)生思維活動的激發(fā)和主體作用的體現(xiàn)問題。數(shù)學(xué)課堂上提問分為復(fù)述性提問、鋪墊性提問、理解性提問、探索性提問、效果性提問和概括性提問。
關(guān)鍵詞:課堂提問;提問類型;激發(fā)思維
課堂提問可依據(jù)所提問題的類型不同而進(jìn)行分類,比如美國的貝爾在《中學(xué)數(shù)學(xué)的教與學(xué)》中按照事實(shí)、技能、概念、原理四種對象與認(rèn)識、理解、應(yīng)用、分析、綜合、評價六種認(rèn)知水平交叉結(jié)合,把問題分成24種類型(如事實(shí)理解、事實(shí)分析、技能應(yīng)用、技能評價、概念認(rèn)識、原理綜合等)。也可根據(jù)提問的目的和作用分為引入性提問、復(fù)習(xí)性提問、啟發(fā)性提問、顯示性提問、表現(xiàn)性提問、激趣型提問、聯(lián)想型提問、類比型提問、懸念型提問、遷移型提問、暗示型提問、猜想型提問、發(fā)散型提問、反饋型提問等類型。這是從教師的主觀愿望的角度考慮的分類。實(shí)際上,提問是師生雙方的共同活動,教師更要關(guān)注的是提問對于學(xué)生思維活動的激發(fā)和主體作用的體現(xiàn)問題。因此可以按問題本身進(jìn)行分類,如概念性提問、定理性提問等;還可以按照學(xué)生的認(rèn)知水平進(jìn)行分類,有低級認(rèn)知問題、高級認(rèn)知問題,還可細(xì)分為記憶型問題、理解型問題、分析型問題、評價型問題等。
我在教學(xué)中習(xí)慣按問題的作用對課堂提問進(jìn)行分類。
一、復(fù)述性提問
復(fù)述性提問,即要求學(xué)生復(fù)述教材的提問。
教科書里重要的概念、公理、定理、性質(zhì)、法則,是數(shù)學(xué)基礎(chǔ)知識的組成部分,也是學(xué)生數(shù)學(xué)思維的重要“元件”,許多內(nèi)容學(xué)生必須首先熟記它們。
例如,立體幾何中直線和平面有關(guān)的一系列判定定理和性質(zhì)定理,學(xué)生如果不能熟記,這一章的證明和計(jì)算將難以掌握。教師不時在課堂上進(jìn)行提問并要求學(xué)生復(fù)述,是促使學(xué)生熟記的有力手段。
要求學(xué)生復(fù)述教材的提問,往往在新教材進(jìn)行后的一段時間,也可以在以后用到它們時事先提問。當(dāng)然,這類機(jī)械復(fù)述要以先講清產(chǎn)生這些結(jié)論的過程為前提,以這些結(jié)論的運(yùn)用為目的。我們?nèi)匀徊恢鲝埐磺笊踅獾乃烙浻脖场R虼耍@類提問所占比重并不高。
二、鋪墊性提問
鋪墊性提問,即學(xué)生學(xué)習(xí)新知識前的提問。
這種提問的目的是為學(xué)生學(xué)習(xí)新教材掃清障礙,墊鋪性提問的問題所涉及的內(nèi)容往往是學(xué)生已經(jīng)學(xué)過,并且在講新知識時又要用到的。
例如,在講“對數(shù)函數(shù)”之前,教師可先提問指數(shù)函數(shù)的概念、指數(shù)函數(shù)的單調(diào)性、反函數(shù)的概念,然后在此基礎(chǔ)上講對數(shù)函數(shù)的概念。這樣做有利于新、舊教材的相互聯(lián)系,易于使學(xué)生達(dá)到有意義學(xué)習(xí)。教師所提問題的形式應(yīng)更多注重靈活性,以避免學(xué)生照書直答,對于上例,可以這樣來提問:
(1)函數(shù)y=7x,y=(■)x,y=nx(x∈R)中,哪些不是指數(shù)函數(shù)?
(2)描述y=7x,y=(■)x的圖像的形狀,并說明它們的單調(diào)性。
(3)y=7x,y=(■)x 有沒有反函數(shù)?為什么?
這樣的問題,學(xué)生僅靠翻書是無法得到答案的。學(xué)生若要準(zhǔn)確回答這些問題,就得開動腦筋思考。這顯然比教師直問概念、性質(zhì),學(xué)生照書直答好一些。
三、理解性提問
理解性提問,即為加深學(xué)生對知識的理解進(jìn)行的提問。
學(xué)生剛學(xué)新概念、新規(guī)律后,并不是馬上就能理解。為了加深學(xué)生的理解,教師可以提出一些不太復(fù)雜的問題,促使學(xué)生對所學(xué)概念有比較清晰的理解。
例如,學(xué)生學(xué)了“任意角三角函數(shù)”,對“y=sinx的定義域是一切實(shí)數(shù)”往往理解不深,不易與角的弧度制之間建立有意義的聯(lián)系。教師可以考慮提出“sin4是什么意思??4?這個角的終邊在第幾象限”或“sin(-2)是什么意思??-2?這個角的終邊在第幾象限”等問題,但此類問題不宜過多、過深。
象這樣為深化概念和規(guī)律而提出問題,在高中數(shù)學(xué)教學(xué)中有廣泛的運(yùn)用。
四、探索性提問
探索性提問,即引導(dǎo)學(xué)生探索解題思路的提問。
這樣的問題提問應(yīng)能啟發(fā)學(xué)生積極思維,幫助他們主動探索解題思路。此類問題并不需要很多,并且不能離開學(xué)生的實(shí)際水平。提問的梯度不能太大,否則啟而不發(fā);梯度也不能太小,否則學(xué)生的思維過程被教師“包辦”。
例如習(xí)題:“2n-1與2n+1表示兩個連續(xù)奇數(shù),說明這兩個連續(xù)奇數(shù)的平方差是8的倍數(shù)。”
教學(xué)時依題意寫出(2n+1)2-(2n-1)2之后,可以考慮提出這樣的問題:“將上式變形為怎樣的形式,就可以說明它是8的倍數(shù)?”為的是啟發(fā)學(xué)生明確變形的目標(biāo),避免盲目推導(dǎo)。
這樣的問題,一定程度上揭示了解題的思維過程,對學(xué)生具有一定的啟發(fā)性。
五、效果性提問
效果性提問,即檢查學(xué)生學(xué)習(xí)效果的提問。
這類問題的目的在于了解學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時補(bǔ)救。這類提問往往和鞏固知識結(jié)合起來。
例如,學(xué)了同角三角函數(shù)的倒數(shù)關(guān)系、商數(shù)關(guān)系、平方關(guān)系之后,教師可提出“哪些關(guān)系式可以互相推導(dǎo)?”使學(xué)生加深對公式的理解。在學(xué)生回答的過程中,教師可以依據(jù)“反饋”回來的信息,對學(xué)生的誤解和錯誤及時給予糾正。
六、概括性提問
概括性提問,即要求學(xué)生概括學(xué)習(xí)材料的提問。
對學(xué)習(xí)材料能夠進(jìn)行概括,才能提高數(shù)學(xué)教學(xué)的理論水平。教師進(jìn)行概括當(dāng)然是可以的,但是,有些時候概括過程讓學(xué)生來做,有利于培養(yǎng)學(xué)生的數(shù)學(xué)能力。此類問題的提問可選擇中等難度的材料。
例如,學(xué)了“二面角的平面角”的概念后,讓學(xué)生將解析幾何中兩條相交直線所成的角、立體幾何中兩條異面直線所成的角、直線和平面所成的角、二面角的平面角等進(jìn)行比較,找出它們的共同點(diǎn)與不同點(diǎn)。經(jīng)過教師適時啟發(fā),學(xué)生逐漸概括為:相同點(diǎn)是它們都?xì)w結(jié)為兩條直線或兩條射線所成的角,度量結(jié)果都具有確定性。對于不同點(diǎn),學(xué)生可能首先發(fā)現(xiàn),前三種角都是在到之間,而二面角的平面角是在到之間。學(xué)生找到第二個不同點(diǎn):前三種角歸結(jié)為兩條直線所成的角時,指的是兩條直線相交所得角中較小的那一個;而二面角的平面角,卻不具備這種“最小性”。事實(shí)上,一個平面截二面角時,截得的角可以無限接近。學(xué)生能對教師提出的問題概括出一系列的數(shù)學(xué)材料,此類問題有利于學(xué)生知識的系統(tǒng)化。
[參 考 文 獻(xiàn)]
[1]鐘啟泉.普通高中新課程方案導(dǎo)讀[M].上海:華東師范大學(xué)出版社,2003.[2]徐斌艷.數(shù)學(xué)教育展望[M].上海:華東師范大學(xué)出版社,2001.[3]孟憲凱.微格教學(xué)基本教程[M].北京:北京師范大學(xué)出版社,1992.[4]郭友.教師教學(xué)技能[M].上海:華東師范大學(xué)出版社,1993.[5]孫連眾.中學(xué)數(shù)學(xué)微格教學(xué)教程[M].北京:科學(xué)出版社,1999.
第二篇:課堂提問類型
初中物理中心教研組學(xué)習(xí)材料2012-2-28
課堂提問類型
一、記憶型
1、目的:考察學(xué)生對概念、字詞、公式、法則、定理等基礎(chǔ)知識的記憶情況。
2、思維特征:要求學(xué)生對已有知識進(jìn)行回憶或再現(xiàn)。
3、知識層次:“知道”、“了解”、“認(rèn)識”。
4、常用提問動詞:“說出”、“寫出”、“辨認(rèn)”、“選擇”、“識別”、“匹配”、“分辨”等。
5、提問時機(jī):一般放在構(gòu)建新知識或解決新問題的大背景下,用于聯(lián)系已有的知識經(jīng)驗(yàn)。
二、理解型
1、目的:考察學(xué)生對概念、含義、公式、法則、定理、推論等基礎(chǔ)知識的內(nèi)化情況。
2、思維特征:要求學(xué)生對已有知識進(jìn)行回憶、解釋、舉例、分類、概括、推理、比較或說明等認(rèn)知過程,將知識重新組合,對學(xué)習(xí)材料進(jìn)行內(nèi)化處理,組織語言表達(dá)出來。
3、知識層次:“了解”、“認(rèn)識”、“理解”。與記憶型相比思維含量更多。
4、常用提問動詞:“讀圖(表)”、“回答”、“解決…問題”、“舉出…的例子”、“得出…結(jié)論”、“敘述”、“闡述”、“比較”、“預(yù)測”、“推理”、“總結(jié)”、“把…分類”等。
5、提問時機(jī):在知識遷移前進(jìn)行的準(zhǔn)備工作。
三、應(yīng)用型
1、目的:考察學(xué)生運(yùn)用基礎(chǔ)知識、基礎(chǔ)技能解決具體問題的情況。
2、思維特征:要求學(xué)生把所學(xué)的概念、規(guī)則和原理等知識應(yīng)用于問題情境中,通過一定的程序或步驟解決具體問題。與理解型的區(qū)別在于,應(yīng)用型只給出問題情境或需要完成的任務(wù),而理解型是直接告訴你利用指定的知識去解決問題。
3、知識層次:“認(rèn)識”、“理解”、“會”。
4、常用提問動詞:“解答”、“計(jì)算”、“求”等。
5、提問時機(jī):知識遷移過程中、運(yùn)用知識過程中。
四、分析型
1、目的:促進(jìn)對知識技能的掌握,促進(jìn)思維能力發(fā)展。
2、思維特征:要求學(xué)生分析知識結(jié)構(gòu)因素,弄清概念之間的關(guān)系或事件的前因后果,最好得出結(jié)論。
3、知識層次: “了解”、“認(rèn)識”、“理解”。
4、常用提問動詞:“對比”、“比較”、“分析...其中的因素(原理、關(guān)系、道理)”、“陳述…的觀點(diǎn)(證據(jù)、依據(jù))”、“找出…類型”、“得出…結(jié)論”、“論證”、“證明”等。一般以“為什么”引導(dǎo)句式。
5、提問時機(jī):一般用于對已有結(jié)果尋求產(chǎn)生這種結(jié)果的原因。
五、評價型
1、目的:促進(jìn)對知識技能的掌握。
2、思維特征:要求學(xué)生運(yùn)用準(zhǔn)則和標(biāo)準(zhǔn),對觀點(diǎn)、作品、方法、資料等做出是非判斷、價值判斷,或進(jìn)行比較和選擇。要求提出個人見解。提問前要明確個體的判斷依據(jù)或標(biāo)準(zhǔn)。
3、知識層次:“知道”、“了解”、“認(rèn)識”。
4、常用提問動詞:“判斷”、“評價”、“分級”、“證明”、“辯護(hù)”、“提出看法”等。常用句式“你的判斷標(biāo)準(zhǔn)是什么?按你的判斷以下…哪個更重要(好、是你同意的)?”
5、提問時機(jī):新知識鞏固、深化過程中。
六、創(chuàng)新型
1、目的:培養(yǎng)求異思維能力,激發(fā)想象力和創(chuàng)造力。
2、思維特征:要求學(xué)生發(fā)現(xiàn)知識之間的內(nèi)在聯(lián)系,并在此基礎(chǔ)上把內(nèi)容重組。答案不唯一。
3、知識層次:“認(rèn)識”、“理解”。
4、常用提問動詞:“總結(jié)”、“產(chǎn)生”、“計(jì)劃”、“設(shè)計(jì)”、“提出…意見或建議”、“發(fā)明”等。常用句式有“假設(shè)….,那么…”、“如果…,會…”、“結(jié)合…,談?wù)劇薄ⅰ案鶕?jù)…,你能想出…”等。
5、提問時機(jī):利用發(fā)散思維,深化知識、發(fā)展能力過程中。
第三篇:淺談小學(xué)數(shù)學(xué)課堂提問策略
淺談小學(xué)數(shù)學(xué)課堂提問策略
謝煥軍
摘 要:課堂提問是課堂教學(xué)的主要形式,也是師生交流的重要途徑。通過課堂提問,不僅能激發(fā)興趣、啟發(fā)思考,還能及時反饋知識的掌握情況,捕捉有效的教學(xué)信息,及時調(diào)控教學(xué)的過程,提高課堂教學(xué)的質(zhì)量。本文分析了小學(xué)數(shù)學(xué)教師課堂提問存在的問題,并對課堂提問中的面向全體,循序漸進(jìn),引趣激思,機(jī)智應(yīng)對的有效策略進(jìn)行研究。
一、課堂提問中存在的問題
(一)提問的集中性
許多教師在課堂上總喜歡選擇好學(xué)生,忽略差生。其意圖是他們能作出積極、正確的回答,而使教學(xué)顯得很有效率。這種形式在公開課上表現(xiàn)得更明顯。此外,有些教師專門提問一小部分學(xué)生,冷落了大多數(shù)學(xué)生;或要求齊答,表面上轟轟烈烈,實(shí)際上空空洞洞;或發(fā)現(xiàn)某一學(xué)生精力分散,心不在焉,突然發(fā)問,借機(jī)整治。這些類型的提問利少弊多,甚至不如不問。
(二)提問的求成性
這種現(xiàn)象在教育過程中普遍存在。教師一提問題馬上就叫學(xué)生回答,或?qū)W生還沒有回應(yīng),教師就又頻頻發(fā)問,結(jié)果攪亂了學(xué)生的思維。還有的教師向?qū)W生亮出問題后,過多地分析講解這些問題,唯恐自己沒把問題解釋清楚,占去學(xué)生大量的思考與體驗(yàn)時間,最終把學(xué)生教得沒問題,以為這才算成功的教學(xué)。而有時教師讓學(xué)生相互交流討論,可最終為了趕教學(xué)進(jìn)度還是由教師提供標(biāo)準(zhǔn)答案,學(xué)生仍然被動的接受現(xiàn)成的結(jié)論。
(三)提問缺生成性
目前教師在課堂上提的問題絕大多數(shù)是其根據(jù)教材內(nèi)容預(yù)先設(shè)定的,到了課堂上一個一個拋出來讓學(xué)生討論回答,是“帶著問題走向?qū)W生”。這些問題通常是封閉的、靜態(tài)的,不是隨著開放的動態(tài)的課堂教學(xué)過程隨機(jī)生成的,往往會因缺乏針對性而不能吸引學(xué)生的興趣,不能真正誘發(fā)學(xué)生學(xué)習(xí)的主觀能動性。
二、課堂提問的有效性策略
(一)面向全體
教師要保證每個學(xué)生都有盡量多的且均等的回答機(jī)會。向全班學(xué)生提問的操作步驟是:首先提出問題,然后給予學(xué)生思考時間,最后抽叫學(xué)生回答。這樣使班上的每一位同學(xué)都積極思考問題的答案。
在提問之前,如果教師點(diǎn)名讓某一學(xué)生回答,或者提出問題后立刻叫學(xué)生回答,那么就只有被點(diǎn)名的學(xué)生思考,其他學(xué)生努力回答問題的可能性就會減少。教師尤其要注意不光叫自愿回答問題的學(xué)生,還要照顧那些不愿主動回答問題的學(xué)生,給這些學(xué)生機(jī)會回答,使得每一個學(xué)生都參與到學(xué)習(xí)的過程當(dāng)中。
因此,在叫學(xué)生回答時要有隨機(jī)性,教師可以運(yùn)用一些提問技巧,如:抽簽提問法,即教師課前將學(xué)生的名字分別寫在小紙條上,裝入盒子里。進(jìn)行課堂提問時教師就以抽簽決定由誰回答,答完題的學(xué)生紙條放入另一個盒子;另一個盒子等過幾個問題需再抽,以防學(xué)生出現(xiàn):我已經(jīng)抽到過了,就不會再抽到,也就不用聽課的想法。這樣,讓學(xué)生始終有一種懸念,他們可能隨時被叫到,要讓學(xué)生始終保持注意和警覺。
這里要注意的是:個別老師將提問作為懲罰手段,專門收拾心目中的“差生”。答不上,罰站,罰作業(yè),罰勞動,甚至全班,懲罰破壞了教學(xué)和諧的美,使得師生對立。懲罰使提問變味。
(二)循序漸進(jìn)
在小學(xué)教學(xué)過程中,一定要考慮到學(xué)生的接受能力,由易到難,由簡到繁,設(shè)計(jì)適度的臺階。臺階過高學(xué)生攀登不上去,容易挫傷學(xué)生主動學(xué)習(xí)的積極性,心理上產(chǎn)生困惑感,久而久之會喪失自信心;臺階過平,難以激起學(xué)生追求知識的心理,也會挫傷學(xué)生學(xué)習(xí)的積極性。因此,要充分了解學(xué)生的知識水平和認(rèn)知能力,熟悉教材的前后聯(lián)系,精心設(shè)計(jì)適度的臺階。例如:在教“除數(shù)是小數(shù)的除法”時,教師就應(yīng)讓學(xué)生先復(fù)習(xí)有關(guān)的舊知識:除數(shù)是整數(shù)的小數(shù)除法的法則;商不變的性質(zhì);小數(shù)點(diǎn)的移動引起數(shù)的大小的變化。在此基礎(chǔ)上提出新的問題:0.56÷0.4=?并引導(dǎo)學(xué)生回答: ①這道題能直接計(jì)算嗎?為什么?
②怎樣使除數(shù)是小數(shù)的除法轉(zhuǎn)化為除數(shù)是整數(shù)的除法?根據(jù)什么道理呢? 這樣,學(xué)生就會積極開動腦筋,熱烈討論,認(rèn)為根據(jù)商不變的性質(zhì),把除數(shù)是小數(shù)轉(zhuǎn)化成除數(shù)是整數(shù),即:0.56÷0.4=?轉(zhuǎn)化為5.6÷4=?。
圍繞“除數(shù)是小數(shù)的除法”設(shè)計(jì)具有一定臺階的針對性的提問,會使學(xué)生在復(fù)習(xí)有關(guān)舊知識時引出新知識,使學(xué)生越學(xué)越有興趣,越學(xué)越愛學(xué)。
(三)引趣激思
“讓學(xué)生在生動具體的情景中學(xué)習(xí)數(shù)學(xué)”, 是新課標(biāo)的一個重要理念。數(shù)學(xué)教學(xué)中, 問題情景的創(chuàng)設(shè)如果能從學(xué)生的已有經(jīng)驗(yàn)出發(fā), 緊密聯(lián)系學(xué)生生活環(huán)境, 創(chuàng)設(shè)生動的并有助于學(xué)生主動學(xué)習(xí)的問題情境, 就能激發(fā)學(xué)生的學(xué)習(xí)興趣, 進(jìn)一步發(fā)展學(xué)生的思維能力, 增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。這樣的數(shù)學(xué)課堂才能真正轉(zhuǎn)化成以問題為中心, 讓學(xué)生主動去發(fā)現(xiàn)問題、提出問題, 才能激活學(xué)生的思維。
例如:在“平均數(shù)的意義”教學(xué)中,我設(shè)計(jì)了這樣的情境:
(課件播放)森林里好熱鬧呀!動物們都在干什么呢?原來正在舉行一場別開生面的投籃比賽,參加比賽的有兩個隊(duì),他們分別是虎虎隊(duì)和花花隊(duì)(課件出示兩組比賽成績圖)
虎虎隊(duì)
花花隊(duì)
大虎6個 二虎5個 三虎4個 大花7個 二花2個 三花5個 后來再增加一個四花
成績圖
師:哪個隊(duì)的實(shí)力強(qiáng),獎牌應(yīng)該發(fā)給誰?
生:應(yīng)該發(fā)給投中球總數(shù)最多的那一隊(duì),虎虎隊(duì)共投進(jìn)15個比花花隊(duì)多,獎牌應(yīng) 發(fā)給虎虎隊(duì);
師:可是這回四花不服氣了,他說姐姐們,我來幫你們了,于是四花現(xiàn)場投中了2個球,那這回花花隊(duì)的投球總數(shù)變成了幾?(16個)獎牌應(yīng)該發(fā)給花花隊(duì)!
生:不對,不公平,花花隊(duì)有4個人,而虎虎隊(duì)只有3個人,人數(shù)不相等不能比總數(shù);
師:那又該怎么辦?
(通過在情境中提問引起學(xué)生的認(rèn)知沖突,從而激發(fā)學(xué)生深入思考)生:把幾個數(shù)平均一下,求平均數(shù)。
師:平均數(shù)該怎么求?(進(jìn)入探究“求平均數(shù)的方法”的過程)
數(shù)學(xué)教學(xué)中要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的又是學(xué)生感興趣的問題情境,在教師恰當(dāng)?shù)囊龑?dǎo)下,學(xué)生就會樂于參與觀察、操作、猜想、推理、交流等活動,掌握基本的數(shù)學(xué)知識和技能,初步學(xué)會從數(shù)學(xué)角度去觀察事物、思考問題,激發(fā)學(xué)生對數(shù)學(xué)的興趣以及學(xué)好數(shù)學(xué)的愿望。結(jié)語
當(dāng)然,提問時還要面帶微笑,切忌態(tài)度生硬。教師的面部表情、語言語調(diào)、舉手投足都可能對學(xué)生的思維活動有一定的影響。不耐煩、訓(xùn)斥、刁難,會使學(xué)生懼怕、回避,甚至生厭,阻礙教學(xué)進(jìn)程。相反,則會增強(qiáng)學(xué)生的信心,使他們的思路清新,回答準(zhǔn)確。本人通過教育實(shí)習(xí)及實(shí)踐得出,教師只有從根本上形成對課堂提問的正確觀念,才能在實(shí)踐中發(fā)揮課堂提問的靈活性與有效性。
總之,課堂提問既是一門科學(xué),更是一門藝術(shù)。如果提問能收到“問渠哪得清如許,為有源頭活水來”的意境,能使學(xué)生開動腦筋、積極思考、大膽想象,產(chǎn)生一種“欲罷不能,躍躍欲試”的狀態(tài),思維的火花、智慧的靈感就會不斷產(chǎn)生。課堂提問才會真正的做到有效,課堂才會成為學(xué)習(xí)的樂園,課堂教學(xué)才會收到事半功倍的效果。
第四篇:淺談小學(xué)數(shù)學(xué)課堂提問技巧
小議小學(xué)數(shù)學(xué)課堂提問技巧
課堂提問是小學(xué)數(shù)學(xué)課堂中常用的一種教學(xué)手段,是教師向?qū)W生輸出信息的主要途徑之一。善于把握教材的特點(diǎn),舊中求新、從不同的方面或角度提出生動曲折、富有啟發(fā)性的問題,將有助于激發(fā)學(xué)生的求知欲,也有利于培養(yǎng)學(xué)生思維的積極性和主動性,使學(xué)生的思維過程處于積極愉快地獲取知識的狀態(tài),給課堂教學(xué)增添神奇的魅力,給課堂教學(xué)帶來生機(jī)。在這幾年的教育、教研工作中,我從小學(xué)各年級的數(shù)學(xué)課堂教學(xué)中發(fā)現(xiàn),在實(shí)際教學(xué)中,教師往往不太注意課堂提問的藝術(shù)和技巧,影響了學(xué)生的積極思維和學(xué)習(xí)效果,使課堂提問產(chǎn)生一些誤區(qū),其表現(xiàn)形式如下:
1、流于形式,一問一答,頻繁問答。這樣“一問一答”式一般是設(shè)計(jì)為師問眾生答,如:“答案等于幾?”“是不是?”“對不對?”“好不好?”等,這類問題的提出,教師只關(guān)注結(jié)果是什么,而忽視對規(guī)律的揭示,學(xué)生可以不假思索的齊聲回答“是”或“不是”,“對”或“不對”,問題太過于簡單僵化,不利于學(xué)生思維訓(xùn)練。
2、提問離題千里。設(shè)計(jì)的問題過難、過偏或過于籠統(tǒng),學(xué)生難以理解和接受。
3、提問無目的,隨心所欲,淡化了正常的教學(xué)。備課時問題未精心設(shè)計(jì),上課時隨意發(fā)問,不分主次,面面俱到、信口開河地提問,有時甚至脫離教學(xué)目標(biāo),影響了學(xué)生的正常思考,必然使學(xué)生學(xué)習(xí)目的不明確,抓不住重點(diǎn),學(xué)習(xí)效率低,能力得不到提高。
4、不重視學(xué)生真實(shí)反饋。教學(xué)時,教師一般要通過提問,以診斷學(xué)生對以學(xué)知識掌握程度,以判斷能否順利引入新問題,這種提問不能只是“是什么?”,“叫什么?”等記憶性的反饋提問,學(xué)生回答的也只能是一些淺層的記憶知識,并沒有表明他們是否真正理解,這樣的提問,無法有效地診斷學(xué)生的知識缺陷,獲得真正的反饋信息,從而不利于教師調(diào)控教學(xué)過程。
5、提問后沒有停頓或先點(diǎn)名后提問,學(xué)生無時間思考。教師的提問,要求學(xué)生能正確地回答,必須給予充足的時間讓學(xué)生進(jìn)行充分的思考,其目的在于讓全體學(xué)生能在這個“時間差”里去動腦思維,積極參與認(rèn)識活動。這樣的提問,不利于學(xué)生冷靜地思考問題,達(dá)不到提問的應(yīng)有作用。
6、提問面不廣闊,多數(shù)學(xué)生“冷場”。教師的問題設(shè)計(jì),如果只針對少數(shù)學(xué)生能回答,課堂上就會“冷場”,就會有“被遺忘的角落”,所以,教師要針對提問的難易程度從“學(xué)情”出發(fā),選擇不同類型的學(xué)生回答,以便調(diào)動不同層次學(xué)生的思維積極性和口語表達(dá)能力。
教學(xué)的藝術(shù)全在于如何恰當(dāng)?shù)靥岢鰡栴}和巧妙地引導(dǎo)學(xué)生作答。在實(shí)際教學(xué)中,教師如何巧妙地把問題貫穿于教學(xué)服務(wù)于教學(xué),做到恰倒好處的拋磚引玉,是值得我們探究的課題。再幾年的教育、教研實(shí)踐中,我總結(jié)了幾種課堂提問技巧,歸納如下:
一、提問應(yīng)該由淺入深。
二、提問要抓住關(guān)鍵
三、提問要抓住知識間的相互聯(lián)系
四、提問要抓住學(xué)生的思維方式
五、問題設(shè)計(jì)要開放
第五篇:如何做好數(shù)學(xué)的課堂提問
【2011年東莞市小學(xué)數(shù)學(xué)教研會】
參 評 教 學(xué) 論 文
題目:
如何做好數(shù)學(xué)的課堂提問姓名: 林海業(yè)單位: 清溪聯(lián)升小學(xué)聯(lián)系電話:
如何做好數(shù)學(xué)的課堂提問
內(nèi)容摘要:什么是課堂提問?有人會理解為:課堂提問就是簡單的問與答。課堂上,老師問學(xué)生答。這只是片面的、膚淺的理解。但凡從事過教育工作或正在從事教育工作的人都知道,課堂提問是課堂教學(xué)的主要組成部分,也是課堂教學(xué)的重要手段之一,是教師開啟學(xué)生心智;挖掘?qū)W生內(nèi)在潛力的鑰匙;促使學(xué)生思維活躍;增強(qiáng)學(xué)生主動參與意識的基本手段。好的課堂提問,能打開學(xué)生思維的閘門,通過“疏導(dǎo)”使學(xué)生智慧之水源源而來,促使學(xué)生分析、解決問題的能力不斷提高,如果教師在課堂上向?qū)W生提出有價值的、能夠激起學(xué)生思維劇烈活動的問題,往往比引導(dǎo)學(xué)生解決問題更為重要。著名的教育家陶行知說“發(fā)明千千萬萬,起點(diǎn)是一問。”可見,課堂提問在課堂教學(xué)中的重要性,那如何做好數(shù)學(xué)課的課堂提問呢?
關(guān)鍵詞:課堂 提問
一、遵循課堂提問的原則性
1、從教學(xué)內(nèi)容講,要問的是關(guān)鍵,問題具有全面性。學(xué)生要從中體會教學(xué)內(nèi)容的全部精神,使學(xué)生得到啟發(fā),能起到舉一反三的作用,學(xué)生從中領(lǐng)會題中內(nèi)在的聯(lián)系,與題型的特點(diǎn)。如六年級練習(xí)題中有這樣一道題:六年級原有學(xué)生560人,其中男生占總?cè)藬?shù)的3/7,后來轉(zhuǎn)來一些男同學(xué)后,男生人生占總?cè)松?/15,現(xiàn)在六年級共有學(xué)生多少人?這道題有些坡度,需要老師通過一定鋪墊作為指引學(xué)生才能找到解決問題的關(guān)鍵。這時需要老師的點(diǎn)撥提問:在六年級原有的學(xué)生中,男生有多少人?女生有多少人?誰的人數(shù)變了,誰的人數(shù)沒變?沒變的人數(shù)在后來的總?cè)藬?shù)中占幾分之幾?經(jīng)過一系列的相關(guān)問題,學(xué)生明確了,用不變的女生人數(shù)除以后來女生占的分率就可求出現(xiàn)在的總?cè)藬?shù),經(jīng)過疏導(dǎo)學(xué)生明白;女生的人數(shù)不變;560×﹙1-3/7﹚=320(人)再用320÷(1-7/15)=600(人)。我又出了這樣一道題進(jìn)行鞏固練習(xí):有甲、乙兩個書架,其中甲書架上書得本數(shù)占總數(shù)5/8,如果從甲書架上拿走26本書,則兩個書架上的書剛好相等,甲、乙兩個書架上的書原共有多少本?學(xué)生通過上一道題理解的基礎(chǔ)上,很快得出:用甲書架上拿走的本數(shù)除以甲書架比乙書架多出的分率,即可求出總本數(shù)。
2、興趣是最好的老師,從心理角度上講,老師的提問要能引起學(xué)生的興趣,學(xué)生才能積極思考,積極回答。數(shù)學(xué)課從某種意義上說是枯燥的,如何使數(shù)學(xué)課活躍起來,我認(rèn)為課堂應(yīng)把學(xué)習(xí)的主動權(quán)交給學(xué)生,鼓勵學(xué)生合作交流,老師提出的問題既要緊扣教學(xué)內(nèi)容又要貼近學(xué)生的生活實(shí)際,使學(xué)生對老師提出的問題產(chǎn)生濃厚的興趣,充分調(diào)動學(xué)生的積極性,這樣自然而然,學(xué)習(xí)就變得輕松起來。例如:我在教學(xué)一道把正方體削成一個最大的圓柱時,先讓學(xué)生自己準(zhǔn)備用蘿卜、橡皮泥做成正方體,在課堂上邊提問,邊演示,使學(xué)生圍繞老師提出的問題邊思考、邊操作,運(yùn)用所學(xué)知識解決生活中的問題,既調(diào)動學(xué)生的積極性,又讓學(xué)生享受成功的快樂。
3、從教學(xué)方法講,提問要有啟發(fā)性,鼓勵學(xué)生思考。用啟發(fā)式的提問,引導(dǎo)學(xué)生在已有的基礎(chǔ)上去思考想象,發(fā)現(xiàn)規(guī)律,激發(fā)學(xué)生的求知欲望。在探究圓柱的體積公式時,我是這樣做的:先通過教具演示:把圓柱的底面積分成16個相等的扇形,再按照這些扇形沿圓柱的高把圓柱切開,我沒有直接拼成一個近似于長方體,而采取引導(dǎo)提問,如果讓你們?nèi)テ矗銈儠趺雌矗拷?jīng)過這么一問,學(xué)生來勁了,都積極展開思考,還有的上臺演示,拼成一個近似長方體后,再提問引導(dǎo),拼成的立體圖形和原來圓柱的體積有關(guān)系嗎?什么改變了?什么沒變?長方體的長和圓柱的什么相等?高和圓柱什么相等呢?通過一系列的課堂提問,學(xué)生很自然地推導(dǎo)出圓柱的體積計(jì)算公式。
二、捕獲“契機(jī)”提升提問效果
所謂的“契機(jī)”就是抓住提問的最佳時機(jī)和抓住學(xué)生最優(yōu)的學(xué)習(xí)動機(jī),當(dāng)學(xué)生思考問題正除于“心求通過而未得,口欲言而不能創(chuàng)所”狀態(tài)時,提問的效果是最理想的,因?yàn)榇藭r學(xué)生的注意力最集中,思維最活躍,對思考問題有一股追根問底的狠勁,老師的提問引導(dǎo)就等于幫學(xué)生撥云見天,一點(diǎn)就通,既引起學(xué)生的學(xué)習(xí)興趣,又容易解決學(xué)生的疑惑,提高課堂提問的效果。
1、當(dāng)學(xué)生的思維發(fā)生障疑時,及時提問。學(xué)生的思維發(fā)生障礙的地方往往是教學(xué)重難點(diǎn)之處,此時老師就通過提問的方式進(jìn)行鋪墊、引導(dǎo),幫助學(xué)生理解意思,如我們在教學(xué)分?jǐn)?shù)基本性質(zhì)的一道題時:分?jǐn)?shù)3/8的分子乘以3,要使分?jǐn)?shù)的大小不變,分母應(yīng)該怎樣變化?此題學(xué)生在理解分?jǐn)?shù)基本性質(zhì)的基礎(chǔ)上,大部分學(xué)生都懂得分母也應(yīng)乘以3,但把題目改成3/8的分子加上分母又怎樣變化時,學(xué)生冥思苦想,理不出頭緒,相當(dāng)一部分學(xué)生也把分母加上了3,這明顯不符合,這時老師點(diǎn)撥提問,得到的分?jǐn)?shù)與原來相等嗎?為什么不相等? 分?jǐn)?shù)的分子和分母同時乘或除以一個不為0的數(shù),還包含一種什么意思呢?學(xué)生就慢慢明白,分子、分母同時乘或除以相同的數(shù),就是分子分母同時擴(kuò)大或縮小相同的倍數(shù),3/8的分子加上3,也就是增加分子的一倍,要使分?jǐn)?shù)值不變,分母也應(yīng)增加分母的一倍,也就是加上8。
2、當(dāng)“學(xué)生“迷糊” 時,及時提問學(xué)生”迷糊”的地方,其實(shí)就是教學(xué)內(nèi)容的精練之處,學(xué)生往往只在教材書面膚淺的理
解;在沒有老師的指引下,很少更進(jìn)一不深究概念、題目的內(nèi)在的含義。如;把一個正方體,每份的大小是原正方體面積的1/4。讓學(xué)生判斷對錯時,很多同學(xué)都認(rèn)為是正確的,沒有注意有沒有平均分,而學(xué)生最容易忽略的是“平均”的作用。又如;把一根木棒鋸成兩段需要2分鐘,那么把木棒鋸成6段需要幾分鐘學(xué)生的計(jì)算往往是把每一段看作鋸了一次,鋸成6段就是要6×2=12分鐘,并沒有認(rèn)真分析原來鋸成兩段需要鋸幾次。這時只要老師作適當(dāng)?shù)奶釂枺湍艽蜷_學(xué)生的心扉,明白把木棒鋸成6段只要鋸5次,只要5×2=10分鐘,把數(shù)學(xué)和生活聯(lián)系起來,把數(shù)學(xué)運(yùn)用于生活。
三、提問要有階段性。
數(shù)學(xué)的課堂提問一般可分為四個階段,即釋題階段、析題階段、調(diào)控階段、評價階段。
1、釋題階段
在學(xué)生做完題目后,在老師把作業(yè)發(fā)回時,往往聽到學(xué)生說“我太粗心了”“我怎么沒注意這句話呢”“我怎么就沒想到吶”此類的感嘆,這就說明讀題釋題的關(guān)鍵性,我們在課堂提問后,要注意給學(xué)生搭橋、鋪路,通過適當(dāng)?shù)奶釂枺柰▽W(xué)生思維障礙,如在教學(xué):小明有郵票72枚,小軍的郵票是小的7/8,小方的郵票枚數(shù)是小軍的5/9,小方的有郵票多少枚?老師在教學(xué)中可以通過提問的方式幫助學(xué)生理解:(1)問題告訴我們什么?(2)問題是什么?(3)要求的問題與什么有關(guān)?通過精心的設(shè)問,使問題具有極好的啟發(fā)誘導(dǎo)性和清晰的層次性,可以提高課堂提問的思維含量。
2、析題階段:
由于學(xué)生受閱歷水平的限制,他們往往對問題缺乏深層次的思考,只停留在一般或淺層次的認(rèn)識水平上,滿足于一知半解,這時老師要及時提問,步步探究,把學(xué)生的思維引向深入,培養(yǎng)學(xué)生思維的深刻性,提高思維水平。如教學(xué)六年級圖形放大與縮小時,老師讓學(xué)生把一個長方形按2:1放大后的圖形,再發(fā)現(xiàn)放大與縮小的規(guī)律,一位學(xué)生回答說:“我發(fā)現(xiàn)放大的圖形面積擴(kuò)大2倍。”這老師馬上給予否定,使學(xué)生的認(rèn)識停留在淺層次的水平上,其實(shí)老師只要再問幾個為什么,通過觀察,比較在輕松愉快的環(huán)境中,認(rèn)識圖形的放大與縮小,就能把學(xué)生的思維引向深入,得到拓展;再有在提問過程中,通過老師的講解,學(xué)生自身的操作,去發(fā)現(xiàn)規(guī)律,真正提高思維水平。
3調(diào)控階段
課堂提問要注重藝術(shù)性;提出的問題要考慮讓每個學(xué)生都在積極參與思維,問題要包含多種水分。提問時要注重哪些細(xì)節(jié),提問的問題會把學(xué)生引領(lǐng)到那種狀態(tài)。用那種提問的方式更容易讓學(xué)生接受?提出的問題是否給興趣不高的中下生帶來教學(xué)機(jī)會不平等;或因教師的低期而導(dǎo)致學(xué)習(xí)動機(jī)的降低,優(yōu)生是否過于活躍。如;一些較基礎(chǔ)的內(nèi)容差生還弄不明白,可優(yōu)生聽得有點(diǎn)厭煩。這些情況老師在進(jìn)行問題設(shè)計(jì)前要考慮好,并做好充分的準(zhǔn)備,以便在教學(xué)中及時調(diào)控,實(shí)現(xiàn)師生互動。提問時要堅(jiān)持以學(xué)生為主體,發(fā)揚(yáng)民主,讓學(xué)生成為課堂教學(xué)的主人,使學(xué)生由接受者轉(zhuǎn)變?yōu)閷W(xué)習(xí)者,學(xué)生在學(xué)習(xí)的過程中不斷發(fā)現(xiàn)問題并能運(yùn)用知識,妥善處理信息,學(xué)會分析推理,進(jìn)行表達(dá)交流。老師的課堂提問中同時要考慮提問時,問題是否具有利于調(diào)動學(xué)生參與的積極性。
4、評價階段
教師的體溫又不同的方式,問題設(shè)計(jì)也應(yīng)有多樣性。學(xué)習(xí)不是簡單的由外到內(nèi)的轉(zhuǎn)移和傳遞,而是由學(xué)習(xí)者主動構(gòu)建自己的知識體系體驗(yàn)感知的過程,老師要考慮學(xué)生本身的因素,不能按照自己或課本的邏輯對學(xué)生的理解做出非對即錯的評價。教師對學(xué)生的回答也不應(yīng)強(qiáng)求統(tǒng)一。否則就會挫傷學(xué)生的學(xué)習(xí)主動性,不利于學(xué)生思維的正常發(fā)展。教師應(yīng)多鼓勵學(xué)生的質(zhì)疑,從不同的角度,多層次、多渠道地分析問題。即使有時學(xué)生答錯了,但有老師的鼓勵,學(xué)生就會產(chǎn)生一種動力,不畏困難,刻苦鉆研的精神,就自然成為學(xué)生的支柱;在課堂上,大拇指往往比食指更有效果。提問時要因問而異,因人而異。差生優(yōu)差生的表揚(yáng),優(yōu)生有優(yōu)生的肯定。這樣才能是差生變優(yōu),優(yōu)生更優(yōu)。
參考文獻(xiàn):《班主任手冊》經(jīng)濟(jì)日報出版社,主編:彭詩瑯、萬柏裕
《數(shù)學(xué)教材教法》
《數(shù)學(xué)新課程標(biāo)準(zhǔn)》