第一篇:勾股定理逆定理說課稿
勾股定理的逆定理說課稿
一、教材分析
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo)
1、知識技能:1理解并會證明勾股定理的逆定理;
2會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用 教學(xué)難點(diǎn):勾股定理逆定理的證明
二、教學(xué)過程
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。
(一)復(fù)習(xí)回顧
復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
(二)創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么???。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實(shí)現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)組織變式訓(xùn)練
本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運(yùn)用以往知識的能力。例題講解后安排了三個練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(五)歸納小結(jié),納入知識體系
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
三、說教法學(xué)法與教學(xué)手段
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨(dú)立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
第二篇:勾股定理逆定理說課稿
勾股定理逆定理說課稿
此說課稿是我參加第八批哈爾濱市骨干教師考核的說課稿,敬請個位老師指正。
各位評委老師你們好!我是來自阿城市雙豐一中的數(shù)學(xué)教師李明,我今天說課的題目是《勾股定理的逆定理》,選自《人教版》八年級下冊,為了更好地發(fā)揮教材“藍(lán)本”作用,更好地堅(jiān)持以學(xué)生發(fā)展為本的理念,就本節(jié)課,我將從以下幾個方面做相關(guān)的教學(xué)解說。
一、知識背景
在知識體系上,學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,經(jīng)歷了勾股定理的探究的過程,積累了相關(guān)的數(shù)學(xué)活動經(jīng)驗(yàn),這就具備了勾股定理逆定理的探究條件,通過勾股定理逆定理的探究,對培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力大有裨益,其中蘊(yùn)涵著類比、轉(zhuǎn)化,從特殊到一般的思想方法,對學(xué)生的可持續(xù)發(fā)展更有不可低估的作用,我所簡述的是第一課時(shí)的內(nèi)容。
二、教學(xué)目標(biāo)
教學(xué)目標(biāo)既是教學(xué)的出發(fā)點(diǎn),也是歸宿,或者說:它是教學(xué)的靈魂,支配著教學(xué)過程,并規(guī)定著教與學(xué)的方向,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。我認(rèn)為一個好的教學(xué)目標(biāo)應(yīng)具備三個基本要素;行為主體、行為動詞、表現(xiàn)程度。具體的說行為主體必須是學(xué)生而不是教師。第二、目標(biāo)的制定主要是為了后續(xù)評價(jià)行為,因此行為動詞盡可能要清晰可把握而不能含糊其詞,否則無法確定教學(xué)的正確方向,教學(xué)過程的可操作性不強(qiáng)。第三、表現(xiàn)程度是用以評價(jià)學(xué)生的學(xué)習(xí)表現(xiàn)或?qū)W習(xí)效果所達(dá)到的程度,基于以上理念參考《數(shù)學(xué)課程標(biāo)準(zhǔn)》制定教學(xué)目標(biāo):
1、知識與技能:理解勾股定理逆定理的證明方法,掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
2、數(shù)學(xué)思考:通過勾股定理的逆定理的探索,經(jīng)歷知識發(fā)生、發(fā)展形成的過程,體會數(shù)形結(jié)合的思想方法。
3、解決問題:體會數(shù)形結(jié)合方法在問題解決中的作用,并能利用勾股定理的逆定理解決相關(guān)問題。
4、情感態(tài)度:通過一系列的探究性問題,滲透與人交流合作的意識,感受定理與逆定理之間和諧及辯證統(tǒng)一的關(guān)系。
三、教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn):探索勾股定理逆定理和運(yùn)用。
難點(diǎn):勾股定理的逆定理的證明
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出:要讓學(xué)生經(jīng)歷知識發(fā)生發(fā)展的全過程。依據(jù)此理念,我將重點(diǎn)確定為:探索勾股定理的逆定理和運(yùn)用。探索勾股定理的逆定理關(guān)鍵在于轉(zhuǎn)化三角形為全等,如何根據(jù)需要構(gòu)造全等三角形,這需要學(xué)生思維有極強(qiáng)的跳躍性,對學(xué)生是一個挑戰(zhàn),要有極強(qiáng)的創(chuàng)新精神,所以將本節(jié)課難點(diǎn)確定為:勾股定理的逆定理的證明
四、教學(xué)理念
本節(jié)課以數(shù)學(xué)活動為載體,組織教學(xué),以學(xué)生實(shí)踐活動為主體,溝通活動單元、數(shù)學(xué)思想、思維方式,使不同的學(xué)生在數(shù)學(xué)活動中均得到發(fā)展,探究活動應(yīng)圍繞四個單元活動展開:活動1:情景設(shè)疑,引出課題。活動2:實(shí)踐操作、大膽猜想。活動3:推理驗(yàn)證,深入剖析。活動4:反思應(yīng)用,創(chuàng)新升華。
在教學(xué)活動單元設(shè)計(jì)中,強(qiáng)調(diào)教學(xué)方法的多樣性以及與教學(xué)模式、活動單
元的融合,我主要采用以下幾種教法。1.分層導(dǎo)學(xué)法,2.情景教學(xué)法。3.啟發(fā)教學(xué)法。活動中給學(xué)生提供多種器官共用的機(jī)會,突出數(shù)學(xué)中活動和活動中數(shù)學(xué)。學(xué)生主要采用小組合作的學(xué)習(xí)方式,讓他們遵循問題情景----觀察猜想----探究驗(yàn)證----解釋應(yīng)用的主線進(jìn)行學(xué)習(xí)。關(guān)注他們在活動中的體驗(yàn)感受,即掌握必須的知識與技能,又獲得方法和能力,更在活動中不斷成長,體現(xiàn)新課程發(fā)展的三維目標(biāo)要求。
五、教學(xué)流程
(一)創(chuàng)設(shè)問題情境,引入新課:
在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。
(二)實(shí)踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a ,b為直角邊的直角三角形的斜邊c長。
1a=3
b=4 2a=5
b=12 3a=2.5
b=6 4a=6
b=8
2、猜一猜,以下列線段長為三邊的三角形形狀
13cm 4cm 5cm
25cm 12cm 13cm
32.5cm 6cm 6.5cm 46cm 8cm 10cm
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗(yàn)證問題2的發(fā)現(xiàn)。
4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論
在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動手實(shí)踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動的機(jī)會,最后運(yùn)用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導(dǎo)學(xué)生的實(shí)踐活動。學(xué)生的擺一擺的過程利用實(shí)物投影儀展示,在活動中教師關(guān)注;1)學(xué)生的參與意識與動手能力。2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。3)數(shù)形結(jié)合的思想方法及歸納能力。
(三)推理證明
八年級正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2
與a,b為直角三角形之間有何關(guān)系?試說明理由?
為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組
內(nèi)交流個別意見的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納完定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,得出解題中的書寫格式。
(四)引例解析:通過引例的解決,鞏固定理,這是個開命題,能更好地體現(xiàn)不同的解題策略。教師介紹古埃及和我國古代大禹治水都是利用這種方法確定直角的。讓學(xué)生感受勾股定理豐富的文化內(nèi)涵,體會人文精神,激發(fā)學(xué)好數(shù)學(xué)為國爭光的思想。
(五)分層訓(xùn)練,能力升級,以闖關(guān)的形式進(jìn)行,深化學(xué)習(xí)內(nèi)容遵循鞏固和發(fā)展相結(jié)合的原則,兼顧不同層次的學(xué)生,滿足多樣化學(xué)習(xí)的需要。最后歸納反思。啟發(fā)學(xué)生交流知識,能力情感的收獲與體驗(yàn)。在有針對性、有層次布置作業(yè)。
六、設(shè)計(jì)說明
本節(jié)課立足于創(chuàng)新和學(xué)生的可持續(xù)發(fā)展,把教學(xué)內(nèi)容分解為一系列富有探究性的問題。讓學(xué)生在解決問題的過程總共經(jīng)歷知識的發(fā)生、發(fā)展和形成的過程,把知識的發(fā)現(xiàn)權(quán)交給學(xué)生,讓他們在獲得知識的過程中體會與人合作的重要,體驗(yàn)成功的喜悅,真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師只是參與者、合作者、引導(dǎo)者。
第三篇:勾股定理的逆定理說課稿
《勾股定理的逆定理》說課稿
中壩鎮(zhèn)中學(xué)王永成尊敬的各位評委,各位老師,大家好:
我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、教學(xué)目標(biāo)、教學(xué)重點(diǎn)難點(diǎn)、教法、教學(xué)過程等幾個方面闡述我對本節(jié)課的教學(xué)設(shè)想。
一、教材分析
主要說明本節(jié)課在教材中的地位作用
這節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)八年級下冊第十八章《勾股定理》中的第二節(jié)。勾股定理的逆定理是在勾股定理之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
二、教學(xué)目標(biāo)分析
教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
1、知識與技能目標(biāo)
理解并能證明勾股定理的逆定理;掌握勾股定理的逆定理,并能利用它來判定一個三角形是不是直角三角形。
2、過程與方法目標(biāo)
在探索的過程中使學(xué)生體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想
3、情感態(tài)度與價(jià)值觀目標(biāo)
結(jié)合勾股定理的有關(guān)歷史資料,激發(fā)學(xué)生學(xué)習(xí)的興趣;通過一系列的探究活動,培養(yǎng)學(xué)生與他人交流合作的團(tuán)隊(duì)精神及創(chuàng)新意識。
三、學(xué)情分析及教學(xué)重點(diǎn)、難點(diǎn)的確定
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性
還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),我確立的教學(xué)重點(diǎn)是勾股定理的逆定理及其應(yīng)用,教學(xué)難點(diǎn)是勾股定理的逆定理的證明,而如何構(gòu)造三角形就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
教學(xué)重點(diǎn):勾股定理的逆定理及其應(yīng)用
教學(xué)難點(diǎn):勾股定理的逆定理的證明
教學(xué)關(guān)鍵:如何構(gòu)造三角形
四、教法、學(xué)法分析
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨(dú)立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
五、教學(xué)過程
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之
間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。
(一)、復(fù)習(xí)回顧
復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
(二)、創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手操作在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所作三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實(shí)現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生
不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
(四)、遷移應(yīng)用,熟悉定理
例題是課本74頁的例1,是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟
(五)、隨堂練習(xí)
本著由淺入深的原則,安排了四個題目。前三個題目比較簡單,是讓學(xué)生進(jìn)一步鞏固并掌握勾股定理的逆定理及其運(yùn)用的步驟,盡量讓學(xué)生口答,讓所有的學(xué)生都能完成。第四個題實(shí)際上是對問題情境的進(jìn)一步解答既可以解決本課知識,又可以提高靈活運(yùn)用以往知識的能力。通過練習(xí)發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。
(六)、歸納小結(jié),納入知識體系
談?wù)勥@節(jié)課你的收獲吧
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面。這種形式的小結(jié),激發(fā)了學(xué)生的主動參與意識,調(diào)動了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動中獲得成功體驗(yàn)的機(jī)會,并為程度不同的學(xué)生提供了充分展示自己的機(jī)會,尊重學(xué)生的個體差異,滿足學(xué)生多極化學(xué)習(xí)的需要.
(七)、作業(yè)布置
本節(jié)課布置的作業(yè)是課本76頁習(xí)題18.2第1題,是最基本的思維訓(xùn)練項(xiàng)目題,有助于學(xué)生鞏固課堂所學(xué)知識,有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。
六、教學(xué)反思
(一)本節(jié)課的成功之處:
1、本節(jié)課以活動為主線,通過從估算到實(shí)驗(yàn)活動結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決實(shí)際問題,思路清晰,脈絡(luò)明了。
2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗(yàn)證,難點(diǎn)讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。
3、在本節(jié)教學(xué)活動過程中,我盡量以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。
(二)本節(jié)課的不足之處及改進(jìn)方法:
1、本節(jié)課我用多媒體課件進(jìn)行教學(xué)增大了教學(xué)密度,而缺少了板書示范,不利于學(xué)生養(yǎng)成良好的書寫習(xí)慣,在以后的教學(xué)中我應(yīng)加強(qiáng)。
2、在重難點(diǎn)的突破上還應(yīng)加一些遞進(jìn)的習(xí)題,降低題的難度,使優(yōu)生學(xué)好,中等生也能跟上。這是我在以后教學(xué)中要注意的。
3、還是不敢放手,總是牽著學(xué)生走。學(xué)生配合不夠積極,積極回答問題的學(xué)生少,學(xué)生的積極性沒有充分調(diào)動起來;對中下學(xué)生關(guān)注的太少;教師說的多,學(xué)生沒有充分的時(shí)間討論交流;課堂教學(xué)內(nèi)容稍多,在規(guī)定時(shí)間內(nèi)沒有很好地完成教學(xué)任務(wù)。
第四篇:17.2 勾股定理的逆定理說課稿
17.2 勾股定理的逆定理說課稿
大家好: 我是XXXXXX老師,今天我交流的課題是勾股定理的逆定,一、教材分析 :
(一)、說本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、說教學(xué)目標(biāo): 根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
1、知識與技能
(1)體會勾股定理的逆定理得出過程,掌握勾股定理的逆定理及簡單應(yīng)用。(2)理解原命題、逆命題、逆定理的概念及關(guān)系。2過程與方法
(1)探究勾股定理的逆定理得出過程經(jīng)歷了提出問題—實(shí)驗(yàn)研究—猜想命題—證明命題這一過程。
(2)對比探究原命題、逆命題的概念及關(guān)系.3情感、態(tài)度與價(jià)值觀
體驗(yàn)股定理的逆定理得出過程及應(yīng)用,理解原命題、逆命題、逆定理的概念及關(guān)系。【教學(xué)重難點(diǎn)】
重點(diǎn):掌握勾股定理的逆定理及簡單應(yīng)用。難點(diǎn):勾股定理的逆定理的證明。
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但我們本地學(xué)生基礎(chǔ)差,思維的局限性還很大,能力也有差距,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。重點(diǎn):勾股定理逆定理的應(yīng)用 難點(diǎn):勾股定理逆定理的證明 關(guān)鍵:作輔助三角形證全等 二教學(xué)過程
一、【知識回顧】
回顧勾股定理的內(nèi)容。板書:命題1.二、【情景導(dǎo)入】
展示情景圖片
提出問題:圖中哪個是直角三形,你是如何判的。
能通過邊來判斷嗎?
三、【實(shí)驗(yàn)操作】
量一量,提出猜想
邊長(單位:cm)分別為: 圖(1)3,4,5; 圖(2)2.5,6,6.5; 圖(3)3,4,6.讓同學(xué)們量一量,圖中哪些是直角三角形,圖(3)為什么不是? 得出結(jié)論:如果三角形的三邊長a、b、c滿足a2+b2=c2,那么這個三角形是直角三角形。(1)猜想的命題中的題設(shè)與結(jié)論分別是什么?
引出原命題與逆命題
(2)猜想的這一命題一定成立嗎?
三、【證明命題 】
已知:如圖,△ABC的三邊長a,b,c,滿足a2+b2=c2.
求證:△ABC是直角三角形.
四、【跟蹤練習(xí)】
1.已知△ABC中∠A、∠B、∠C的對邊分別是a、b、c,下面以a、b、c為邊長的三角形是不是直角三角形?如果是那么哪一個角是直角?(1)a=6,b=8,c=10(2)a?3,b?2,c?2(3)a:b:c=13:12:5 22(4)(a+c)-b=2ac 像6,8,10能夠成為直角三角形三條邊的三個正整數(shù),稱為勾股數(shù).2.說出下列命題的逆命題.這些命題的逆命題是真命題嗎?(1)兩條直線平行,內(nèi)錯角相等;
逆命題:內(nèi)錯角相等,兩直線平行.真命題.(2)如果兩個角是對頂角,那么這兩個角相等;
逆命題:相等的角是對頂角.假命題.(3)如果a=b,那么|a|=|b|.逆命題:如果|a|=|b|,那么a=b.假命題. 【知識梳理】
(1)勾股定理的逆定理的內(nèi)容是什么?它有什么作用?
(2)本節(jié)課我們學(xué)習(xí)了原命題,逆命題等知識,你
能說出它們之間的關(guān)系嗎?(3)在探究勾股定理的逆定理的過程中,我們經(jīng)歷了哪些過程?
第五篇:勾股定理的逆定理說課稿
《勾股定理的逆定理》說課稿
一、教材分析 : 本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形
過程與方法:
1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程
2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用
3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
情感態(tài)度:
1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系
2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
二、教學(xué)過程 :
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。
(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
(二)、創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么???。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點(diǎn),我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實(shí)現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)、組織變式訓(xùn)練
本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運(yùn)用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(五)、歸納小結(jié),納入知識體系
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)、作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B組題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
三、說教法、學(xué)法與教學(xué)手段
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨(dú)立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。