第一篇:高數競賽練習題答案(函數、極限、連續)
函數、極限、連續
1.f(x),g(x)?C[a,b],在(a,b)內二階可導且存在相等的最大值,又f(a)?g(a),f(b)?g(b),證明:(1)???(a,b),使f(?)?g(?)
(2)???(a,b),使f??(?)?g??(?)證明:設f(x),g(x)分別在x?c,x?d處取得最大值M,不妨設c?d(此時a?c?d?b),作輔助函數F(x)?f(x)?g(x),往證???(a,b),使F??(?)?0
令F(x)?f(x)?g(x),則F(x)在[a,b]上連續,在(a,b)二階可導,且F(a)?F(b)?0,① 當c?d,由于 F(c)?f(c)?g(c)?M?g(c)?0F(d)?f(d)?g(d)?f(d)?M?0由“閉.連.”零點定理,???[c,d]?(a,b),使f(?)?g(?)② 當c?d,由于F(c)?f(c)?g(c)?f(c)?g(d)?M?M?0即???(a,b),使f(?)?g(?)
對F(x)分別在[a,?],[?,b]上用羅爾定理,??1?(a,?),?2?(?,b),使
在[?1,?2]上對F(x)在用羅爾定理,F?(?1)?F?(?2)?0,???(?1,?2)?(a,b),使F??(?)?0,???(a,b),使f??(?)?g??(?).2.設數列{xn}滿足0?x1??,xn?1?sinxn,n?1,2,?
xn存在,并求該極限(1)證明limn??
xn?1x1n(2)計算lim()n??xn
分析:(1)確定{xn}為單調減少有下界即可
1xn,用洛必達法則.(2)利用(1)確定的limn??
解:易得0?xn?1(n?2,3,?),所以xn?1?sinxn?xn,n?(2,3,?),即{xn}為
xn存在,并記為limxn?a,則a?[0,1],單調減少有下界的數列,所以 lim n??n??
對等式xn?1?sinxn?xn,兩邊令n??取極限,得a?sina,a?[0,1],所以
a?0,即limxn?0.n??
lim((2)n
??
xn?1sinxn)?lim()
n??xnxn
2xn
2xn
令t?xn
?lim(t?0
sint)?et?0t
tlim
ln()t
t
2由于
lim
t?0
t
ln(sin)ttsint
ln[1?(sin?1)]?1-1t2sint?t洛cost?11tt2
?lim?lim?lim?lim?lim?? t?0t?0t?0t?0t?03t2t2t2t33t26
xn?1xn?1
所以lim()?e.n??xn
3.已知f(x)在[0,1]連續,在(0,1)可導,且f(0)?0,f(1)?1,證明:(1)???(0,1),使f(?)?1??,(2)存在兩個不同點?,??(0,1),使f?(?)f?(?)?1
證:(1)令F(x)?f(x)?x?1,則F(x)在[0,1]上連續,且
F(0)??1?0,F(1)?1?0,由“閉.連.”零點定理,???(0,1),使F(?)?0,即f(?)?1??
(2)f(x)在[0,?],[?,1]上都滿足拉格朗日中值定理,所以
???(0,?),??(?,1),使
f(?)?f(0)?f?(?)(??0),f(1)?f(?)?f?(?)(1??),即
f?(?)?f?(?)?
f(?)
?
?
1??
?
1?f(?)1?(1??)?
??1??1??1??
?f?(?)f?(?)?
1??
?
?
?
1??
?1
4.設方程xn?nx?1?0,其中n為正整數,證明此方程存在唯一的正
?
實根xn,并證明當??1時,級數?xn收斂.n?1?
證:令f(x)?xn?nx?1,則f(x)在(0,??)上連續,且
f(0)??1?0,f()?()n?0
nn
所以由連續函數的零點定理,所給方程在(0,)內有根,又由f?(x)?n(xn?1?1)?0,即f(x)在(0,)內單調遞增,所以所給方程(0,)內只有唯一的根,在(,?)上無根,即所給方程存在唯一的正實根xn.?
?由上述知,對n?1,2,?,有0?xn?,有0?xn
?
1n
1n1n
1n
1n1,n?
此外,由??1知,級數?
收斂,所以由正項級數比較審斂法,知?
n?1n
?x?收斂.nn?1
?
5.求lim(cosx)
x?0
1ln(1?x)
x?0ln(1?x)
解:lim(cosx)
x?0
1ln(1?x)
=e
lim
lncosx,其中limln(1?x
x?0
lncosx)
?lim
x?0
ln[1?(cosx?1)]ln(1?x)
?lim
x?0
?x22x
??
(cosx)所以,limx?0
ln(1?x)
?e
?
6.f(x)在x?0的某鄰域內具有一階連續導數,且f(0)?0,f?(0)?0,若
af(h)?bf(2h)?f(0)在h?0時是比h高階的無窮小,試確定a,b的值.解1:(利用導數定義)
0?lim
af(h)?bf(2h)?f(0)af(h)?af(0)?af(0)?bf(2h)?bf(0)?bf(0)?f(0)
?lim
h?0h?0hhaf(h)?af(0)bf(2h)?bf(0)[(a?b)?1]f(0)[(a?b)?1]f(0)?lim?lim?lim?(a?b)f?(0)?limh?0h?0h?0h?0hhhh
?a?b?1
?由f(0)?0,f(0)?0,得?,即a?2,b??1
a?2b?0?
解2:按解1,只要假定f(x)在x?0處可導即可,但在題中“f(x)在x?0的某鄰域內具有一階連續導數”的假定下,有以下解法:由lim
h?0
h?0
af(h)?bf(2h)?f(0)
?0得 limaf(h)?bf(2h)?f(0)=0
h?0h
即0?limaf(h)?bf(2h)?f(0)?(a?b?1)f(0),由f(0)?0,得a?b?1(1)
af(h)?bf(2h)?f(0)洛
?limaf?(h)?2bf?(2h)?(a?2b)f?(0)且f?(0)?0,又由0?lim
h?0h?0h
所以 a?2b?0(2)
由(1)、(2)得a?2,b??1.?2?esinx?
?.7.求lim?4??x?0x??1?e?
解:
?2e??e?sinx??2?esinx?
??1 ???lim?lim?4?4????x?0x?0?x?x??1?e??e?1??2?esinx??2?esinx?
?????1 lim?lim4?4??????x?0x?x?0?1?ex??1?e?
所以 原式 = 1
8.求lim
x?0
143
?x??x?2
.2
x
解1:(泰勒公式)因
?x??x?2?[1?
1111
x?x2?o(x2)]?[1?x?x2?o(x2)]?22828(x?0)
??x2?o(x2)~?x2
所以
1?x2
?x??x?2??1lim?limx?0x?0x2x24
解2:(洛必達法則)
?
?x??x?2洛必達lim?limx?0x?0x22x1?x??x1
?lim?lim x?0?x?x4x?0x
1?2x1?lim.??4x?0x(?x??x)4
第二篇:高數課件-函數極限和連續
一、函數極限和連續自測題
1,是非題
(1)無界變量不一定是無窮大量
()(2)若limf(x)?a,則f(x)在x0處必有定義
()
x?x012x(3)極限lim2sinx?limx?0
()
x???x???33x2,選擇題
(1)當x?0時,無窮小量1?x?1?x是x的()A.等價無窮小
B.同階但不等價
C.高階無窮小
D.低價無窮小
?x?1?1x?0?(2)設函數f(x)??,則x?0是f(x)的()x?0x?0?A.可去間斷點 B.無窮間斷點
C 連續點
D 跳躍間斷點
?exx?0(3)設函數f(x)??,要使f(x)在x0處連續,則a?
()?a?xx?0A.2
B 1
C 0
D ?1
3n2?5n?1?
()(4)lim2n??6n?3n?2A 151
B ?
C ?
D ? 2321?xsinx?0??x(5)設f(x)??,則在x?0處f(x)
()
?1sinx?1x?0??xA 有定義
B 有極限
C 連續
D左連續
3(6)x?1是函數y?x?1的()x?1A 可去間斷點
B 無窮間斷點
C 連續
D跳躍間斷點
3.求下列極限
(1)limx??x?sinxsin(?2x)x?2?3
(2)lim
(3)lim
x?0x?12xln(1?2x)x?1e?2x?1(4)lim
(5)limn[ln(1?n)?lnn]
(6)lim(sinn?1?sinn)
n??n??x?0x2x?3x?2(sinx3)tanx2lim()(7)lim
(8)
(9)limx(x?1?x)x??2x?1x?01?cosx2x??cosx?cosaarctanxex?ex0(10)lim
(11)lim
(12)lim
x?ax??x?x0x?xx?ax0x2?32x2?1sin(x?1))(13)lim
(14)lim(2
x??x?1x?1x?24,求滿足下列條件的a,b的值
1x2?x?a?b
(2)lim(3x?ax2?x?1)?(1)limx???x?26x?2?tanaxx?0ax?b??2
(4)已知f(x)??x(3)lim且limf(x)存在
x?0x?1x?2?x?2x?0?x??1??2?2(5)已知f(x)??x?ax?b?1?x?1在(??,??)內連續
?2x?1??sin2x?e2ax?1x?0?(6)函數f(x)??在x?0點連續 x?ax?0?5.求下列函數的間斷點并判斷其類型
?x?1x?11?cosxx2?1(1)y?2
(2)y??
(3)f(x)?
sinxx?3x?2?3?xx?1?1x?0x?(4)f(x)??ex?1
(5)y?
tanx??ln(1?x)?1?x?026.已知x??1時,x?ax?5x?1是同階無窮小,求a
7.證明方程x?4x?2?0在區間(1,2)內至少有一個根 8.當x?0時,e?ln(1?x)?1與x是同階無窮小,求n 9.設函數f(x)?a,(a?0,a?1),求limxxn41ln[f(1)f(2)?f(n)]
n??n2
第三篇:極限連續-高數競賽超好
高數競賽例題
第一講 函數、極限、連續
例1.例2.例3.例4.例5.例6.例7.例8.例9.lim1nn??(1?n2???nn).lim1?3?5?(2n?1)2?4?6?(2n)n??
limx?0x?3????5?x?,其中[?]為取整函數
lim1?cosxx2x?0
lim(cosn???n)n2
lim(x??x?ax?a)2x?1e,求常數a.lim(sinx??2x?cos1x)x
lim[(n?n?n??32n21)en?1?n]
6limln(1?3x)(e2x3x?0?1)sinx2 例10.例11.例12.lim1?tanx?1?sinx2x?0xln(1?x)?x
limln(1?2)ln(1?x??x3x)
limsinx?xcosxsinx3x?0
例13.已知f(x)在x?0的某鄰域內有連續導數,且lim(sin2x?x?0f(x)xx)?2,求 f(0),f?(0).例14.例15.例16.lim(n??nn?12?nn?222???nn?n22)
?2?n??sinsinsin?n?n???nlim?n??11?n?1n?n?2n??????
x???lim[x?x?1?(ax?b)]?0,求常數a,b.2例17.設f(x)?nlim???
x2n?1?ax?bxx2n2?1為連續函數,求a,b.例18.設f(x)在(??,??)上連續,且f(f(x))?x,證明至少??,使得f(?)??.....................................................................................................................極 限
例1.例2.nlim(n??1n?n?12?2n?n?22???nn?n?n2)
limn???k?1kn?k?122
先兩邊夾,再用定積分定義 例3.例4.例5.設limx?0 例6.例7.?1x2lim(n?1)nnn?1n??sin1n
lime?e2xsinx2x?0x[ln(1?x?x)?ln(1?x?x)]
ln(1?)f(x)tanx?5,求limx2x?02?1xf(x).12(3sint?tcos)dt?0tlimxx?0(1?cosx)?ln(1?t)dtx0
x???limln(2e2?x?x?1)x?xsinx?1
例8.例9.limexx?0100
x???lim(x?x?x?x)
1例10.xxxlim??a1?a2???an?x?,其中,ax?0?.?n??1,a2?,an均為正數
例11.已知2nf(x)?limxe(1?x)n?xen??e(1?x)n?x2n?1,求?0f(x)dx.例12.設10?a?b,求lim?a?n?b?n?nn??
例13.設f(x)在(??,??)內可導,且limf?(x)?ex??,xlim?的值.??x?c???lim[f(x)?f(x?1)],求cx??x?c?x??
例14.設f(x)在x?0的某鄰域內二階可導,且f??(0)?0,x又已知)dtlim?0f(tx?0?x??sinx???0,求?,?.例15.當x?1時,lim(1?x)(1?x2)(1?x4)n?(1?x2)n??
例16.當x?0時,求limxn??cosx2cosx4?cos2n
例17.lim(1?1(1?1n??22)(1?132)?n2)
例18.lim1nn??nn(n?1)?(2n?1)
limf(x)x?0x?0,連 續
例1.求f(x)?lim
例2.設g(x)在x?0的某鄰域內連續,且lim?1g(x2t)dt?1??02?x??1f(x)???2?a?bcosx2?x??x?0x?0x?01?x1?x2n的間斷點,并判斷其類型
n??g(x)?1xn?0?a,已知
在x?0處連續,求a,b的值.例3.證方程ln實根.例4.f(x)在[a,b]上連續,且a?c?d?b,證:在(a,b)內至少存在?x?xe???01?cos2xdx在區間(0,??)內有且僅有兩個不同,使得pf(c)?qf(d)?(p?q)f(?),其中p,q為任意正常數.例5.設f(x)在(a,b)內連續,且x1,x2,?,xn?(a,b),試證:???(a,b),使
例6.試證方程x?asin且它不超過b?a.例7.設f(x),g(x)在(??,??)上連續,且g(x)?0,利用閉區間上連續函數的性質,證明存在一點??[a,b],使?abf(?)?1n[f(x1)?f(x2)???f(xn)].x?b,其中a?0,b?0,至少存在一個正根,并
f(x)g(x)dx?f(?)?g(x)dx
ab
第四篇:函數、極限和連續試題及答案
極限和連續試題(A卷)
1.選擇題(正確答案可能不止一個)。(1)下列數列收斂的是()。A.xnn?1n?(?1)n
B.xn1n?(?1)n
C.xn?n?sinD.xn?2n(2)下列極限存在的有()。
A.lim1x??sinx
B.xlim??xsinx
C.lim11x?02x?D.limn??2n2?1
(3)下列極限不正確的是()。
A.lim(x?1)?2
B.lim1x?1?x?0x?1?1 12C.lim4x?2xx?2??
D.xlim?0?e???(4)下列變量在給定的變化過程中,是無窮小量的有()。A.2?x?1(x?0)
B.sinxx(x?0)
2C.e?x(x???)
D.xx?1(2?sin1x)(x?0)??1(5)如果函數f(x)?xsinx,?x?0;?a,x?0;在x?0處連續,則a、b的值為(???xsin1x?b,x?0.A.a?0,b?0
B.a?1,b?1 C.a?1,b?0
D.a?0,b?1 2.求下列極限:
(1)lim(x322x?1?3x?1);
(2)xlim??2(3x?2x?5);
(3)lim1x(1?x?3);
(4)limx?3?0x?2x2?x;
x2?8x2(5)limx?3x?3;
(6)lim?16x?4x?4;
(7)limx2?1x?2x?12x2?x?1;
(8)lim;
x?2x?2。)(9)limx?0cosx1?x?1;
(10)lim;
x??xxx3?3x?1x4?3x?1(11)lim;
(12)lim;
x??3x3?xx??5x4?x3x3?3x?19x3?3x?1(13)lim;
(14)lim; 42x??x??x?xx?1x3.(15)limx?03xsin?2?x,x?0?23.設f(x)??2x?1,0?x?1,求limf(x),limf(x),limf(x),limf(x)。
1x?0x?3x??1x??3?(x?1)3,x?12?4.證明:x?sinx~x(x?0?)。
5.求下列函數的連續區間:
?2x?1,x?1;(1)y?ln(3?x)?9?x;
(2)y??2
x?1,x?1.?26.證明limx?2x?2不存在.x?21?xsin,???x?0;?x7.設f(x)??求f(x)在x?0時的左極限,并說明它在x?0時10?x???.?sin,x?右極限是否存在?
8.證明lim(n??1n?12?1n?22???1n?n2)存在并求極限值。
x2?1?ax?b)?0,求a、b的值。9.若lim(x??x?1
答案
1.(1)B;(2)BD;
(3)C;
(4)ACD ;(5)B.2.(1)-1;(2)3;(3)
21;(4)?;(5)?;(6)8;
36(7)21111;
(8);(9);(10)0;(11);(12); 323522(13)0;(14)?;(15)
1.9x?123.limf(x)?3, limf(x)不存在, limf(x)?x??1x?03, limf(x)?11.2x?35.(1)[?3,3);
(2)(??,1)?(1,??).7.f(x)在x?0時的左極限為0,在x?0時右極限不存在。8.極限值為1.9.a?1,b??1.
第五篇:高等數學函數極限連續練習題及解析
數學任務——啟動——習題
1一、選擇題:
(1)函數y??x?arccosx?1的定義域是()
2(A)x?1;(B)?3?x?1(C)??3,1?(D)xx?1?x?3?x?
1(2)函數y?xcosx?sinx是()
(A)偶函數(B)奇函數(C)非奇非偶函數(D)奇偶函數
(3)函數y?1?cos?????
2x的最小正周期是()
(A)2?(B)
(4)與y??(C)4(D)1 2x2等價的函數是()
(A)x;(B)?x?(C)x?(D)23x
?x?1?1?x?0(5)f?x???,則limf?x??()x0?x?1x?0?
(A)-1(B)1(C)0(D)不存在二、填空題:
(1)若f????1?
?t?5?2t2,則f?t??_________,ft2?1?__________.t??
??
1(2)??t????sinx??????3,則??????______。???______,??6??6?x?
30,1?,則fx2的定義域為______,f?sinx?的定義域為x??(3)若f?x?的定義域為??
______,f?x?a??a?0?的定義域為___,f?x?a??f?x?a??a?0?的定義域為______。
1?4x
2(4)lim。?__________
12x?1x??2
(5)無窮小量皆以______為極限。
三、計算題
(1)證明函數y?11sin在區間?0,1?上無界,但當x??0時,這個函數不是無窮大。xx
(2)求下列極限(1)lim2x3?3x2?5
x??7x3?4x2?1
(3)lim?tanx?tan2x
x??
(5)limex?1
x
x?0
(7)lim?xsinx?1
x?0x2arctanx
(2)lim1?cos2x x?0xsinx(4)lim?1?2n?3n1n n??(6)limtanx?sinxx?0sin32x ?1(8)limx??ex?1??x?????
(3)設f?x???
?1?xx?0,求limf?x?。2x?0?x?1x?0
(4)證明數列2,2?2,2?2?2,??的極限存在,并求出該極限。
f(x)?2x3f(x)?2,lim?3, 求f(x)(5)設f(x)是多項式, 且lim2x??x?0xx
(6)證明方程x?asinx?b,其中a?0,b?0,至少有一個正根,并且它不超過a?b。
x2?ax?b?2,求:a,b.(7).lim2x?2x?x?2