第一篇:平行線的性質及證明 2
龍華中英文實驗學校2013年七(下)初中數學學案(24)班級學生姓名:日期:月日星期()
課題:平行線的性質1課型:新授課
【學習目標】掌握平行線的性質,并能解決一些問題
【學習任務】
環節一:課前完成:(8分鐘講評核對答案,按小組完成情況 加2-5分)
1、已知:如圖
(1)∠3=∠B,則EF∥AB,依據是
(2)∠2+∠A=180°,則DC∥AB,依據
(3)∠1=∠4,則GC∥EF,依據是
(4)GC ∥ EF,AB ∥ EF,則GC∥AB,依據
環節二:實踐探究(15分鐘以內完成,按坐姿,參與度回答問題加2分)根據同位角相等可以判定兩直線平行,反過來如果兩直線平行同位角之間有什么關系呢?內錯角,同旁內角之間又有什么關系呢?猜想一下?然后完成下面的探究:
(一)探究
1已知:如圖直線l1∥l2,直線l3、l4與它們相交,請度量∠1和∠2的大小,你能發現
再度量一下∠3和∠4的大小,你還能發現
如果兩直線不平行,上述結論還成立嗎?
1、結論:平行線的性質1:
(二)、探究
21.如圖,已知:a// b那么?3與?2有什么關系
∵a∥b()
∴ ∠1= ∠2(),又 ∵∠3 = ___(對頂角相等),∴∠ 2 = ∠3.()
結論:平行的性質2:
2.如圖:已知a//b,那么?2與? 3有什么關系呢?(請你按照上一題完成平行性質3 的推理過程)
結論:平行的性質3:環節三:【課堂檢測】(按合作學習效果和準確率 加3-5分20分鐘)
1、如圖,已知平行線AB、CD被直線AE所截
(1)從 ∠1=110 ゜ 可以知道 ∠2 是多少度?為什么?
(2)從 ∠1=110 ゜ 可以知道 ∠3是多少度?為什么?
(3)從 ∠1=110 ゜ 可以知道 ∠4 是多少度?為什么?
2、如圖,一條公路兩次拐彎前后兩條路互相平行。第一次拐的角∠B是142゜,第二次拐的角∠C是多少度?為什么?
3、如圖: ∵AB ∥CD(已知)
∴ ∠1= ∠3()又∵∠3= ∠2()∴∠1= ∠2()
又∵∠4+ ∠2 =180 ゜()∴ ∠1+ ∠4 =180 ゜(環節四:課堂小結(2分鐘,小組回答、坐姿加2分)整理歸納:平行線的性質:符合語言 :
⑴∵a∥b(已知)
∴ ∠1=∠2()⑵∵a∥b(已知)
∴ ∠1=∠3()⑶∵a∥b(已知)
∴ ∠1+∠4=180°()
龍華中英文實驗學校2013年七(下)初中數學學案(25)
班級學生姓名:日期:月日星期()
課題:平行線的判定與性質綜合1課型:新授課
【學習目標】1.分清平行線的性質和判定.已知平行用性質,要證平行用判定.2.能夠綜合運用平行線性質和判定解題.【學習任務】
目標一:鞏固復習:(8分鐘講評核對答案,按完成情況加3-5分)
一、復習提問
1、平行線的性質有哪些?
2、平行線的判定有哪些?
3、平行線的性質與判定的區別與聯系
(1)區別:性質是:根據兩條直線平行,去證角的相等或互補.
判定是:根據兩角相等或互補,去證兩條直線平行.
(2)聯系:它們都是以兩條直線被第三條直線所截為前提;
它們的條件和結論是互逆的。
(3)總結:已知平行用性質,要證平行用判定
二、.已知,如右圖,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。
(1)∵∠1=∠ABC(已知)
∴AD∥()(2)∵∠3=∠5(已知)
∴AB∥()(3)∵∠2=∠4(已知)
∴∥()(4)∵∠1=∠ADC(已知)
∴∥()(5)∵∠ABC+∠BCD=180°(已知)
∴∥()
目標二:精典例題解析(10分鐘,按坐姿,參與度,認真度 加2-3分)例:如圖,已知:AD∥BC, ∠AEF=∠B,求證:AD∥EF。
1、分析:
(執果索因)從圖直觀分析,欲證AD∥EF,只需
∠A+∠AEF=180°,(由因求果)因為AD∥BC,所以∠A+∠B=180°,又
∠B=∠AEF,所以∠
A+∠AEF=180°成立.于是得證
2、證明:∵ AD ∥BC(已知)
∴∠A+∠B=180°(∵ ∠AEF=∠B(已知)∴ ∠A+∠AEF=180°(等量代換)∴ AD∥EF()目標三:【課堂檢測】(按合作學習效果和準確率 加扣分25分鐘)
1、如圖: ∵AB ∥CD(已知)
∴ ∠1= ∠3()又∵∠3= ∠2()∴∠1= ∠2()
又∵∠4+ ∠2 =180 ゜()∴ ∠1+ ∠4 =180 ゜(2、如圖:已知 ?1= ? 2 求證:? BCD+ ? D=180? 證明:如圖
∵?1= ? 2(已知)∴AD∥
_____()∵AD ∥_____(已證)
∴ ? BCD+ ? D=180?()
3、如圖,BE∥CD,?C??E,試說明?A??ADE 推理過程:∵BE∥CD()
∴?C?()∵?C??E(已知)
∴?E?()∴BC∥()目標四:課堂小結(2分鐘)
平行線的判定是:已知角的關系,結論是兩直線平行。平行線的性質是:已知兩直線平行,結論是角的關系。
角的關系 ====平行線
性質 判定
E
1B
C
第二篇:證明、公理、平行線性質定理
證明的必要性、公理與定理、平行線的判定(公)定理、平行線的性質(公)定理
基礎知識1.證明:
2.公理:3.定理:
4.等量代換:公理:
5.平行線的判定定理:定理:公理
6.平行線的性質定理定理:?基礎習題 1.下列說法正確的是()
A.所有的定義都是命題B.所有的定理都是命題
C.所有的公理都是命題D.所有的命題都是定理 22.若P(P?5)是一個質數,而P?1除以24沒有余數,則這種情況()
A.絕不可能B.只是有時可能
C.總是可能D.只有當P=5時可能
3.下列關于兩直線平行的敘述不正確的是()
A.同位角相等,兩直線平行;B.內錯角相等,兩直線平行毛
C.同旁內角不互補,兩直線不平行;D.如果a∥b,b⊥c,那么a∥c 14.如左圖,下列說法錯誤的是()lllll3A、∵∠1=∠2,∴3∥4B、∵∠3=∠4,∴3∥4 lllll4C、∵∠1=∠3,∴3∥4D、∵∠2=∠3,∴1∥2 ll55.已知:如圖,下列條件中,不能判斷直線1∥2的()l1A、∠1=∠3B、∠2=∠
3C、∠2=∠4D、∠4+∠5=180 6.若兩條平行線被第三條直線所截,則下列說法錯誤的()l
2A、一對同位角的平分線互相平行B、一對內錯角的平分線互相平行
C、一對同旁內角的平分線互相平行D、一對同旁內角的平分線互相垂直
7.如圖,AB∥CD,∠α=()BAA、50°B、80°C、85°D、95° C8.已知∠A=50°,∠A的兩邊分別平行于∠B的兩邊,則∠B=()AB
A、50°B、130°C、100°D、50°或130° 9.如圖,AB∥CD,AD、BC相交于O,∠BAD=35°,∠BOD=76°,則∠C的度數是()A、31°B、35° C、41°D、76°
填空
10.如圖,(1)如果AB∥CD,必須具備條件∠______=∠________,D根據是____________________。(2)要使AD∥BC,必須具備條件∠______=∠________,根據是
4____________________。B
11.如圖,給出了過直線外一點作已知直線的平行線的方法,其依據是________。
D12.如圖,已知∠1=30°,∠B=60°,AB⊥AC。(1)計算:∠DAB+∠B=
(2)AB與CD平行嗎?()AD與BC平行嗎?()B
簡答題:
13.如圖,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求證:DF∥BE 證明:∵DF平分∠ADE(已知)A 1∴________=∠ADE()
2∵∠ADE=60°(已知)D∴_________________=30°()
∵∠1=30°(已知)
∴____________________()BC∴____________________()
14.已知:如圖,∠B=∠C.(1)若AD∥BC,求證:AD平分∠EAC;
(2)AD平分∠EAC,求證:AD∥BC.15、如圖,已知DE∥BC,CD是∠ACB的平分線,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度數.能力提升
16.(1)如圖(1),AB∥EF.求證:(1)∠BCF=∠B+∠F.(2)當點C在直線BF的右側時,如
圖(2),若AB∥EF,則∠BCF與∠B,∠F的關系如何?請說明理由.D
BC
第三篇:平行線性質
平行線性質
平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行并且不在一條直線上的直線。
有關平行線:
1.平行線的定義:在同一平面內,不相交的兩條直線叫做平行線。
如:AB平行于CD,寫作AB∥CD
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
3.平行公理的推論(平行的傳遞性):
平行同一直線的兩直線平行。
∵a∥c,c∥b
∴a∥b
平行線的判定:
1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2.兩條直線被第三條所截,如果內錯角相等,那么這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3.兩條直線被第三條所截,如果同旁內角互補,那么這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:1.兩條平行線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等。
2.兩條平行線被第三條直線所截,同旁內角互補.簡單說成:兩直線平行,同旁內角互補。
3.兩條平行線被第三條直線所截,內錯角相等.簡單說成:兩直線平行,內錯角相等。
兩個角的數量關系兩直線的位置關系:
垂直于同一直線的兩條直線互相平行。
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那么這兩個角相等或互補。
基本規律
1.平行線的性質和判定中的條件和結論恰好相反。
2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。
3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。
平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行并且不在一條直線上的直線。
有關平行線:
1.平行線的定義:在同一平面內,不相交的兩條直線叫做平行線。
如:AB平行于CD,寫作AB∥CD
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
3.平行公理的推論(平行的傳遞性):
平行同一直線的兩直線平行。
∵a∥c,c∥b
∴a∥b
平行線的判定:
1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2.兩條直線被第三條所截,如果內錯角相等,那么這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3.兩條直線被第三條所截,如果同旁內角互補,那么這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:1.兩條平行線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等。
2.兩條平行線被第三條直線所截,同旁內角互補.簡單說成:兩直線平行,同旁內角互補。
3.兩條平行線被第三條直線所截,內錯角相等.簡單說成:兩直線平行,內錯角相等。
兩個角的數量關系兩直線的位置關系:
垂直于同一直線的兩條直線互相平行。
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那么這兩個角相等或互補。
基本規律
1.平行線的性質和判定中的條件和結論恰好相反。
2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。
3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。
第四篇:平行線性質
?
《平行線的性質》教學設計
?
?
?
? 作者: 來源: 時間:2009-5-18 10:19:16 閱讀47次 【大 中 小】
一、教學目標
1、知識與技能目標:經歷觀察、操作、推理、交流等活動,進一步發展空間觀念、推理能力和有條理表達的能力。
2、能力目標:經歷探索平行線性質的過程,掌握平行線的性質,并能解決一些實際問題。
3、情感態度目標:在自己獨立思考的基礎上,積極參與小組活動對平行線的性質的討論,敢于發表自己的看法,并從中獲益。
4、品質素養目標:培養學生勤于思考、勇于探索、鉆研的品質。
為實現以上教學目標,突出重點,解決難點,充分發揮現代教育技術的作用,我制作了多媒體課件,運用多媒體輔助教學,變靜為動,融聲、形、色為一體為學生提供生動、形象、直觀的觀察材料,激發學生學習的積極性和主動性。
二、教學重點和難點
重點:平行線的三個性質以及綜合運用平行線性質、判定等知識解題。
難點:區分性質和判定以及怎樣綜合運用同位角、內錯角、同旁內角的關系解題。
三、教材分析
平行線是最簡單、最基本的幾何圖形,在生活中隨處可見,它不僅是研究其他圖形的基礎,而且在實際中也有著廣泛的應用。因此,探索和掌握好它的有關知識,對學生更好的認識世界、發展空間觀念和推理能力都是非常重要的。
教材設置了一個通過探索平行線性質的活動,在活動中,鼓勵學生充分交流,運用多種方法進行探索,盡可能地發現有關事實,并能應用平行線性質解決一些問題,運用自己的語言說明理由,使學生的推理能力和語言表達能力得到提高。為學生今后的學習打下了基礎。
因此,無論在知識技能上,還是在學生能力的培養及感情教育等方面,這節課都起著十分重要的作用。
四、學生情況分析
考慮本校處在城鄉結合部,大部分學生的基礎比較差,缺乏自學能力,動手能力比較差,所以,這個學期應該重視學生學習興趣和態度的培養、重視學生的自主探索和合作交流以及新意識的培養。利用七年級學生都有好勝、好強的特點,扭轉學數學難、數學枯燥的這種局面。形成一種勤動手、勤動腦,勤探索和肯合作交流的良好氣氛
五、課前準備
課前準備:多媒體課件、三角尺、直尺。
六、教學過程
問題與情境
師生互動
設計意圖
活動1 你身邊的問題
問題: 如圖,工人在修一條高速公路時在前方遇到一座高山,為了降低施工難度,工程師決定繞過這座山,如果第一個彎是左拐300,那么第二個彎應朝什么方向。才能不改變原來的方向。
學生觀察,小組討論,交流問題并發表見解, 教師進一步引導學生分析,引導學生將這個問題如何轉化成數學問題。
本次活動應關注的問題是:
1、不改變方向,在數學中理解應是什么,2、在這個問題中包含了什么問題
3、如何將它轉化為數學問題。
通過實例,讓學生從具體的實例中發現數學問題,進而尋求解決問題的方法,使學生懂得數學來源于現實,服務于現實生活,同時也調動了學生的積極性,提高了學生的興起, 活動2: 探究平行線的性質
問題:
1、上節課學習了用一把直尺和一塊三角板可以畫兩條平行線,想一想在這個過程中三角尺取到什么作用,你能不能用兩把直尺畫出兩條平行線,如果不能,為什么?
2、自己閱讀課本的21頁“探究”部分,并把空填好。
用電腦展示在畫平行線時三角尺在其中取到的作用。
學生通過學習測量比較得到這些角中上下兩個角的關系, 關注的問題是:
1、注意性質具有一般性。不能簡單從幾個特殊的例子,就斷定它就具有某種性質,而需要一個從特殊到一般的推導過程。
2、理清兩條直線平行,同位角相等,內錯角也相等,同旁內角互補之間的關系。
通過動手測量提高學生的動手操作能力,并培養學生從特殊需要到一般的推理能力,使其從感性上升到理性認識。
活動3: 運用與推理
問題: 你能根據性質1,說出性質2,性質3成立的理由嗎?如圖, 因為a∥b.所以∠1=∠2(_______)又∠3=∠_____,(對頂角相等)所以∠2=∠3, 類似地,對于性質3,你能說出道理嗎? 想一想:這節課開始的那個問題應該如何解決? 學生回答,再由同學補充。老師糾正。
教師引導學生觀察因為所以之間的關系。
能過學生做和說,培養學生的一定的表達能力和邏輯推理能力。
活動4 鞏固與提高
問題1:如圖直線a,b被直線c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4為多少度。為什么?
2、如果∠1=60?∠3=120?直線a、b有什么關系?為什么? 問題2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3為多少度? 解:因為∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因為 ∠2 =60?()所以 ∠4=∠______=______()又因為 ∠4與∠3________()所以 ∠3=180?_____=______?BR> 問題3:填一填
如圖,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因為∠1=∠ABC, 所以 AD∥_____()(2)因為 ∠3=∠5 所以 AB∥_____()(3)因為∠2=∠4 所以 ______∥______()(4)因為∠1=∠ADC 所以______∥______()(5)因為∠ABC ∠BCD=180 所以 _______∥______()問題4,學與用: 某市為建設社會主義新農村,村村通煤氣,市政工作人員已經在道路的兩側鋪設了兩條平行的燃氣管道,如果公路一側鋪設的角度為100?為了便于連接,那么另一側應以什么角度鋪設?為什么? 小結: 布置作業
課本25頁的第1、2、3題
由學生獨立完成,老師指導,引導學生注意這些之間的關系。
應關注的問題是:
1、平行線的性質和判定的不同。
2、幾何推理證明的要領。
3、正確分清推理中因為和所以所表達的意義
通過具體問題,使學生更進一步理解和認識平行線的性質和判定的區別和聯系。進一步認識角與角之間的關系,進一步鍛煉學生幾何證明題的邏輯推理能力
第五篇:平行線性質
孔子教育文化輔導學校
5.3平行線的性質
【知識點】
平行線具有性質:
性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。
判斷一件事情的語句叫做命題。
【典型例題】
1、如圖,已知a∥b,c、d都是a、b的截線,∠1=80°,∠5=70°,∠
2、∠
3、∠4各是多少度?為什么? c
a
b12345d
(2)已知:AB∥EF,∠F=78°時,∠
3、∠4各等于多少度?為什么?
A
E12BCD34F3、如圖,一條公路兩次拐彎后,和原來的方向相同,也就是拐彎前后的兩條路互相平行,第一次拐的角
∠B是142°,第二次拐的角∠C是多少度?為什么?
C4、如圖,AD是∠EAC的平分線,AD∥BC,∠B=30°,你能算出
∠EAD、∠DAC、∠C的度數嗎?
EB
AD
BC
5、如圖,AB∥A′B′,BC∥B′C′,BC交A′B′于點D,∠B與∠B′有什么關系?為什么?
A
A′
BD C
C′B′
【模擬試題】
一、選擇題
(1)兩直線被第三條直線所截,則()
A、同位角相等B、內錯角相等 C、同旁內角互補D、以上都不對
(2)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角()
(第1頁,共4頁)
A、相等B、互補C、相等或互補D、這兩個角無數量關系(3)如圖,下列判斷不正確的是()A、∵∠1=∠2∴ ∠ 3= ∠ 4B、∵∠2=∠5 ∴ ∠ 6= ∠ 7
C、∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2D、∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2
4.如圖a所示,AB∥CD,則與∠1相等的角(∠1除外)共有()
A.5個B.4個C.3個D.2個
AC
B
D
A
ACEDFB
D
(a)(b)(c)
5.如圖b所示,已知DE∥BC,CD是∠ACB的平分線,∠B=72°,∠ACB=40°,?那么∠BDC等于()A.78°B.90°C.88°D.92°
6.下列說法:①兩條直線平行,同旁內角互補;②同位角相等,兩直線平行;?③內錯角相等,兩直線平行;
④垂直于同一直線的兩直線平行,其中是平行線的性質的是()A.①B.②和③C.④D.①和④
7.若兩條平行線被第三條直線所截,則一組同位角的平分線互相()A.垂直B.平行C.重合D.相交
8.如圖c所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,則∠BOF為()A.35°B.30°C.25°D.20°9.如圖d所示,AB∥CD,則∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
D
EF
B
F
E
G
(d)(e)
10.如圖e所示,AB∥EF∥CD,EG∥BD,則圖中與∠1相等的角(∠1除外)共有()?A.6個B.5個C.4個D.3個
二、填空
1.如圖1,已知∠1 = 100°,AB∥CD,則∠2 =,∠3 =,∠4 =. 2.如圖2,直線AB、CD被EF所截,若∠1 =∠2,則∠AEF +∠CFE =.C F 1 BB ED DF
B C A B D
圖1 圖2(第2頁,共4頁)圖圖
33.如圖3所示
(1)若EF∥AC,則∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,則AE∥BF.(3)若∠A +∠= 180°,則AE∥BF. 4.如圖4,AB∥CD,∠2 = 2∠1,則∠2 =.
5.如圖5,AB∥CD,EG⊥AB于G,∠1 = 50°,則∠E =.
E C
l
1AF 2 B F G
l2D
F D C C A G
圖7 圖8 圖6圖
56.如圖6,直線l1∥l2,AB⊥l1于O,BC與l2交于E,∠1 = 43°,則∠2 =. 7.如圖7,AB∥CD,AC⊥BC,圖中與∠CAB互余的角有. 8.如圖8,AB∥EF∥CD,EG∥BD,則圖中與∠1相等的角(不包括∠1)共有個.
三、解答下列各題
9.如圖9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求證:∠F =∠G.A CF
D
圖9 10.如圖10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度數.
E
B C
圖10
11.如圖11,已知AB∥CD,試再添上一個條件,使∠1 =∠2成立.(要求給出兩個以上答案,并選擇其中一個加以證明)
BE
C D
12.如圖12,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1 +∠2 = 90°.圖 1
1求證:(1)AB∥CD;(2)∠2 +∠3 = 90°.
B A
D C F
四、探索發現:
(第3頁,共4頁)
圖1
2如圖所示,已知AB∥CD,分別探索下列四個圖形中∠P與∠A,∠C的關系,?請你從所得的四個關系中任選一個加以說明.AP
B
A
PC
D
B
AC
PBD
AC
P
BD
(1)(2)(3)(4)
五、中考題與競賽題:
1.(2002.河南)如圖a所示,已知AB∥CD,直線EF分別交AB,CD于E,F,EG?平分∠BEF,若∠1=72°,則∠2=_______.AC
E
B
A
D
E
BD
C
(a)(b)
2.(2002.哈爾濱)如圖b所示,已知直線AB,CD被直線EF所截,若∠1=∠2,?則∠AEF+∠CFE=________.(第4頁,共4頁)