第一篇:風電工作小結
年終工作總結
回顧在xx公司半年的工作,即是忙碌又是充實,在學校課本上所學的都是理論知識,現在工作中一點一滴積累起來的實踐經驗,才是我一生享受不盡的寶藏。在這半年里,有困難也有收獲,認真工作的結果是完成了個人職責,也加強了自身能力。
在工作和生活中,我一直相信一份耕耘,一份收獲,所以我一直在努力,不斷努力學習,不斷努力工作。熱愛自己本職工作能夠正確認真的對待每一項任務,工作投入,按時出勤,有效利用工作時間,堅守崗位。
xxxx公司現在雖然還處于一個發展建設階段,但是它的潛力是巨大的。尤其是公司成員以中青年力量為主,使得它更加有活力,而且能更好的與新生事物相結合,更快的融入社會的發展形勢。我個人認為未來的社會形式還是掌握在年輕人手中,所以我建議公司應該更加注重年輕力量的培養,為公司的發展做好長遠打算。
公司的內部分工很明確,行政、財務以及工程部各有任務,各個部門相互配合,公司員工之間的和睦相處,是公司不斷進步的關鍵;所以我認為公司領導之間應該努力創造這種相互合作的機會,培養員工的團結合作精神,從而使公司更好更快的發展。
我現在的工作和大學時的專業不是很對口,所以一開始感覺不太適應,慢慢的我開始熟悉并且適應了它,在這其中應該感謝一下我的部門領導,在他的幫助下我學到了很多,無論是專業知識還是為人處事都使我感到受用無窮。現在我們xx工地已經進入冬季停工期,xxxxx整體結構已經完工,部分外圍工程也已修建完成。明年的工作主要是廠區內部道路、附屬建筑以及廠房地面等部位的施工。我一定配合好領導,把自己分內的工作做好,向公司交出一份滿意的答卷。
嘻嘻嘻嘻 嘻嘻嘻嘻 2010年12月30日
第二篇:風電展小結
2011上海國際海上風電及風電產業鏈大會暨展覽會
“2011上海國際海上風電及風電產業鏈大會暨展覽會”于6月15日至17日在上海新國際展覽中心拉開序幕,作為亞洲最大、全球第二的海上風電盛會,本屆展覽規模近1.5萬平方米,大會規模近800人,均比上屆有大幅度增長。活動由中國資源綜合利用協會可再生能源專業委員會、中國可再生能源學會產業工作委員會和上海市國際展覽有限公司聯合主辦。我公司也對參加這次風電產業展覽做足了準備,早早的來到嶄新的展臺前,等待客戶的商談。
我是第一次參加這樣的風展會,進入展覽會場,看到人流涌動,各大風電產業龍頭一一到場,大家都使出渾身解數來推銷自己的新產品,新技術,來贏得商家的投資。
在全球風電技術領先的國家丹麥帶著自己的幾家龍頭公司來參展,首先就是vestas, 它作為風電技術領域居于世界領先的廠商,在全球安裝了 26, 000 多臺風機發電,是世界上最大的風電系統供應商,也是最早開始制造風機的公司之一。今天,它以二十多年豐富經驗和不斷創新的公司精神為后盾,維斯塔斯風機以其先進、高效和實證的可靠性而聞名于世。
在國內知名的品牌華銳風電也來到了本次會展,華銳風電本次會展帶來了海上風電技術和產品的最新成果,SL3000系列、SL5000系列,包括其自主研發的中國首臺6兆瓦風電機組,同時還展示了中國首個海上風電示范項目——上海東海大橋海上風電場項目目前的并網運行狀況。華銳風電自主研發的6兆瓦風電機組正式出產,這是我國目前單機容量最大的風電機組,也是中國風電技術進入國際先進行列的有力證明。SL6000系列的技術比之前的有很大改進,機組葉輪直徑長達128米,增加了掃風面積,提升了捕風能力,大大提高了風資源的有效利用率,同時可適應-45攝氏度的極限溫度,并通過了62.5米/秒的極限風速測試。SL6000采用平行軸齒輪傳動和鼠籠異步電機技術,保證機組的高可靠性和經濟性;通過全功率中壓變頻技術,使之具有優越的并網特性,電網適應能力強,機組具有大部件自維修系統,使整臺風機無需外部吊車即可對齒輪箱、發電機、葉片等核心部件進行更換,有效降低吊裝維護成本和維護時間,提高機組可利用率。
“創造有未來的能源,享受有品質的生活”這是上海電氣的公司理念,上海電氣是國內一家大型風力發電機組研發、設計、制造、技術、工程為一體的新能源裝備制造公司,本次也雄心勃勃的帶來自己的新產品來參加展覽,上海電氣現已擁有1.25MW、2MW、3.6MW三個產品,并形成系列化的多款機型,每一款均為特定風資源和氣候條件進行優化設計,為用戶提供個性化設計和服務。1.25MW系列風機有62m、64m、70m三種風輪直徑,同時又有65m、68m、91.5m三種不同的輪轂高度可供選配。1.25MW系列風機實現了國內首批兆瓦級風機出口,并設計生產了有常溫型、低溫型、高原型、60HZ型等。上海電氣成功研制的具有自主知識產權的2MW風機,擁有87米、93米、99米和105米風輪的標準配置,并開發了耐低溫、抗臺風、防鹽霧等系列機組。3.6MW機組是上海電氣成功研制的亞洲容量最大的風力發電機組,是國內首輪海上特許權項目中中標機型,同時適用于海上和陸上安裝,擁有116米和122米風輪的標準配置。3.6MW機組具有可靠性高、發電效率高、半緊湊型的堅固結構,便于海上安裝作業和維護、適用于各類風區和海況等一系列特點。
隨著風電產業的發展,特別是海上風電技術的推進,風電機組的大型化已成為必然趨勢。風電產業的配套公司也越來越完善,風電產業配套設施的每個技術點也都在不斷的向前發展,為研究海上風電機組大型化準備了有力條件,我們公司也在為海上風力發
電積極努力,樹立自己的地位,打造自身的核心競爭力,走自主研發之路,為全球風電產業的持續探索與健康發展提供源源動力。
第三篇:風電工作原理
風電工作原理
機控制系統控制和檢測每時每刻的工作情況。它將風機維持在正常工作的范圍內,確保風機的各個工作參數位于允許的范圍之內。
控制系統是由數字程序控制器組成的(PLC)。其中心單元位于塔架底部的開關柜內。在主機箱內也裝有部分控制單元,它們用于傳遞各傳感器發出的檢測信號。例如:風速,主軸轉速,高速軸轉速,溫度等。檢測信號經PLC控制電路,在PLC里信號經過數字信號和模擬信號轉換,然后經串聯接口傳輸給中心控制電腦,中心控制電腦用于指令,記錄錯誤信息,利用調制/解調器和遠程檢測系統連接。
在風機部分負載的情況下,風速低于標稱風速時,發電機的轉矩是通過電流變換器來調節的。輸出功率的憂化是根據轉矩-風速曲線來確定的。
風速如果超過額定值, 那么可以通過調整槳葉的角度來使發電機的輸出功率保持平衡。利用這個原理, 可以使得發電機的轉矩保持恒定。在風速突然加快的情況下,槳葉的轉速通過變矩調整,可以基本保持恒速。
因為G56/850 風機具有60米高度的鋼結構塔架,因此塔架的自然震蕩頻率范圍應該是與槳葉的旋轉頻率范圍相同,這樣塔架的諧振檢測是必要的。通過電腦的特殊程序,可以將塔架的特征諧振頻率輸入給控制單元。當這個頻率到來時,可以通過變矩系統將槳葉的轉動頻率在+/-5% 的范圍內予以主動地變換,以此避免諧振的發生。
當風機工作時,程序控制器的各分支部分將檢測有關的數據如:槳葉變矩系統,和偏航系統,以及網絡運行質量,測風系統的工作情況等等。如果,風機出現了異常的情況,各部的程序控制器將會更正這些異常的現象。如果出現的是某些意外的情況,那么風機將進入緊急停機狀態,最終煞車停機。
如果故障停車后,通過自身檢測是很小的傳輸問題,風機會重新自動啟動工作。
第四篇:風電基礎知識
葉輪
風電場的風力機通常有2片或3片葉片,葉尖速度50~70m/s,具有這樣的葉尖速度,3葉片葉輪通常能夠提供最佳效率,然而2葉片葉輪僅降低2~3%效率。甚至可以使用單葉片葉輪,它帶有平衡的重錘,其效率又降低一些,通常比2葉片葉輪低6%。盡管葉片少了,自然降低了葉片的費用,但這是有代價的。對于外形很均衡的葉片,葉片少的葉輪轉速就要快些,這樣就會導致葉尖噪聲和腐蝕等問題。更多的人認為3葉片從審美的角度更令人滿意。3葉片葉輪上的受力更平衡,輪轂可以簡單些,然而2葉片、1葉片葉輪的輪轂通常比較復雜,因為葉片掃過風時,速度是變的,為了限制力的波動,輪轂具有翹翹板的特性。翹翹板的輪轂,葉輪鏈接在輪轂上,允許葉輪在旋轉平面內向后或向前傾斜幾度。葉片的擺動運動,在每周旋轉中會明顯的減少由于陣風和剪切在葉片上產生的載荷。
葉片是用加強玻璃塑料(GRP)、木頭和木板、碳纖維強化塑料(CFRP)、鋼和鋁構成的。對于小型的風力發電機,如葉輪直徑小于5米,選擇材料通常關心的是效率而不是重量、硬度和葉片的其它特性。對于大型風機,葉片特性通常較難滿足,所以對材料的選擇更為重要。
世界上大多數大型風力機的葉片是由GRP制成的。這些葉片大部分是用手工把聚脂樹脂敷層,和通常制造船殼、園藝、游戲設施及世界范圍內消費品的方法一樣。其過程需要很高的技術水平才能得到理想的結果,并且如果人們對重量不太關心的話,比如對于長度小于20米的葉片,設計也不很復雜。不過有很多很先進的利用GRP的方法,可以減小重量,增加強度,在此就不贅述了。玻璃纖維要較精確的放置,如果把它放在預浸片材中,使用高性能樹脂,如控制環氧樹脂比例,并在高溫下加工處理。當今,出現了簡單的手工鋪放聚脂,通過認真地選擇和放置纖維,為GRP葉片提供了降低成本的途徑。
偏航系統
風力機的偏航系統也稱為對風裝置,其作用在于當風速矢量的方向變化時,能夠快速平穩地對準風向,以便風輪獲得最大的風能。
小微型風力機常用尾舵對風,它主要有兩部分組成,一是尾翼,裝在尾桿上與風輪軸平行或成一定的角度。為了避免尾流的影響,也可將尾翼上翹,裝在較高的位置。
中小型風機可用舵輪作為對風裝置,其工作原理大致如下:當風向變化時,位于風輪后面兩舵輪(其旋轉平面與風輪旋轉平面相垂直)旋轉,并通過一套齒輪傳動系統使風輪偏轉,當風輪重新對準風向后,舵輪停止轉動,對風過程結束。
大中型風力機一般采用電動的偏航系統來調整風輪并使其對準風向。偏航系統一般包括感應風向的風向標,偏航電機,偏航行星齒輪減速器,回轉體大齒輪等。其工作原理如下:風向標作為感應元件將風向的變化用電信號傳遞到偏航電機的控制回路的處理器里,經過比較后處理器給偏航電機發出順時針或逆時針的偏航命令,為了減少偏航時的陀螺力矩,電機轉速將通過同軸聯接的減速器減速后,將偏航力矩作用在回轉體大齒輪上,帶動風輪偏航對風,當對風完成后,風向標失去電信號,電機停止工作,偏航過程結束。
風機的發電機
所有并網型風力發電機通過三相交流(AC)電機將機械能轉化為電能。發電機分為兩個主要類型。同步發電機運行的頻率與其所連電網的頻率完全相同,同步發電機也被稱為交流發電機。異步發電機運行時的頻率比電網頻率稍高,異步發電機常被稱為感應發電機。
感應發電機與同步發電機都有一個不旋轉的部件被稱為定子,這兩種電機的定子相似,兩種電機的定子都與電網相連,而且都是由疊片鐵芯上的三相繞組組成,通電后產生一個以恒定轉速旋轉的磁場。盡管兩種電機有相似的定子,但它們的轉子是完全不同的。同步電機中的轉子有一個通直流電的繞組,稱為勵磁繞組,勵磁繞組建立一個恒定的磁場鎖定定子繞組建立的旋轉磁場。因此,轉子始終能以一個恒定的與定子磁場和電網頻率同步的恒定轉速上旋轉。在某些設計中,轉子磁場是由永磁機產生的,但這對大型發電機來說不常用。
感應電機的轉子就不同例如,它是由一個兩端都短接的鼠籠形繞組構成。轉子與外界沒有電的連接,轉子電流由轉子切割定子旋轉磁場的相對運動而產生。如果轉子速度完全等于定子轉速磁場的速度(與同步發電機一樣),這樣就沒有相對運動,也就沒有轉子感應電流。因此,感應發電機總的轉速總是比定子旋轉磁場速度稍高,其速度差叫滑差,在正常運行期間。它大概為1%。
同步發電機和異步發電機
將機械能轉化為電能裝置的發電機常用同步勵磁發電機、永磁發電機和異步發電機。同步發電機應用非常廣泛,在核電、水電、火電等常規電網中所使用的幾乎都是同步發電機,在風力發電中同步發電機即可以獨立供電又可以并網發電。然而同步發電機在并網時必須要有同期檢測裝置來比較發電機側和系統側的頻率、電壓、相位,對風力發電機進行調整,使發電機發出電能的頻率與系統一致;操作自動電壓調壓器將發電機電壓調整到與系統電壓相一致;同時,微調風力機的轉速從周期檢測盤上監視,使發電機的電壓與系統的電壓相位相吻合,就在頻率、電壓、相位同時一臻的瞬間,合上斷路器將風力發電機并入系統。同期裝置可采用手動同期并網和自同期并網。但總體來說,由于同步發電機造價比較高,同時并網麻煩,故在并網風力發電機中很少采用。
控制監測系統
風力機的運行及保護需要一個全自動控制系統,它必須能控制自動啟動,葉片槳距的機械調節裝置(在變槳距風力機上)及在正常和非正常情況下停機。除了控制功能,系統也能用于監測以提供運行狀態、風速、風向等信息。該系統是以計算機為基礎,除了小的風力機,控制及監測還可以遠程進行。控制系統具有及格主要功能:
1、順序控制啟動、停機以及報警和運行信號的監測
2、偏航系統的低速閉環控制
3、槳距裝置(如果是變槳距風力機)快速閉環控制
4、與風電場控制器或遠程計算機的通訊
風機傳動系統
葉輪葉片產生的機械能有機艙里的傳動系統傳遞給發電機,它包括一個齒輪箱、離合器和一個能使風力機在停止運行時的緊急情況下復位的剎車系統。齒輪箱用于增加葉輪轉速,從20~50轉/分到1000~1500轉/分,后者是驅動大多數發電機所需的轉速。齒輪箱可以是一個簡單的平行軸齒輪箱,其中輸出軸是不同軸的,或者它也可以是較昂貴的一種,允許輸入、輸出軸共線,使結構更緊湊。傳動系統要按輸出功率和最大動態扭矩載荷來設計。由于葉輪功率輸出有波動,一些設計者試圖通過增加機械適應性和緩沖驅動來控制動態載荷,這對大型的風力發電機來說是非常重要的,因其動態載荷很大,而且感應發電機的緩沖余地比小型風力機的小。
異步發電機
永磁發電機是一種將普通同步發電機的轉子改變成永磁結構的發電機,常用的永磁材料有鐵氧體(BaFeO)、釤鈷5(SmCo)等,永磁發電機一般用于小型風力發電機組中。
異步發電機是指異步電機處于發電的工作狀態,從其激勵方式有電網電源勵磁發電(他勵)和并聯電容自勵發電(自勵)兩種情況。電網電源勵磁發電:是將異步電機接到電網上,電機內的定子繞組產生以同步轉速轉動的旋轉磁場,再用原動機拖動,使轉子轉速大于同步轉速,電網提供的磁力矩的方向必定與轉速方向相反,而機械力矩的方向則與轉速方向相同,這時就將原動機的機械能轉化為電能。在這種情況下,異步電機發出的有功功率向電網輸送;同時又消耗電網的無功功率作勵磁作用,并供應定子和轉子漏磁所消耗的無功功率,因此異步發電機并網發電時,一般要求加無功補償裝置,通常用并列電容器補償的方式。
2、并聯電容器自勵發電:并聯電容器的連接方式分為星形和三角形兩種。勵磁電容的接入在發電機利用本身的剩磁發電的過程中,發電機周期性地向電容器充電;同時,電容器也周期性地通過異步電機的定子繞組放電。這種電容器與繞組組成的交替進行充放電的過程,不斷地起到勵磁的作用,從而使發電機正常發電。勵磁電容分為主勵磁電容和輔助勵磁電容,主勵磁電容是保證空載情況下建立電壓所需要的電容,輔助電容則是為了保證接入負載后電壓的恒定,防止電壓崩潰而設的。
通過上述的分析,異步發電機的起動、并網很方便且便于自動控制、價格低、運行可靠、維修便利、運行效率也較高、因此在風力發電方面并網機組基本上都是采用異步發電機,而同步發電機則常用于獨立運行方面。
偏航系統的設計
根據調向力矩的大小,可以進行齒輪傳動部分的設計計算。當驅動回轉體大齒輪的主動小齒輪的強度不能滿足時,可選用兩套偏航電機---行星齒輪減速器分置于風輪主輪的兩側對稱布置,每個電機的容量為總容量的一半。齒輪傳動計算可按開式齒輪傳動計算,其主要的磨損形式是齒面磨損失效,如調向力矩較大,除按照彎曲強度計算之外,應計算齒面接觸強度。
值得注意的是,大多數風機的發電機輸出功率的同軸電纜在風力機偏航時一同旋轉,為了防止偏航超出而引起的電纜旋轉,應該設置解纜裝置,并增加扭纜傳感器以監視電纜的扭轉狀態。位于下風向布重的風輪,能夠自動找正風向。在總體布置時應考慮塔架前面的重量略重一些,這樣在風機運行時平衡就會好一些。
電機的切換
根據風速決定是選擇小發電機并網發電,還是選擇大發電機空轉,若風速低于8米/秒,則小發電機并網運行且風機運行狀態切換到“投入G2”。如果風速高于8米/秒,則選擇“空轉G1”運行狀態。
投入G2:
小發電機接觸器閉合,發電機并網電流由可控硅控制到350A。一旦投入過程完成,可控硅切除,風機切換到“運行G2”狀態。
風電投入小發電機發電,如果平均輸出功率在某一單位時間內太低,這是小發電機斷開且風機切換到“等待重新支轉”的狀態。如果平均輸出功率超過了限定值110KW,則小發電機切除,風機運行狀態切換到“G1空轉”。
G1空轉:
風機等待風速達到投入大電機的風速,一旦達到這個風速則風機就切換到“投入G1”狀態。
投入G1:
大發電機的接觸接通。發電機的并網電流由可控硅將其限定在350A。投入過程一結束,可控硅切除,風機切換到“運行G1”狀態。
運行G1
風機的大電機投入發電,如果功率輸出在一定的時間內少于限定值80KW,大發電機切除,風機的運行狀態切換到“切換G11-G12”狀態。
切換G1-G2
大發電機的接觸器切除小發電機的接觸器接通,可控硅將發電機的電流限定到700A,一旦投入過程完成,可控硅切除,風機轉為“運轉G2”狀態。
等待再投入
如果小發電機的出力小于限定值,則此運行狀態動作。此狀態下,小發電機的接觸器被切除,如果風速有效,風機就切換到“投入G2”狀態,如果風速低于限定值,風機將切換到“空轉G2”狀態。
風機工作狀態之間轉變
風機工作狀態之間轉變
說明各種工作狀態之間是如何實現轉換的。
提高工作狀態層次只能一層一層地上升,而要降低工作狀態層次可以是一層或多層。這種工作狀態之間轉變方法是基本的控制策略,它主要出發點是確保機組的安全運行。如果風力發電機組的工作狀態要往更高層次轉化,必須一層一層往上升,用這種過程確定系統的每個故障是否被檢測。當系統在狀態轉變過程中檢測到故障,則自動進入停機狀態。
當系統在運行狀態中檢測到故障,并且這種故障是致命的,那么工作狀態不得不從運行直接到緊停,這可以立即實現而不需要通過暫停和停止。
下面我們進一步說明當工作狀態轉換時,系統是如何動作的。
1.工作狀態層次上升
緊停→停機
如果停機狀態的條件滿足,則:
1)關閉緊停電路;
2)建立液壓工作壓力;
3)松開機械剎車。
停機→暫停
如果暫停的條件滿足,則,1)起動偏航系統;
2)對變槳距風力發電機組,接通變槳距系統壓力閥。
暫停→運行
如果運行的條件滿足,則:
1)核對風力發電機組是否處于上風向;
2)葉尖阻尼板回收或變槳距系統投入工作;
3)根據所測轉速,發電機是否可以切人電網。
2.工作狀態層次下降
工作狀態層次下降包括3種情況:
(1)緊急停機。緊急停機也包含了3種情況,即:停止→緊停;暫停→緊停;運行→緊停。其主要控制指令為:
1)打開緊停電路;
2)置所有輸出信號于無效;
3)機械剎車作用;
4)邏輯電路復位。
(2)停機。停機操作包含了兩種情況,即:暫停→停機;運行→停機。
暫停→停機
1)停止自動調向;
2)打開氣動剎車或變槳距機構回油閥(使失壓)。
運行→停機
1)變槳距系統停止自動調節;
2)打開氣動剎車或變槳距機構回油閥(使失壓);
3)發電機脫網。
(3)暫停。
1)如果發電機并網,調節功率降到。后通過晶閘管切出發電機;
2)如果發電機沒有并入電網,則降低風輪轉速至0。
(三)故障處理
工作狀態轉換過程實際上還包含著一個重要的內容:當故障發生時,風力發電機組將自動地從較高的工作狀態轉換到較低的工作狀態。故障處理實際上是針對風力發電機組從某一工作狀態轉換到較低的狀態層次可能產生的問題,因此檢測的范圍是限定的。
為了便于介紹安全措施和對發生的每個故障類型處理,我們給每個故障定義如下信息:
1)故障名稱;
2)故障被檢測的描述;
3)當故障存在或沒有恢復時工作狀態層次;
4)故障復位情況(能自動或手動復位,在機上或遠程控制復位)。
(1)故障檢測。控制系統設在頂部和地面的處理器都能夠掃描傳感器信號以檢測故障,故障由故障處理器分類,每次只能有一個故障通過,只有能夠引起機組從較高工作狀態轉入較低工作狀態的故障才能通過。
(2)故障記錄。故障處理器將故障存儲在運行記錄表和報警表中。
(3)對故障的反應。對故障的反應應是以下三種情況之一:
1)降為暫停狀態;
2)降為停機狀態;
3)降為緊急停機狀態。
4)故障處理后的重新起動。在故障已被接受之前,工作狀態層不可能任意上升。故障被接受的方式如下:
如果外部條件良好,一此外部原因引起的故障狀態可能自動復位。一般故障可以通過遠程控制復位,如果操作者發現該故障可接受并允許起動風力發電機組,他可以復位故障。有些故障是致命的,不允許自動復位或遠程控制復位,必須有工作人員到機組工作現場檢查,這些故障必須在風力發電機組內的控制面板上得到復位。故障狀態被自動復位后10min將自動重新起動。但一天發生次數應有限定,并記錄顯示在控制面板上。
如果控制器出錯可通過自檢(WATCHDOG)重新起動。
第五篇:風電知識
風電知識
前言
我國風能資源十分豐富,它是一種干凈的可再生能源,風力發電產業發展前景非常廣闊。
它的作用原理;以風作為原動力,風吹動風輪機的葉輪,轉化為機械能,葉能通過增速箱齒輪帶動發電機旋轉,轉化為電能,送入電網。它的優勢;不需要燃料,無污染,運行成本低。
風電概述 主要零部件
發電機 電控柜 制動器 增速機 主軸
液壓站 工裝 外齒式回轉支撐 偏航電機
各零部件主要功能
主軸; 將風能轉向力傳遞給增速箱
偏航系統; 通過控制技術,使機艙旋轉至迎風方向的機枸。
增速機; 增速機在各齒輪不同傳動比的作用下將主軸的低轉速提高到發電機所需的高轉速 發電機; 將機械能轉化為電能。
偏航壞; 剛度,強度要好,用來支撐整個動力系統,但不能太重。變槳柜系統;通過控制技術,調整葉片角度,使風能利用最優化。制動系統;根據風力,風速需要,風機可以減速或停機。
機艙殼;采用玻璃鋼制成,覆蓋于機組動力系統外,起保護作用。緊固件等;將各個零部件固定在設計位置,必需適應于極限負載。
工裝;便于裝配,運輸。
因為風機常在風沙,暴雨,鹽霧,潮濕,-30~40攝氏度中環境中安放,所以要有較強的野外適應性。這對各零部件的強度、剛度、穩定、疲勞、磨擦、力矩等因素提出了很高的要求。若某一方面出了問題,都有可通造成安全事故。
為此,為了滿足以上要求,我們對各種材料都進行了嚴格的要求,對各種連接緊固件都要按求打好力矩。力矩大小好下;
風電設備安裝常見技術問題
1.1 螺栓聯接問題
螺栓、螺母聯接是風電行業的一種最基本最常用的裝配,聯接過緊時,螺栓在機械力的長期作用下容易產生金屬疲勞,發生剪切或螺牙滑絲等聯接過松的情況,使部件之間的裝配松動,引發事故。
1.2 振動問題
風機葉片在風力作用下轉動時,帶動主軸,主軸將風能轉向力傳遞到增速機,增速機在各齒輪不同傳動比的作用下將主軸的低轉速提高到發電機所需的高轉速從而帶動發電機,發電機則完成能由機械能轉換成電能的工作,在這一系列的動作過程中,還有許多輔助零部件與其配合完成發電工作(如回轉支撐,偏航系統,變槳柜系統,制動系統)。在這一系列過程中各系統在相互配合工作過程中必產生大的振動。主軸與增速箱發電機同心度等問題。1.4 電氣設備問題
1)安裝隔離開關時動、靜觸頭的接觸壓力與接觸面積不夠或操作不當,可能導致接觸面的電熱氧化,使接觸電阻增大,灼傷、燒蝕觸頭,造成事故。
(2)斷路器弧觸指及觸頭裝配不正確,插入行程、接觸壓力、同期性、分合閘速度達不到要求,將使觸頭過熱、熄弧時間延,導致絕緣介質分解,壓力驟增,引發斷路器爆炸事故。
(3)電流互感器因安裝檢修不慎,使一次繞組開路,將產生很高的過電壓,危及人身與設備安全。
(4)有載調壓裝置的調節裝置機構裝配錯誤,或裝配時不慎掉入雜物,卡住機構,也將發生程度不同的事故。
(5)主變壓器絕緣破壞或擊穿。在安裝主變吊芯和高壓管等主要工作時,不慎掉入雜物(如螺帽、鑰匙等,這些情況在工程實踐中并不罕見),器身、套管內排水不徹底,密封裝置安裝錯誤,或者在安裝中損壞,都會使主變絕緣強度大為降低,可能導致局部絕緣破壞或擊穿,造成惡性事故。
(6)主變壓器保護拒動。主變壓器內部或出線側發生短路、接地事故,而保護拒動、斷路器不跳閘,巨大的短路電流不僅使短路處事故狀態擴大,也使主變內部溫度驟升,變壓器油迅速汽化、分解,成為高爆性的可燃物質,這可能發生主變爆炸的惡性事故。主變的緊急事故油池和其他消防設施都是針對這種可能性設計的。2 機電設備安裝技術相關改善辦法
2.1 嚴格施工組織設計及設備、設施選擇
施工組織設計和設備、設施選擇是經有關科技人員共同研究商定的,通過技術計算和驗算,定有其使用價。為了防止螺栓過緊或過松按工藝要求打好力矩、涂好螺紋鎖固,二硫化鉬。2.2 按預定計劃開展安裝工作
每一項機電設備安裝工作順序都有其科學性。一個安裝工程的計劃排隊是經過多方面的考慮,經過技術論證排出的,是有科學根據并有一定指導性的,不要隨便改動,以免造成工程進度連續不上無法完成工作。
2.3 對安裝工作要總體布置、統一安排
發電機分為兩個主要類型。同步發電機運行的頻率與其所連電網的頻率完全相同,同步發電機也被稱為交流發電機。異步發電機運行時的頻率比電網頻率稍高,異步發電機常被稱為感應發電機。
感應發電機與同步發電機都有一個不旋轉的部件被稱為定子,這兩種電機的定子相似,兩種電機的定子都與電網相連,而且都是由疊片鐵芯上的三相繞組組成,通電后產生一個以恒定轉速旋轉的磁場。盡管兩種電機有相似的定子,但它們的轉子是完全不同的。同步電機中的轉子有一個通直流電的繞組,稱為勵磁繞組,勵磁繞組建立一個恒定的磁場鎖定定子繞組建立的旋轉磁場。因此,轉子始終能以一個恒定的與定子磁場和電網頻率同步的恒定轉速上旋轉。在某些設計中,轉子磁場是由永磁機產生的,但這對大型發電機來說不常用。
感應電機的轉子就不同例如,它是由一個兩端都短接的鼠籠形繞組構成。轉子與外界沒有電的連接,轉子電流由轉子切割定子旋轉磁場的相對運動而產生。如果轉子速度完全等于定子轉速磁場的速度(與同步發電機一樣),這樣就沒有相對運動,也就沒有轉子感應電流。因此,感應發電機總的轉速總是比定子旋轉磁場速度稍高,其速度差叫滑差,在正常運行期間。它大概為1%。
同步發電機和異步發電機
將機械能轉化為電能裝置的發電機常用同步勵磁發電機、永磁發電機和異步發電機。同步發電機應用非常廣泛,在核電、水電、火電等常規電網中所使用的幾乎都是同步發電機,在風力發電中同步發電機即可以獨立供電又可以并網發電。然而同步發電機在并網時必須要有同期檢測裝置來比較發電機側和系統側的頻率、電壓、相位,對風力發電機進行調整,使發電機發出電能的頻率與系統一致;操作自動電壓調壓器將發電機電壓調整到與系統電壓相一致;同時,微調風力機的轉速從周期檢測盤上監視,使發電機的電壓與系統的電壓相位相吻合,就在頻率、電壓、相位同時一臻的瞬間,合上斷路器將風力發電機并入系統。同期裝置可采用手動同期并網和自同期并網。但總體來說,由于同步發電機造價比較高,同時并網麻煩,故在并網風力發電機中很少采用。
控制監測系統
風力機的運行及保護需要一個全自動控制系統,它必須能控制自動啟動,葉片槳距的機械調節裝置(在變槳距風力機上)及在正常和非正常情況下停機。除了控制功能,系統也能用于監測以提供運行狀態、風速、風向等信息。該系統是以計算機為基礎,除了小的風力機,控制及監測還可以遠程進行。控制系統具有及格主要功能:
1、順序控制啟動、停機以及報警和運行信號的監測
2、偏航系統的低速閉環控制
3、槳距裝置(如果是變槳距風力機)快速閉環控制
4、與風電場控制器或遠程計算機的通訊
風機傳動系統
葉輪葉片產生的機械能有機艙里的傳動系統傳遞給發電機,它包括一個齒輪箱、離合器和一個能使風力機在停止運行時的緊急情況下復位的剎車系統。齒輪箱用于增加葉輪轉速,從20~50轉/分到1000~1500轉/分,后者是驅動大多數發電機所需的轉速。
齒輪箱可以是一個簡單的平行軸齒輪箱,其中輸出軸是不同軸的,或者它也可以是較昂貴的一種,允許輸入、輸出軸共線,使結構更緊湊。傳動系統要按輸出功率和最大動態扭矩載荷來設計。由于葉輪功率輸出有波動,一些設計者試圖通過增加機械適應性和緩沖驅動來控制動態載荷,這對大型的風力發電機來說是非常重要的,因其動態載荷很大,而且感應發電機的緩沖余地比小型風力機的小。
異步發電機
永磁發電機是一種將普通同步發電機的轉子改變成永磁結構的發電機,常用的永磁材料有鐵氧體(BaFeO)、釤鈷5(SmCo)等,永磁發電機一般用于小型風力發電機組中。
異步發電機是指異步電機處于發電的工作狀態,從其激勵方式有電網電源勵磁發電(他勵)和并聯電容自勵發電(自勵)兩種情況。
1電網電源勵磁發電:是將異步電機接到電網上,電機內的定子繞組產生以同步轉速轉動的旋轉磁場,再用原動機拖動,使轉子轉速大于同步轉速,電網提供的磁力矩的方向必定與轉速方向相反,而機械力矩的方向則與轉速方向相同,這時就將原動機的機械能轉化為電能。在這種情況下,異步電機發出的有功功率向電網輸送;同時又消耗電網的無功功率作勵磁作用,并供應定子和轉子漏磁所消耗的無功功率,因此異步發電機并網發電時,一般要求加無功補償裝置,通常用并列電容器補償的方式。
2、并聯電容器自勵發電:并聯電容器的連接方式分為星形和三角形兩種。勵磁電容的接入在發電機利用本身的剩磁發電的過程中,發電機周期性地向電容器充電;同時,電容器也周期性地通過異步電機的定子繞組放電。這種電容器與繞組組成的交替進行充放電的過程,不斷地起到勵磁的作用,從而使發電機正常發電。勵磁電容分為主勵磁電容和輔助勵磁電容,主勵磁電容是保證空載情況下建立電壓所需要的電容,輔助電容則是為了保證接入負載后電壓的恒定,防止電壓崩潰而設的。
通過上述的分析,異步發電機的起動、并網很方便且便于自動控制、價格低、運行可靠、維修便利、運行效率也較高、因此在風力發電方面并網機組基本上都是采用異步發電機,而同步發電機則常用于獨立運行方面。
偏航系統的設計
根據調向力矩的大小,可以進行齒輪傳動部分的設計計算。當驅動回轉體大齒輪的主動小齒輪的強度不能滿足時,可選用兩套偏航電機---行星齒輪減速器分置于風輪主輪的兩側對稱布置,每個電機的容量為總容量的一半。齒輪傳動計算可按開式齒輪傳動計算,其主要的磨損形式是齒面磨損失效,如調向力矩較大,除按照彎曲強度計算之外,應計算齒面接觸強度。
值得注意的是,大多數風機的發電機輸出功率的同軸電纜在風力機偏航時一同旋轉,為了防止偏航超出而引起的電纜旋轉,應該設置解纜裝置,并增加扭纜傳感器以監視電纜的扭轉狀態。位于下風向布重的風輪,能夠自動找正風向。在總體布置時應考慮塔架前面的重量略重一些,這樣在風機運行時平衡就會好一些。
電機的切換
根據風速決定是選擇小發電機并網發電,還是選擇大發電機空轉,若風速低于8米/秒,則小發電機并網運行且風機運行狀態切換到“投入G2”。
如果風速高于8米/秒,則選擇“空轉G1”運行狀態。
投入G2:
小發電機接觸器閉合,發電機并網電流由可控硅控制到350A。一旦投入過程完成,可控硅切除,風機切換到“運行G2”狀態。
風電投入小發電機發電,如果平均輸出功率在某一單位時間內太低,這是小發電機斷開且風機切換到“等待重新支轉”的狀態。如果平均輸出功率超過了限定值110KW,則小發電機切除,風機運行狀態切換到“G1空轉”。
G1空轉:
風機等待風速達到投入大電機的風速,一旦達到這個風速則風機就切換到“投入G1”狀態。
投入G1:
大發電機的接觸接通。發電機的并網電流由可控硅將其限定在350A。投入過程一結束,可控硅切除,風機切換到“運行G1”狀態。
運行G1
風機的大電機投入發電,如果功率輸出在一定的時間內少于限定值80KW,大發電機切除,風機的運行狀態切換到“切換G11-G12”狀態。
切換G1-G2
大發電機的接觸器切除小發電機的接觸器接通,可控硅將發電機的電流限定到700A,一旦投入過程完成,可控硅切除,風機轉為“運轉G2”狀態。
等待再投入
如果小發電機的出力小于限定值,則此運行狀態動作。此狀態下,小發電機的接觸器被切除,如果風速有效,風機就切換到“投入G2”狀態,如果風速低于限定值,風機將切換到“空轉G2”狀態。
風機工作狀態之間轉變
風機工作狀態之間轉變
說明各種工作狀態之間是如何實現轉換的。
提高工作狀態層次只能一層一層地上升,而要降低工作狀態層次可以是一層或多層。這種工作狀態之間轉變方法是基本的控制策略,它主要出發點是確保機組的安全運行。如果風力發電機組的工作狀態要往更高層次轉化,必須一層一層往上升,用這種過程確定系統的每個故障是否被檢測。當系統在狀態轉變過程中檢測到故障,則自動進入停機狀態。
當系統在運行狀態中檢測到故障,并且這種故障是致命的,那么工作狀態不得不從運行直接到緊停,這可以立即實現而不需要通過暫停和停止。
下面我們進一步說明當工作狀態轉換時,系統是如何動作的。
1.工作狀態層次上升
緊停→停機
如果停機狀態的條件滿足,則:
1)關閉緊停電路;
2)建立液壓工作壓力;
3)松開機械剎車。
停機→暫停
如果暫停的條件滿足,則,1)起動偏航系統;
2)對變槳距風力發電機組,接通變槳距系統壓力閥。
暫停→運行
如果運行的條件滿足,則:
1)核對風力發電機組是否處于上風向;
2)葉尖阻尼板回收或變槳距系統投入工作;
3)根據所測轉速,發電機是否可以切人電網。
2.工作狀態層次下降
工作狀態層次下降包括3種情況:
(1)緊急停機。緊急停機也包含了3種情況,即:停止→緊停;暫停→緊停;運行→緊停。其主要控制指令為:
1)打開緊停電路;
2)置所有輸出信號于無效;
3)機械剎車作用;
4)邏輯電路復位。
(2)停機。停機操作包含了兩種情況,即:暫停→停機;運行→停機。
暫停→停機
1)停止自動調向;
2)打開氣動剎車或變槳距機構回油閥(使失壓)。
運行→停機
1)變槳距系統停止自動調節;
2)打開氣動剎車或變槳距機構回油閥(使失壓);
3)發電機脫網。
(3)暫停。
1)如果發電機并網,調節功率降到。后通過晶閘管切出發電機;
2)如果發電機沒有并入電網,則降低風輪轉速至0。
(三)故障處理
工作狀態轉換過程實際上還包含著一個重要的內容:當故障發生時,風力發電機組將自動地從較高的工作狀態轉換到較低的工作狀態。故障處理實際上是針對風力發電機組從某一工作狀態轉換到較低的狀態層次可能產生的問題,因此檢測的范圍是限定的。
為了便于介紹安全措施和對發生的每個故障類型處理,我們給每個故障定義如下信息:
1)故障名稱;
2)故障被檢測的描述;
3)當故障存在或沒有恢復時工作狀態層次;
4)故障復位情況(能自動或手動復位,在機上或遠程控制復位)。
(1)故障檢測。控制系統設在頂部和地面的處理器都能夠掃描傳感器信號以檢測故障,故障由故障處理器分類,每次只能有一個故障通過,只有能夠引起機組從較高工作狀態轉入較低工作狀態的故障才能通過。
(2)故障記錄。故障處理器將故障存儲在運行記錄表和報警表中。
(3)對故障的反應。對故障的反應應是以下三種情況之一:
1)降為暫停狀態;
2)降為停機狀態;
3)降為緊急停機狀態。
4)故障處理后的重新起動。在故障已被接受之前,工作狀態層不可能任意上升。故障被接受的方式如下:
如果外部條件良好,一此外部原因引起的故障狀態可能自動復位。一般故障可以通過遠程控制復位,如果操作者發現該故障可接受并允許起動風力發電機組,他可以復位故障。有些故障是致命的,不允許自動復位或遠程控制復位,必須有工作人員到機組工作現場檢查,這些故障必須在風力發電機組內的控制面板上得到復位。故障狀態被自動復位后10min將自動重新起動。但一天發生次數應有限定,并記錄顯示在控制面板上。
如果控制器出錯可通過自檢(WATCHDOG)重新起動。