久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法

時間:2019-05-12 03:30:52下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法》。

第一篇:2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法

畫圖方法:

畫一個幾何體的三視圖時,要從三個方面觀察幾何體,具體畫法如下:

(1)確定主視圖的位置,畫出主視圖;

(2)在主視圖的正下方畫出俯視圖,注意與主視圖“長對正”;

(3)在主視圖的正右方畫出左視圖,注意與主視圖“高平齊”,與俯視圖“寬相等”。

幾何體上被其他部分遮擋而看不見的部分的輪廓線應畫成虛線。

要點詮釋:

畫一個幾何體的三視圖,關鍵是把從正面、上方、左邊三個方向觀察時所得的視圖畫出來,所以,首先要注意觀察時視線與觀察面垂直,即觀察到的平面圖是該圖的正投影;其二,要注意正確地用虛線表示看不到的輪廓線;其三,要充分發揮想象,多實踐,多與同學交流探討,多總結;最后,按三視圖的位置和大小要求從整體上畫出幾何體的三視圖。

第二篇:2013年中考初中數學知識點:投影視圖【知識點拓展】 由三視圖聯想幾何體的形狀

由三視圖想象幾何體的形狀,首先應分別根據主視圖、俯視圖和左視圖想象主體圖的前面、上面和左側面,然后綜合起來考慮整體圖形。

要點詮釋:

由物體的三視圖想象幾何體的形狀有一定的難度,可以從如下途徑進行分析:(1)根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀以及幾何體的長、寬、高;(2)根據實線和虛線想象幾何體看得見和看不見的輪廓線;(3)熟記一些簡單的幾何體的三視圖會對復雜幾何體的想象有幫助;

(4)利用由三視圖畫幾何體與由幾何體畫三視圖為互逆過程,反復練習,不斷總結方法。

規律方法指導

1.畫幾何體的三視圖

畫三視圖時應注意三視圖的位置要準確,看得見部分的輪廓線通常畫成實線,看不見部分的輪廓線通常畫成虛線,主、俯視圖長對正,主、左視圖高平齊,俯、左視圖寬相等。

2.由三視圖想象物體的形狀

根據三視圖想象物體的形狀,一般由俯視圖確定物體在平面上的形狀,由左視圖、主視圖想象它空間的形狀,從而確定物體的形狀。

第三篇:2013年中考初中物理知識點:浮力【性質及定理】 浮力的利用

(1)、輪船:

工作原理:要使密度大于水的材料制成能夠漂浮在水面上的物體必須把它做成空心的,使它能夠排開更多的水。

排水量:輪船滿載時排開水的質量。單位t由排水量m可計算出:排開液體的體積V(排)=m/ρ;排開液體的重力G(排)=mg;輪船受到的浮力F(浮)=mg輪船和貨物共重G=mg。

(2)、潛水艇:

工作原理:潛水艇的下潛和上浮是靠改變自身重力來實現的。

(3)、氣球和飛艇:

工作原理:氣球是利用空氣的浮力升空的。氣球里充的是密度小于空氣的氣體如:氫氣、氦氣或熱空氣。為了能定向航行而不隨風飄蕩,人們把氣球發展成為飛艇。

(4)、密度計:

原理:利用物體的漂浮條件來進行工作。

構造:下面的鋁粒能使密度計直立在液體中。

刻度:刻度線從上到下,對應的液體密度越來越大

第四篇:初中數學相似三角形定理知識點總結

相似三角形是幾何中重要的證明模型之一,是全等三角形的推廣。全等三角形可以被理解為相似比為1的相似三角形。相似三角形其實是一套定理的集合,它主要描述了在相似三角形是幾何中兩個三角形中,邊、角的關系。下面是小編為大家帶來的初中數學相似三角形定理知識點總結,歡迎閱讀。

相似三角形定理

1.相似三角形定義:

對應角相等,對應邊成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符號“∽”表示,讀作“相似于”。

3.相似三角形的相似比:

相似三角形的對應邊的比叫做相似比。

4.相似三角形的預備定理:

平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

從表中可以看出只要將全等三角形判定定理中的“對應邊相等”的條件改為“對應邊

成比例”就可得到相似三角形的判定定理,這就是我們數學中的用類比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。

6.直角三角形相似:

(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。

7.相似三角形的性質定理:

(1)相似三角形的對應角相等。

(2)相似三角形的對應邊成比例。

(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等于相似比。

(4)相似三角形的周長比等于相似比。

(5)相似三角形的面積比等于相似比的平方。

8.相似三角形的傳遞性

如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

第五篇:初中數學中考知識點歸納總結

初中數學中考知識點歸納總結

1、一元一次方程根的情況 △=b2-4ac 當△>0時,一元二次方程有2個不相等的實數根; 當△=0時,一元二次方程有2個相同的實數根; 當△<0時,一元二次方程沒有實數根

2、平行四邊形的性質:

① 兩組對邊分別平行的四邊形叫做平行四邊形。

②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。③平行四邊形的對邊/對角相等。④平行四邊形的對角線互相平分。

菱形:①一組鄰邊相等的平行四邊形是菱形

②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。矩形與正方形:

① 有一個內角是直角的平行四邊形叫做矩形。② 矩形的對角線相等,四個角都是直角。③ 對角線相等的平行四邊形是矩形。

④ 正方形具有平行四邊形,矩形,菱形的一切性質。⑤一組鄰邊相等的矩形是正方形。多邊形:

①N邊形的內角和等于(N-2)180度

②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等于360度)

平均數:對于N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X 加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

二、基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的余角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和

42、定理1 關于某條直線對稱的兩個圖形是全等形

43、定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

44、定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形

48、定理 四邊形的內角和等于360°

49、四邊形的外角和等于360°

50、多邊形內角和定理 n邊形的內角的和等于(n-2)×180°

51、推論 任意多邊的外角和等于360°

52、平行四邊形性質定理1平行四邊形的對角相等

53、平行四邊形性質定理2平行四邊形的對邊相等

54、推論 夾在兩條平行線間的平行線段相等

55、平行四邊形性質定理3平行四邊形的對角線互相平分

56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形

58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60、矩形性質定理1 矩形的四個角都是直角 61、矩形性質定理2 矩形的對角線相等

62、矩形判定定理1 有三個角是直角的四邊形是矩形 63、矩形判定定理2 對角線相等的平行四邊形是矩形 64、菱形性質定理1 菱形的四條邊都相等

65、菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66、菱形面積=對角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形

68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71、定理1 關于中心對稱的兩個圖形是全等的

72、定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

73、逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱 74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形 77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分 108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理 不在同一直線上的三點確定一個圓。

110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對稱中心的中心對稱圖形

114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

116、定理 一條弧所對的圓周角等于它所對的圓心角的一半

117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑 119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120、定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角 121、①直線L和⊙O相交 d﹤r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d﹥r 122、切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質定理 圓的切線垂直于經過切點的半徑 124、推論1 經過圓心且垂直于切線的直線必經過切點 125、推論2 經過切點且垂直于切線的直線必經過圓心

126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角 127、圓的外切四邊形的兩組對邊的和相等

128、弦切角定理 弦切角等于它所夾的弧對的圓周角

129、推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項 133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等 134、如果兩個圓相切,那么切點一定在連心線上 135、①兩圓外離 d﹥R+r ②兩圓外切 d=R+r ③兩圓相交 R-r﹤d﹤R+r(R﹥r)④兩圓內切 d=R-r(R﹥r)

⑤兩圓內含 d﹤R-r(R﹥r)136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 139、正n邊形的每個內角都等于(n-2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142、正三角形面積√3a/4 a表示邊長

143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144、弧長計算公式:L=n兀R/180 145、扇形面積公式:S扇形=n兀R^2/360=LR/2 146、內公切線長= d-(R-r)外公切線長= d-(R+r)

三、常用數學公式

公式分類

公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB

注:角B是邊a和邊c的夾角

初中數學知識點歸納口訣

1.1 有理數的加法運算

同號兩數來相加,絕對值加不變號。異號相加大減小,大數決定和符號。互為相反數求和,結果是零須記好。【注】“大”減“小”是指絕對值的大小。1.2 有理數的減法運算 減正等于加負,減負等于加正 1.3 有理數的乘法運算符號法則 同號得正異號負,一項為零積是零。2 合并同類項

說起合并同類項,法則千萬不能忘。只求系數代數和,字母指數留原樣。3 去、添括號法則

去括號、添括號,關鍵要看連接號。擴號前面是正號,去添括號不變號。括號前面是負號,去添括號都變號。4 解方程

已知未知鬧分離,分離要靠移完成。移加變減減變加,移乘變除除變乘。5.1平方差公式

兩數和乘兩數差,等于兩數平方差。積化和差變兩項,完全平方不是它。5.2.1 完全平方公式

二數和或差平方,展開式它共三項。首平方與末平方,首末二倍中間放。和的平方加聯結,先減后加差平方。5.2.2 完全平方公式

首平方又末平方,二倍首末在中央。和的平方加再加,先減后加差平方。6.1 解一元一次方程

先去分母再括號,移項變號要記牢。同類各項去合并,系數化“1”還沒好。求得未知須檢驗,回代值等才算了。

6.2 解一元一次方程

先去分母再括號,移項合并同類項。系數化1還沒好,準確無誤不白忙。7 因式分解與乘法

和差化積是乘法,乘法本身是運算。積化和差是分解,因式分解非運算。8.1因式分解

兩式平方符號異,因式分解你別怕。兩底和乘兩底差,分解結果就是它。兩式平方符號同,底積2倍坐中央。因式分解能與否,符號上面有文章。同和異差先平方,還要加上正負號。同正則正負就負,異則需添冪符號。8.2 因式分解

一提二套三分組,十字相乘也上數。四種方法都不行,拆項添項去重組。重組無望試求根,換元或者算余數。多種方法靈活選,連乘結果是基礎。同式相乘若出現,乘方表示要記住 【注】 一提(提公因式)二套(套公式)8.3 因式分解

一提二套三分組,叉乘求根也上數。五種方法都不行,拆項添項去重組。對癥下藥穩又準,連乘結果是基礎。8.4.1 用平方差公式因式分解 異號兩個平方項,因式分解有辦法。兩底和乘兩底差,分解結果就是它。8.4.2 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。同正兩底和平方,全負和方相反數。分成兩底差平方,方正倍積要為負。兩邊為負中間正,底差平方相反數。一平方又一平方,底積2倍在中路。

三正兩底和平方,全負和方相反數。分成兩底差平方,兩端為正倍積負。兩邊若負中間正,底差平方相反數。8.5 二次三項式的因式分解

先想完全平方式,十字相乘是其次。兩種方法行不通,求根分解去嘗試。9.1 比和比例

兩數相除也叫比,兩比相等叫比例。外項積等內項積,等積可化八比例。分別交換內外項,統統都要叫更比。同時交換內外項,便要稱其為反比。前后項和比后項,比值不變叫合比。前后項差比后項,組成比例是分比。兩項和比兩項差,比值相等合分比。前項和比后項和,比值不變叫等比。9.2 解比例

外項積等內項積,列出方程并解之。9.3 求比值

由已知去求比值,多種途徑可利用。活用比例七性質,變量替換也走紅。消元也是好辦法,殊途同歸會變通。9.4.1 正比例與反比例

商定變量成正比,積定變量成反比。9.4.2 正比例與反比例

變化過程商一定,兩個變量成正比。變化過程積一定,兩個變量成反比。9.5.1 判斷四數成比例

四數是否成比例,遞增遞減先排序。兩端積等中間積,四數一定成比例。9.5.2 判斷四式成比例

四式是否成比例,生或降冪先排序。兩端積等中間積,四式便可成比例。9.6 比例中項

成比例的四項中,外項相同會遇到。有時內項會相同,比例中項少不了。比例中項很重要,多種場合會碰到。

成比例的四項中,外項相同有不少。有時內項會相同,比例中項出現了。同數平方等異積,比例中項無處逃。10 根式與無理式

表示方根代數式,都可稱其為根式。根式異于無理式,被開方式無限制。被開方式有字母,才能稱為無理式。無理式都是根式,區分它們有標志。被開方式有字母,又可稱為無理式。11 求定義域

求定義域有講究,四項原則須留意。負數不能開平方,分母為零無意義。指是分數底正數,數零沒有零次冪。限制條件不唯一,滿足多個不等式。求定義域要過關,四項原則須注意。負數不能開平方,分母為零無意義。分數指數底正數,數零沒有零次冪。限制條件不唯一,不等式組求解集。12.1 解一元一次不等式

先去分母再括號,移項合并同類項。系數化“1”有講究,同乘除負要變向。先去分母再括號,移項別忘要變號。同類各項去合并,系數化“1”注意了。同乘除正無防礙,同乘除負也變號。12.2 解一元一次不等式組

大于頭來小于尾,大小不一中間找。大大小小沒有解,四種情況全來了。同向取兩邊,異向取中間。中間無元素,無解便出現。幼兒園小鬼當家,(同小相對取較小)敬老院以老為榮,(同大就要取較大)軍營里沒老沒少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)12.3 解一元二次不等式

首先化成一般式,構造函數

a正開口它向上,大于零則取兩邊。代數式若小于零,解集交點數之間。方程若無實數根,口上大零解為全。小于零將沒有解,開口向下正相反。13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。調整系數隨其后,使其成為最簡比。確定參數abc,計算方程判別式。判別式值與零比,有無實根便得知。有實根可套公式,沒有實根要告之。13.2 用常規配方法解一元二次方程 左未右已先分離,二系化“1”是其次。一系折半再平方,兩邊同加沒問題。左邊分解右合并,直接開方去解題。該種解法叫配方,解方程時多練習。13.3 用間接配方法解一元二次方程 已知未知先分離,因式分解是其次。調整系數等互反,和差積套恒等式。完全平方等常數,間接配方顯優勢 【注】 恒等式 13.4 解一元二次方程

方程沒有一次項,直接開方最理想。如果缺少常數項,因式分解沒商量。b、c相等都為零,等根是零不要忘。b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方。14.1 正比例函數的鑒別

判斷正比例函數,檢驗當分兩步走。一量表示另一量,有沒有。若有再去看取值,全體實數都需要。區分正比例函數,衡量可分兩步走。一量表示另一量,是與否。若有還要看取值,全體實數都要有。14.2 正比例函數的圖象與性質 正比函數圖直線,經過 和原點。K正一三負二四,變化趨勢記心間。

K正左低右邊高,同大同小向爬山。K負左高右邊低,一大另小下山巒。15.1 一次函數

一次函數圖直線,經過 點。K正左低右邊高,越走越高向爬山。K負左高右邊低,越來越低很明顯。K稱斜率b截距,截距為零變正函。15.2 反比例函數

反比函數雙曲線,經過 點。K正一三負二四,兩軸是它漸近線。K正左高右邊低,一三象限滑下山。K負左低右邊高,二四象限如爬山。15.3 二次函數

二次方程零換y,二次函數便出現。全體實數定義域,圖像叫做拋物線。拋物線有對稱軸,兩邊單調正相反。A定開口及大小,線軸交點叫頂點。頂點非高即最低。上低下高很顯眼。如果要畫拋物線,平移也可去描點,提取配方定頂點,兩條途徑再挑選。列表描點后連線,平移規律記心間。左加右減括號內,號外上加下要減。二次方程零換y,就得到二次函數。圖像叫做拋物線,定義域全體實數。A定開口及大小,開口向上是正數。絕對值大開口小,開口向下A負數。拋物線有對稱軸,增減特性可看圖。線軸交點叫頂點,頂點縱標最值出。如果要畫拋物線,描點平移兩條路。提取配方定頂點,平移描點皆成圖。列表描點后連線,三點大致定全圖。若要平移也不難,先畫基礎拋物線,頂點移到新位置,開口大小隨基礎。【注】基礎拋物線 16 直線、射線與線段

直線射線與線段,形狀相似有關聯。

直線長短不確定,可向兩方無限延。射線僅有一端點,反向延長成直線。線段定長兩端點,雙向延伸變直線。兩點定線是共性,組成圖形最常見。17 角

一點出發兩射線,組成圖形叫做角。共線反向是平角,平角之半叫直角。平角兩倍成周角,小于直角叫銳角。直平之間是鈍角,平周之間叫優角。互余兩角和直角,和是平角互補角。一點出發兩射線,組成圖形叫做角。平角反向且共線,平角之半叫直角。平角兩倍成周角,小于直角叫銳角。鈍角界于直平間,平周之間叫優角。和為直角叫互余,互為補角和平角。18 證等積或比例線段

等積或比例線段,多種途徑可以證。證等積要改等比,對照圖形看特征。共點共線線相交,平行截比把題證。三點定型十分像,想法來把相似證。圖形明顯不相似,等線段比替換證。換后結論能成立,原來命題即得證。實在不行用面積,射影角分線也成。只要學習肯登攀,手腦并用無不勝。19 解無理方程

一無一有各一邊,兩無也要放兩邊。乘方根號無蹤跡,方程可解無負擔。兩無一有相對難,兩次乘方也好辦。特殊情況去換元,得解驗根是必然。20 解分式方程

先約后乘公分母,整式方程轉化出。特殊情況可換元,去掉分母是出路。求得解后要驗根,原留增舍別含糊。21 列方程解應用題

列方程解應用題,審設列解雙檢答。審題弄清已未知,設元直間兩辦法。列表畫圖造方程,解方程時守章法。檢驗準且合題意,問求同一才作答。22 添加輔助線

學習幾何體會深,成敗也許一線牽。分散條件要集中,常要添加輔助線。畏懼心理不要有,其次要把觀念變。熟能生巧有規律,真知灼見靠實踐。圖中已知有中線,倍長中線把線連。旋轉構造全等形,等線段角可代換。多條中線連中點,便可得到中位線。倘若知角平分線,既可兩邊作垂線。也可沿線去翻折,全等圖形立呈現。角分線若加垂線,等腰三角形可見。角分線加平行線,等線段角位置變。已知線段中垂線,連接兩端等線段。輔助線必畫虛線,便與原圖聯系看。23 兩點間距離公式

同軸兩點求距離,大減小數就為之。與軸等距兩個點,間距求法亦如此。平面任意兩個點,橫縱標差先求值。差方相加開平方,距離公式要牢記。24.1 矩形的判定

任意一個四邊形,三個直角成矩形; 對角線等互平分,四邊形它是矩形。已知平行四邊形,一個直角叫矩形; 兩對角線若相等,理所當然為矩形。

24.2 菱形的判定

任意一個四邊形,四邊相等成菱形; 四邊形的對角線,垂直互分是菱形。已知平行四邊形,鄰邊相等叫菱形; 兩對角線若垂直,順理成章為菱形。

初中數學知識點歸納口訣(方案二)

有理數的加法運算: 同號相加一邊倒;

異號相加“大”減“小”,符號跟著大的跑; 絕對值相等“零”正好。

【注】“大”減“小”是指絕對值的大小。合并同類項:

合并同類項,法則不能忘。只求系數和,字母、指數不變樣。去、添括號法則:

去括號、添括號,關鍵看符號。括號前面是正號,去、添括號不變號; 括號前面是負號,去、添括號都變號。一元一次方程: 已知未知要分離,分離方法就是移。加減移項要變號,乘除移了要顛倒。恒等變換:

兩個數字來相減,互換位置最常見。正負只看其指數,奇數變號偶不變。【注】(a-b)2n+1 =-(ba)2n平方差公式:平方差公式有兩項,符號相反切記牢。首加尾乘首減尾,莫與完全公式相混淆。完全平方:

完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央; 首±尾括號帶平方,尾項符號隨中央。因式分解:

一提(公因式)二套(公式)三分組,細看幾項不離譜。兩項只用平方差;

三項十字相乘法,陣法熟練不馬虎;

四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組;

五項、六項更多項,二三、三三試分組; 以上若都行不通,拆項、添項看清楚。“代入”口決:

挖去字母換上數(式),數字、字母都保留; 換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小—中—大)。

單項式運算:

加、減,乘、除,乘、開方,三級運算分得清。系數進行同級(運)算,指數運算降級(進)行。一元一次不等式解題的一般步驟: 去分母、去括號,移項時候要變號; 同類項、合并好,再把系數來除掉; 兩邊除(以)負數時,不等號改向別忘了。一元一次不等式組的解集: 大大取較大,小小取較小; 小大,大小取中間; 大小,小大無處找。

一元二次不等式、一元一次絕對值不等式的解集: 大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。分式混合運算法則:

分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘); 乘法進行化簡,因式分解在先,分子分母相約,然后再行運算; 加減分母需同,分母化積關鍵; 找出最簡公分母,通分不是很難; 變號必須兩處,結果要求最簡。分式方程的解法步驟:

同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。最簡根式的條件: 最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

特殊點坐標特征: 坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后; X軸上y為0,x為0在Y軸。象限角的平分線: 象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同; 直線平行于Y軸,點的橫坐標仍照舊。對稱點坐標: 對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反, Y軸對稱,x前面添負號; 原點對稱最好記,橫縱坐標變符號。自變量的取值范圍:

分式分母不為零,偶次根下負不行; 零次冪底數不為零,整式、奇次根全能行。函數圖像的移動規律: 若把一次函數解析式寫成y=k(x+0)+b,二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣:

“左右平移在括號,上下平移在末稍, 左正右負須牢記,上正下負錯不了”。一次函數圖像與性質口訣: 一次函數是直線,圖像經過仨象限; 正比例函數更簡單,經過原點一直線; 兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見, k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反; k的絕對值越大,線離橫軸就越遠。

二次函數圖像與性質口訣: 二次函數拋物線,圖象對稱是關鍵; 開口、頂點和交點,它們確定圖象限;

開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換。反比例函數圖像與性質口訣: 反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限;k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減;圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。巧記三角函數定義:

初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:

一位不高明的廚子教徒弟殺魚,說了這么一句話: 正對魚磷(余鄰)直刀切。

正:正弦或正切,對:對邊即正是對;

余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。三角函數的增減性: 正增余減

特殊三角函數值記憶: 分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”。平行四邊形的判定:

要證平行四邊形,兩個條件才能行。一證對邊都相等;或證對邊都平行; 一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”; 對角相等也有用,“兩組對角”才能成。梯形問題的輔助線:

移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現; 延長兩腰交一點,“△”中有平行線; 作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。添加輔助線歌:

輔助線,怎么添?找出規律是關鍵。題中若有角(平)分線,可向兩邊作垂線;

線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。圓的證明歌:

圓的證明不算難,常把半徑直徑連; 有弦可作弦心距,它定垂直平分弦;

直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓; 若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線; 四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。圓中比例線段:

遇等積,改等比,橫找豎找定相似; 不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。正多邊形訣竅歌: 份相等分割圓,n值必須大于三,依次連接各分點,內接正n邊形在眼前。經過分點做切線,切線相交n個點,n個交點做頂點,外切正n邊形便出現。

正n邊形很美觀,它有內接,外切圓,內接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點;如果n值為偶數,中心對稱很方便;正n邊形做計算,邊心距、半徑是關鍵,內切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單。函數學習口決:

正比例函數是直線,圖象一定過原點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵;

反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換;

二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。

下載2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法word格式文檔
下載2013年中考初中數學知識點:投影視圖【性質及定理】 幾何體的三視圖畫法.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

主站蜘蛛池模板: 熟女人妇 成熟妇女系列视频| 无码人妻丰满熟妇区96| 欧美人牲交a欧美精区日韩| 国产成人免费无庶挡视频| 一二三四免费观看在线视频中文版| 亚洲日韩欧洲无码av夜夜摸| 黑色丝袜国产精品| 国产一区二区三区四区五区加勒比| 国产精品美女久久久网站动漫| 亚洲男人的天堂在线播放| 精品亚洲成a人在线观看| 亚洲乱码日产精品bd在线观看| 97国语精品自产拍在线观看| 色偷偷偷久久伊人大杳蕉| 五月综合激情婷婷六月| 国产精品久久久久久久久电影网| 国产看真人毛片爱做a片| 亚洲日韩国产一区二区三区| 亚洲成av人片在线观l看福利1| 美女脱了内裤张开腿让男人桶网站| 人妻中文字系列无码专区| 国产天堂| 亚洲精品午夜国产va久久成人| 一本久道久久综合狠狠老| 欧美与黑人午夜性猛交久久久| 里番本子纯肉侵犯肉全彩无码| 丁香五月激情综合国产| 欧美国产日产一区二区| 国产精品亚洲精品日韩己满十八小| 无码人妻熟妇av又粗又大| 久久久g0g0午夜无码精品| 欧美z0zo人禽交免费观看99| 男女啪啪免费观看无遮挡| 亚洲一区波多野结衣在线| 国产精品久久久久免费观看| 国产精品午夜福利在线观看地址| 国产精品一区二区av在线观看| 性色av一区二区三区人妻| 又湿又紧又大又爽a视频| аⅴ资源中文在线天堂| 五十路丰满中年熟女中出|