第一篇:2.2.1 提公因式法(一) -數學教案
第二課時
●課 題
§2.2.1 提公因式法
(一)●教學目標
(一)教學知識點
讓學生了解多項式公因式的意義,初步會用提公因式法分解因式.(二)能力訓練要求
通過找公因式,培養學生的觀察能力.(三)情感與價值觀要求
在用提公因式法分解因式時,先讓學生自己找公因式,然后大家討論結果的正確性,讓學生養成獨立思考的習慣,同時培養學生的合作交流意識,還能使學生初步感到因式分解在簡化計算中將會起到很大的作用.●教學重點
能觀察出多項式的公因式,并根據分配律把公因式提出來.●教學難點
讓學生識別多項式的公因式.●教學方法
獨立思考——合作交流法.●教具準備 投影片兩張
第一張(記作§2.2.1 A)第二張(記作§2.2.1 B)●教學過程
Ⅰ.創設問題情境,引入新課
投影片(§2.2.1 A)
一塊場地由三個矩形組成,這些矩形的長分別為,,寬都是 ,求這塊場地的面積.解法一:S= × + × + × = + + =2 解法二:S= × + × + × =(+ +)= ×4=2 [師]從上面的解答過程看,解法一是按運算順序:先算乘,再算和進行的,解法二是先逆用分配律算和,再計算一次乘,由此可知解法二要簡單一些.這個事實說明,有時我們需要將多項式化為積的形式,而提取公因式就是化積的一種方法.Ⅱ.新課講解
1.公因式與提公因式法分解因式的概念.[師]若將剛才的問題一般化,即三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c),可以用等號來連接.ma+mb+mc=m(a+b+c)
從上面的等式中,大家注意觀察等式左邊的每一項有什么特點?各項之間有什么聯系?等式右邊的項有什么特點?
[生]等式左邊的每一項都含有因式m,等式右邊是m與多項式(a+b+c)的乘積,從左邊到右邊是分解因式.[師]由于m是左邊多項式ma+mb+mc的各項ma、mb、mc的一個公共因式,因此m叫做這個多項式的各項的公因式.由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法.2.例題講解
[例1]將下列各式分解因式:(1)3x+6;(2)7x-21x;323(3)8ab-12abc+abc(4)-24x3-12x2+28x.分析:首先要找出各項的公因式,然后再提取出來.[師]請大家互相交流.[生]解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7x(x-3);(3)8a3b2-12ab3c+abc
=8a2b·ab-12b2c·ab+ab·c =ab(8ab-12bc+c)(4)-24x3-12x2+28x =-4x(6x2+3x-7)
3.議一議
[師]通過剛才的練習,下面大家互相交流,http://jiaoan.cnkjz.com/Article/Index.html>總結出找公因式的一般步驟.[生]首先找各項系數的最大公約數,如8和12的最大公約數是4.其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數取次數最低的.4.想一想
[師]大家http://jiaoan.cnkjz.com/Article/Index.html>總結得非常棒.從例1中能否看出提公因式法分解因式與單項式乘以多項式有什么關系?
[生]提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式.Ⅲ.課堂練習
(一)隨堂練習
1.寫出下列多項式各項的公因式.(1)ma+mb(m)
(2)4kx-8ky(4k)(3)5y3+20y2(5y2)(4)a2b-2ab2+ab(ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m-6m=2m(2m-3)
(4)a2b-5ab+9b=b(a2-5a+9)
(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)
(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)
(二)補充練習322222投影片(§2.2.1 B)
把3x-6xy+x分解因式
[生]解:3x2-6xy+x=x(3x-6y)[師]大家同意他的做法嗎? [生]不同意.改正:3x-6xy+x=x(3x-6y+1)
[師]后面的解法是正確的,出現錯誤的原因是受到1作為項的系數通常可以省略的影響,而在本題中是作為單獨一項,所以不能省略,如果省略就少了一項,當然不正確,所以多項式中某一項作為公因式被提取后,這項的位置上應是1,不能省略或漏掉.在分解因式時應如何減少上述錯誤呢?
將x寫成x·1,這樣可知提出一個因式x后,另一個因式是1.Ⅳ.課時小結
1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c).這里的字母a、b、c、m可以是一個系數不為1的、多字母的、冪指數大于1的單項式.2.提公因式法分解因式,關鍵在于觀察、發現多項式的公因式.3.找公因式的一般步驟
(1)若各項系數是整系數,取系數的最大公約數;(2)取相同的字母,字母的指數取較低的;(3)取相同的多項式,多項式的指數取較低的.(4)所有這些因式的乘積即為公因式.4.初學提公因式法分解因式,最好先在各項中將公因式分解出來,如果這項就是公因式,也要將它寫成乘1的形式,這樣可以防范錯誤,即漏項的錯誤發生.5.公因式相差符號的,如(x-y)與(y-x)要先統一公因式,同時要防止出現符號問題.Ⅴ.課后作業
習題2.2 1.解:(1)2x2-4x=2x(x-2);(2)8m2n+2mn=2mn(4m+1);222(3)axy-axy=axy(ax-y);(4)3x3-3x2-9x=3x(x2-x-3);(5)-24xy-12xy+28y =-(24x2y+12xy2-28y3)=-4y(6x2+3xy-7y2);(6)-4a3b3+6a2b-2ab =-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1);(7)-2x2-12xy2+8xy3 =-(2x+12xy 222
322
第二篇:提公因式法(一)教案2份
第四章
因式分解
2.提公因式法
(一)教學目標:
1、知識技能:讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解。
2、過程方法:通過與提公因數的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想。
3、情感態度:通過觀察能合理地進行分解因式的推導。教學重點:因式分解的概念及提公因式法的應用。教學難點:正確找出多項式中各項的公因式并能分解因式。第一環節
溫故知新 活動內容:計算:
555?15-?9??2采用什么方法?依據是什么? 888活動目的:旨在讓學生通過乘法分配律的逆運算這一特殊算法,使學生通過類比的思想自然地過渡到理解提公因式法的概念上,從而為提公因式法的掌握埋下伏筆。第二環節
想一想 活動內容:
多項式 ab+ac中,各項有相同的因式嗎?多項式 3x2+x呢?多項式mb2+nb–b呢? 結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.
活動目的:在學生能順利地尋找數的公因數之后,再引導學生采用類比的方法在多項式中尋找相同的因式. 第三環節
議一議 活動內容:
多項式2x2+6x3中各項的公因式是什么?那多項式2x2y+6x3y2中各項的公因式是什么? 結論:(1)各項系數是整數,系數的最大公約數是公因式的系數;
(2)各項都含有的字母的最低次冪的積是公因式的字母部分;
(3)公因式的系數與公因式字母部分的積是這個多項式的公因式. 活動目的:公因式由簡單到復雜,由于第一個多項式提供的比較簡單,尋找的公因式不具備歸納的條件,而后面所提供的尋找多項式2x2y+6x3y2中各項的公因式只是多了 含字母y的因式,對比前一個公因式,通過尋找多項式2x2y+6x3y2中各項的公因式,可順利的歸納出確定多項式各項公因式的方法,培養學生的初步歸納能力 具備了歸納出怎樣尋找多項式各項公因式的條件,培養學生的初步歸納能力. 第四環節
試一試 活動內容:
將以下多項式寫成幾個因式的乘積的形式:
(1)ab+ac
(2)x2+4x
(3)mb2+nb–b
如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法. 活動目的:
讓學生嘗試著使用因式分解的意義以及提公因式法的定義進行幾個簡單的多項式的分解,為過渡到較為復雜的多項式的分解提供必要的準備. 第五環節
做一做
活動內容:將下列多項式進行分解因式:
(1)3x+x(2)7x3–21x(3)8a3b2–12ab3c+ab
(4)–24x3+12x2-28x 先讓學生思考這些問題,然后教師在教學中注意講清確定公因式的具體步驟,從系數、字母和字母的次數3個方面進行分析;講完后要分析公因式和另一個因式之間的關系,并思考:如果提出公因式,另一個因式是否還有公因式?從而把提取公因式的“提”的具體含意深刻化。
最后學生歸納:提取公因式的步驟:
(1)找公因式;
(2)提公因式.
易出現的問題:(1)第二題只提出7x作為公因式
(2)第(3)題中的最后一項提出ab后,漏掉了“+1”;
(3)第(4)題提出“–”時,后面的因式不是每一項都變號. 教師提醒:(1)各項都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號內的多項式的項數與原多項式的項數是否相同;
(3)如果多項式的首項為“–”時,則先提取“–”號,然后提取其它公因式;
(4)將分解因式后的式子再進行單項式與多項式相乘,其積是否與原式相等. 活動目的:根據用提公因式法進行因式分解時出現的問題,在教師的啟發與指導下,學生自己歸納出提公因式的步驟及怎樣預防提取公因式時出現類似問題,為提取公因式積 累經驗.
第六環節:想一想:提公因式法因式分解與單項式乘多項式有什么關系?
活動目的:通過學生的回顧與思考,強化學生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關系,加深對類比的數學思想的理解。第七環節:反饋練習
活動內容:
1、找出下列各多項式的公因式:
(1)4x+8y
(2)am+an
(3)48mn–24m2n
3(4)a2b–2ab2+ab 2.把下列各式因式分解:(隨堂練習)
活動目的:通過學生的反饋練習,使教師能全面了解學生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.通過查缺補漏強化學生確定公因式的方法及提公因式法的步驟,能熟練地利用提公因式法分解因式。教學反思:
由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程、二次根式化簡等中都要用到因式分解的知識。因此應該注重因式分解的概念和方法的教學。
本節運用類比的數學方法,在新概念提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提取公因式法時,由提公因數到找公因式,由整式的乘法的逆運算到提取公因式的概念,都是利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解。
第三篇:提公因式法教案
§1.2.2 提公因式法
(二)●教學目標
(一)教學知識點
進一步讓學生掌握用提公因式法進行因式分解的方法.(二)能力訓練要求
進一步培養學生的觀察能力和類比推理能力.(三)情感與價值觀要求
通過觀察能合理地進行因式分解的推導,并能清晰地闡述自己的觀點.●教學重點
能觀察出公因式是多項式的情況,并能合理地進行因式分解.●教學難點
準確找出公因式,并能正確進行因式分解.●教學方法 類比學習法 ●教學過程
Ⅰ.創設問題情境,引入新課 [師]上節課我們學習了用提公因式法因式分解,知道了一個多項式可以分解為一個單項式與一個多項式的積的形式,那么是不是所有的多項式分解以后都是同樣的結果呢?本節課我們就來揭開這個謎.Ⅱ.新課講解
請在下列各式等號右邊的括號前填入“+”或“-”號,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例題講解
[例1]下列多項中各項的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)
(a?c)(a?b)2?(a?c)(b?a)2
6(m-n)3-12(n-m)2.?12xy2(x?y)?18x2y(x?y)
分析:雖然a(x-y)與b(y-x)看上去沒有公因式,但仔細觀察可以看出(x-y)與(y-x)是互為相反數,如果把其中一個提取一個“-”號,則可以出現公因式,如y-x=-(x-y).(m-n)3與(n-m)2也是如此.[例2]把a(x-3)+2b(x-3)分解因式.分析:這個多項式整體而言可分為兩大項,即a(x-3)與2b(x-3),每項中都含有(x-3),因此可以把(x-3)作為公因式提出來.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[師]從分解因式的結果來看,是不是一個單項式與一個多項式的乘積呢? [生]不是,是兩個多項式的乘積.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(a?c)(a?b)2?(a?c)(b?a)2(4)?12xy2(x?y)?18x2y(x?y)
Ⅲ.課堂練習
把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.課時小結
本節課進一步學習了用提公因式法分解因式,公因式可以是單項式,也可以是多項式,要認真觀察多項式的結構特點,從而能準確熟練地進行多項式的分解因式.Ⅴ.課后作業習題1.2 活動與探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教學后記:
第四篇:提公因式法教案
15.4
15.4.1因式分解提公因式法
教學目標:
1、了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形。
2、會確定多項式中各項的公因式,會用提取公因式法分解
多項式的因式。
3、會利用因式分解進行簡便計算。
4、通過與質因數分解的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想;通過對公因式是多項式時的因式分解的學習,培養換元的意識。
教學重難點
教學重點:因式分解的概念及提取公因式法。
教學難點:多項式中公因式的確定和當公因式是多項式時的因式分解。
教學準備:多媒體課件。
教學設計:
(一)新課引入:
1、問題:把15和18分解質因數。
2、回憶:運用所學知識填空
(3)2ab(a2
反之:(1)x2(2)x2-1=
(3)2a3b+2ab2
觀察以下式子的特點:
(1)15=3×5
(2)18=2×32
(3)X2+X=X(X+1)
(4)X2-1=(X+1)(X-1)
(5)2a3b+2ab2+2ab=2ab(a2+b+1)
由分解質因數類比到分解因式。
(二)新知學習:
1、分解因式的概念,與整式乘法的關系。
鞏固概念:判斷下列各式從左到右哪些是因式分解?
(1)m(a+b)=ma+mb
(2)2a+4=2(a+2)
(3)4a2-6ab2+2a=2a(2a-3b2+1)
(4)a2-2a+1=a(a-2)+1
(5)yy?y??10(?10)???100?xx?x?22、確定公因式。
問題:ma+mb+mc 這個多項式有什么特征? 引入公因式
概念。
例1:找出6x3y5-3x2y4的公因式
歸納找公因式的辦法。
課堂練習一:找出下列各多項式中的公因式填在后面括號內。
(1)3mx-6nx2()
(2)x4y3+x3y4()
(3)12x2yz-9x2y2()
(4)5a2-15a3+25a()
3、用提公因式法分解因式。
m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),觀察構成乘積的兩個因式分別是怎樣形成的?
m是這個多項式的公因式,而另一個因式是原多項式除以公因式所得的商式。像這種分解因式的方法叫做提公因式法。
想一想:提公因式法的理論依據是什么?
4、知識運用:
例2:把8a3b2+12ab3c分解因式
解:(略).例3:把-24x3-12x2+28x分解因式。
解:(略)
判斷下列各式分解因式是否正確?如果不對,請加以改正。
(1)2a2+4a+2=2(a2+2a)
(2)3x2y3-6xy2z=3xy(xy2-2yz)
課堂練習二:把下列各式分解因式。
(1)x2+x6(2)12xyz-9x2y2
(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-
1例4:把3a(b+c)-3(b+c)分解因式
判斷正誤:我班一位同學在昨天預習了提公因式法分解因式后做了兩道練習題,請你幫他檢查一下他的解題過程是否正確。如不正確,應怎樣改正。
(1)2x(x+y)2-(x+y)3
解:原式=(x+y)2[2x-(x+y)]
=(x+y)2(2x-x-y)
(2)(y+2)(y+1)-3(y+2)
解:原式=(y+2)(y+1-3)
=(y+2)(y-2)
=y2-4
課堂練習三:將下列各式分解因式。
(1)p(a2+b2)-q(a2+b2)
(2)2a2(y-z)2-4a(z-y)2
例5:先分解因式,再求值。
4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)
5、拓展與提高:
(1)、20112+2011能被2012整除嗎?
(2)、已知2x-y=8,xy=2,求多項式2x4y3-x3y4的值。
(3)、利用因式分解進行計算:23.1×24-46.2×7
(4)、將2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。
97962?29998
(5)、計算:
課堂小結:
⑴什么叫因式分解?
⑵確定公因式的方法:
⑶提公因式法分解因式的步驟: ⑷提公因式法分解因式的步驟: 課后作業:課本P170習題15.4 : 題
課后反思:
第1題;第4題的(1);第6
第五篇:提公因式法教案
提供因法因式分解
教學流程:
一、導入及板書課題:
復習鞏固整式的乘法。板書課題:提公因式法因式分解
二、學習目標:
? 1.了解因式分解的概念;
? 2.理解公因式的概念,會用提公因式法對多項式進行因式分解。
三、教學過程:
(一)自學指導:
?
1、自己認真看課本第42頁到第43頁的內容;
?
2、時間(5分鐘)
?
3、自學方法:結合課本例題和云圖中問題,獨立思考,標出看不懂的地方,可以和同桌小聲交流試一試的圖形意思
? 4.你能用嗎提公因式法對多項式進行因式分解嗎?
(二)自學檢測(8分鐘)
1、找四名學生書寫兩數和與兩數差的公式
2、挑各組學生進行板演。
3、兵教兵(2分鐘)
要求:各小組組長要切實負起責任,組長要落實好組員的學習情況,組長也講不清的可以問教師。
4、教師點撥(2分鐘)
①、公因式的系數是各項系數的最大公因數;
②、字母是各項中相同的字母,指數取各字母指數最低的;
③、要善于發現較隱蔽的公因式,如(X-Y)與(Y-X)是一對相反數,但它們可以變為相同的因式。
課堂作業:活頁試題
課后作業: 課本45頁練習題第2題