久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

初二數學公式:三角函數萬能公式

時間:2019-05-15 11:46:44下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《初二數學公式:三角函數萬能公式》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《初二數學公式:三角函數萬能公式》。

第一篇:初二數學公式:三角函數萬能公式

初二數學公式:三角函數萬能公式

學習可以這樣來看,它是一個潛移默化、厚積薄發的過程。查字典數學網編輯了初二數學公式:三角函數萬能公式,希望對您有所幫助!

(1)(sin)^2+(cos)^2=1

(2)1+(tan)^2=(sec)^2

(3)1+(cot)^2=(csc)^2

證明下面兩式,只需將一式,左右同除(sin)^2,第二個除(cos)^2即可

(4)對于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC 證: A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC 得證

同樣可以得證,當x+y+z=nZ)時,該關系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

三角函數萬能公式為什么萬能

萬能公式為:

設tan(A/2)=t

sinA=2t/(1+t^2)(A+,kZ)

tanA=2t/(1-t^2)(A+,kZ)

cosA=(1-t^2)/(1+t^2)(A+,且A+(/2)kZ)

就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數式最值的時候,就可以用萬能公式,推導成只含有一個變量的函數,最值就很好求了.小編為大家整理的初二數學公式:三角函數萬能公式就先到這里,希望大家學習的時候每天都有進步。

第二篇:三角函數公式表

角函數(Trigonometric)是數學中屬于初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。它包含六種基本函數:正弦、余弦、正切、余切、正割、余割。由于三角函數的周期性,它并不具有單值函數意義上的反函數。三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。起源

“三角學”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都來自拉丁文 Trigonometria。現代三角學一詞最初見于希臘文。最先使用Trigonometry這個詞的是皮蒂斯楚斯(Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角學:解三角學的簡明處理》,創造了這個新詞。它是由τριγωυου(三角學)及μετρει υ(測量)兩字構成的,原意為三角形的測量,或者說解三角形。古希臘文里沒有這個字,原因是當時三角學還沒有形成一門獨立的科學,而是依附于天文學。因此解三角形構成了古代三角學的實用基礎。

早期的解三角形是因天文觀測的需要而引起的。還在很早的時候,由于墾殖和畜牧的需要,人們就開始作長途遷移;后來,貿易的發展和求知的欲望,又推動他們去長途旅行。在當時,這種遷移和旅行是一種冒險的行動。人們穿越無邊無際、荒無人煙的草地和原始森林,或者經水路沿著海岸線作長途航行,無論是那種方式,都首先要明確方向。那時,人們白天拿太陽作路標,夜里則以星星為指路燈。太陽和星星給長期跋山涉水的商隊指出了正確的道路,也給那些沿著遙遠的異域海岸航行的人指出了正確方向。就這樣,最初的以太陽和星星為目標的天文觀測,以及為這種觀測服務的原始的三角測量就應運而生了。因此可以說,三角學是緊密地同天文學相聯系而邁出自己發展史的第一步的同角三角函數的基本關系式

倒數關系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=

1商的關系:

sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα

平方關系: sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α

誘導公式

sin(-α)=-sinα

sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα

sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα

sin(3π/2-α)=-cosα sinα

sin(2π-α)=-sinα cos(2π-α)=cosα cot(2π-α)=-cotα

cos(3π/2-α)=-tan(2π-α)=-tanα tan(3π/2-α)=cotα

cot(3π/2-α)=tanαsin(2kπ+α)=sinα

sin(3π/2+α)=-

cos(2kπ+α)=cosα tan(2kπ+α)=tanα

cot(π/2+α)=-tanα cot(π+α)=cotα

兩角和與差的三角函數公式

sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ tan(α+β)=——————1-tanα ·tanβ

tanα-tanβ tan(α-β)=——————1+tanα ·tanβ

半角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα tan2α=—————1-tan2α

三角函數的和差化積公式

α+βα-β sinα+sinβ=2sin—--·cos—-—22α+βα-β

cosα

cot(2kπ+α)=cotα

cos(3π/2+α)=sinα(其中k∈Z)

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα 萬能公式

2tan(α/2)

sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)

三角函數 的降冪公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα

3tanα-tan3α tan3α=——————1-3tan2α

三角函數的積化和差公式

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

21sinα-sinβ=2cos—--·sin—-—22α+βα-β cosα+cosβ=2cos—--·cos—-—22α+βα-β cosα-cosβ=-2sin—--·sin—-—22

cosα ·sinβ=-[sin(α+β)-sin(α-β)]21

cosα ·cosβ=-[cos(α+β)+cos(α-β)]21

sinα ·sinβ=--[cos(α+β)-cos(α-β)]2

化asinα ±bcosα為一個角的一個三角函數的形式(輔助角的三角函數的公式)

目錄

余弦定理 余弦定理性質 余弦定理證明余弦定理的作用 其他 余弦定理 余弦定理性質 余弦定理證明余弦定理的作用 其他

展開

編輯本段余弦定理

余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更為方便、靈活。

編輯本段余弦定理性質

對于任意三角形,任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的兩倍積,若三邊為a,b,c 三角為A,B,C,則滿足性質——a^2 = b^2 + c^22·a·c·cosBc^2 = a^2 + b^2c^2)/(2·a·b)cosB =(a^2 + c^2a^2)/(2·b·c)

(物理力學方面的平行四邊形定則中也會用到)第一余弦定理(任意三角形射影定理)

設△ABC的三邊是a、b、c,它們所對的角分別是A、B、C,則有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A。

編輯本段余弦定理證明平面向量證法

∵如圖,有a+b=c(平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)(以上粗體字符表示向量)又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(注意:這里用到了三角函數公式)再拆開,得c^2=a^2+b^2-2*a*b*CosC即 CosC=(a^2+b^2-c^2)/2*a*b

同理可證其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。

平面幾何證法

在任意△ABC中做AD⊥BC.∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根據勾股定理可得:AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2

b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac

編輯本段余弦定理的作用

(1)已知三角形的三條邊長,可求出三個內角;(2)已知三角形的兩邊及夾角,可求出第三邊.(3)已知三角形兩邊及其一邊對角,可求其它的角和第三條邊。(見解三角形公式,推導過程略。)

判定定理一(兩根判別法):

若記m(c1,c2)為c的兩值為正根的個數,c1為c的表達式中根號前取加號的值,c2為c的表達式中根號前取減號的值

①若m(c1,c2)=2,則有兩解;②若m(c1,c2)=1,則有一解;③若m(c1,c2)=0,則有零解(即無解)。

注意:若c1等于c2且c1或c2大于0,此種情況算到第二種情況,即一解。判定定理二(角邊判別法):一當a>bsinA時

①當b>a且cosA>0(即A為銳角)時,則有兩解;

②當b>a且cosA<=0(即A為直角或鈍角)時,則有零解(即無解);③當b=a且cosA>0(即A為銳角)時,則有一解;

④當b=a且cosA<=0(即A為直角或鈍角)時,則有零解(即無解);⑤當b

①當cosA>0(即A為銳角)時,則有一解;

②當cosA<=0(即A為直角或鈍角)時,則有零解(即無解);三當a

解三角形公式

例如:已知△ABC的三邊之比為5:4:3,求最大的內角.解 設三角形的三邊為a,b,c且a:b:c=5:4:3.由三角形中大邊對大角可知:∠A為最大的角.由余弦定理cos A=0

所以∠A=90°.再如△ABC中,AB=2,AC=3,∠A=60度,求BC之長.解 由余弦定理可知

BC2=AB2+AC2-2AB×AC·cos A

第三篇:高中數學-三角函數公式

兩角和公式

sin(A+B)= sinAcosB+cosAsinBsin(A-B)= sinAcosB-cosAsinBcos(A+B)= cosAcosB-sinAsinBcos(A-B)= cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)倍角公式

tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A 三倍角公式

sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3-3cosA

tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式

sin(A/2)= √{(1--cosA)/2}cos(A/2)= √{(1+cosA)/2}

tan(A/2)= √{(1--cosA)/(1+cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)和差化積

sin(a)+sin(b)= 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)= 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)= 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 積化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)= 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)= 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b)= 1/2*[sin(a+b)-sin(a-b)] 誘導公式

sin(-a)=-sin(a)cos(-a)= cos(a)sin(π/2-a)= cos(a)cos(π/2-a)= sin(a)sin(π/2+a)= cos(a)cos(π/2+a)=-sin(a)sin(π-a)= sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tanA = sinA/cosA 萬能公式

sin(a)= [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a)= {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a)= [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a·sin(a)+b·cos(a)= [√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a·sin(a)-b·cos(a)= [√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)= [sin(a/2)+cos(a/2)]^2;1-sin(a)= [sin(a/2)-cos(a/2)]^2;;公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanα公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)= tanα公式三:

任意角α與-α的三角函數值之間的關系:sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanα公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:

利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanα公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系: sin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(3π/2+α)=-cosαcos(3π/2+α)= sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinα

第四篇:三角函數變換公式

兩角和公式

cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ –cosαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(α+β)=(cotαcotβ-1)/(cotβ+cotα)cot(α-β)=(cotαcotβ+1)/(cotβ-cotα)和差化積

sinα+sinβ= 2sin[(α+β)/2] cos[(α-β)/2]sinα-sinβ= 2cos[(α+β)/2] sin[(α-β)/2]cosα+cosβ= 2cos[(α+β)/2] cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2] sin[(α-β)/2]tanα+tanβ=sin(α+β)/cosαcosβ

=tan(α+β)(1-tanαtanβ)

tanα-tanβ=sin(α-β)/cosαcosβ

=tan(α-β)/(1+tanαtanβ)

積化和差

sinαsinβ =-[cos(α+β)-cos(α-β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2 銳角三角函數公式

正弦:sin α=∠α的對邊/∠α 的斜邊余弦:cos α=∠α的鄰邊/∠α的斜邊正切:tan α=∠α的對邊/∠α的鄰邊余切:cot α=∠α的鄰邊/∠α的對邊 同角三角函數的基本關系

tanα= sinα/ cosα ;cotα= cosα/ sinα;secα=1 /cosα ;cscα=1/ sinα; 倒數關系:

tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的關系:

sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關系:

sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)二倍角公式:

正弦sin2α=2sinαcosα

余弦cos2a=cos2(a)-sin2(a)=2Cos2(a)-1

=1-2Sin2(a)

正切tan2α=(2tanα)/(1-tan2(α))

半角公式

tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)cot(α/2)=sinα/(1-cosα)=(1+cosα)/sinα.sin2(α/2)=(1-cos(α))/2cos2(α/2)=(1+cos(α))/2誘導公式

sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π-α)= sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtan(π/2+α)=-cotαtan(π/2-α)=cotα tan(π-α)=-tanαtan(π+α)=tanα 誘導公式記背訣竅:奇變偶不變,符號看象限 萬能公式

sinα=2tan(α/2)/[1+(tan(α/2))2]

cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]tanα=2tan(α/2)/[1-(tan(α/2))2]三倍角公式

sin3θ= 3sinθ-4sin3θ cos3θ=4cos3θ-3cosθ sin3θ=(3sinθ-sin3θ)/4 cos3θ=(3cosθ+cos3θ)/4 一個特殊公式(sinα+sinβ)*(sinα-sinβ)=sin(α+β)*sin(α-β)證明:(sinα+sinβ)*(sinα-sinβ)=2 sin[(α+β)/2] cos[(α-β)/2] *2 cos[(α+β)/2] sin[(α-β)/2]=sin(α+β)*sin(α-β)其它公式

(1)(sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2

(4)對于任意非直角三角形,總有tanA+tanB+tanC=tanAtanBtanC

證:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得

tanA+tanB+tanC=tanAtanBtanC得證同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)cos2A+cos2B+cos2C=1-2cosAcosBcosC(8)sin2A+sin2B+sin2C=2+2cosAcosBcosC

第五篇:初二數學公式

1、單獨的一個數或一個字母也是單向式。

2、單向式中的數字因數叫做這個單向式的系數。

3、一個單向式中,所有字母的指數的和叫做這個單向式的次數。

4、幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中,不含字母的項叫做常數項。

5、一般地,多項式里次數最高的項的次數,就是這個多項式的次數。

例如(X2+3X3)這是一個多項式 里面的3X3中的3就是這個多項式的次數

6、單項式和多項式統稱整式。

7、所含字母相同,并且相同字母的指數也相同的項叫做同類項。幾個常數項也是同類項。

8、吧多項式中的同類項合并成一項,即把它們的系數相加作為新的系數,而字母部分不變,叫做合并同類項。

9、幾個整式相加減,通常用括號吧每個整式括起來,再用加減號連接:然后去括號,合并同類項。

10、冪的乘方,底數不變,指數相同。

11、同底數冪相乘,底數不變,指數相加。

12、冪的乘方,底數不變,指數相乘。

13、積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘。

14、單向式與單向式相乘,把它們的系數、相同字母分別相乘,對于只在一個單向式里含有的字母,則連同它的指數作為積的因式。

15、單向式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

16、多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

17、兩個數的和與這兩個數的差的積=這兩個數的平方差。這個公式叫做(乘法的)平方差公式。

18、兩數和(或差)的平方=它們的平方和,加(或減)它們積的2倍。這兩個公式叫做(乘法的)完全平方公式。

19、添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號。

20、同底數冪相加,底數不變,指數相減。

21、任何不等于0的數的0次冪都等于1.22、單向式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

23、多項式除以單向式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。

24、吧一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式。

25、ma+mb+mc,它的各項都有一個公共的因式m,我們把因式M叫做這個多項式各項的公因式。

由m(a+b+c)=ma+mb+mc,可得ma+mb+mc=m(a+b+c)這樣就把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。

26、兩個數的平方,等于這兩個數的和與這兩個數差的積。

27、兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方。

十字交叉雙乘法沒有公式,一定要說的話

那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ為常數。x^2是X的平方

1.因式分解

即和差化積,其最后結果要分解到不能再分為止。而且可以肯定一個多項式要能分解因式,則結果唯一,因為:數域F上的次數大于零的多項式f(x),如果不計零次因式的差異,那么f(x)可以唯一的分解為以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次項的系數,P1(x),P2(x)……Pi(x)是首1互不相等的不可約多項式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

(*)或叫做多項式f(x)的典型分解式。證明:可參見《高代》P52-53

初等數學中,把多項式的分解叫因式分解,其一般步驟為:一提二套三分組等

要求為:要分到不能再分為止。

2.方法介紹

2.1提公因式法:

如果多項式各項都有公共因式,則可先考慮把公因式提出來,進行因式分解,注意要每項都必須有公因式。

例15x3+10x2+5x

解析顯然每項均含有公因式5x故可考慮提取公因式5x,接下來剩下x2+2x+1仍可繼續分解。

解:原式=5x(x2+2x+1)

=5x(x+1)2 2.2公式法

即多項式如果滿足特殊公式的結構特征,即可采用套公式法,進行多項式的因式分解,故對于一些常用的公式要求熟悉,除教材的基本公式外,數學競賽中常出現的一些基本公式現整理歸納如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

an+bn=(a+b)(an-1-an-2b+…+bn-1)(n為奇數)

說明由因式定理,即對一元多項式f(x),若f(b)=0,則一定含有一次因式x-b。可判斷當n為偶數時,當a=b,a=-b時,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小題均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+…+x15=

=(1+x)(1+x2)(1+x4)(1+x8)

注多項式分解時,先構造公式再分解。

2.3分組分解法

當多項式的項數較多時,可將多項式進行合理分組,達到順利分解的目的。當然可能要綜合其他分法,且分組方法也不一定唯一。

例1分解因式:x15+m12+m9+m6+m3+1

解原式=(x15+m12)+(m9+m6)+(m3+1)

=m12(m3+1)+m6(m3+1)+(m3+1)

=(m3+1)(m12+m6++1)

=(m3+1)[(m6+1)2-m6]

=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)

例2分解因式:x4+5x3+15x-9

解析可根據系數特征進行分組

解原式=(x4-9)+5x3+15x

=(x2+3)(x2-3)+5x(x2+3)

=(x2+3)(x2+5x-3)

2.4十字相乘法

對于形如ax2+bx+c結構特征的二次三項式可以考慮用十字相乘法,即x2+(b+c)x+bc=(x+b)(x+c)當x2項系數不為1時,同樣也可用十字相乘進行操作。

例3分解因式:①x2-x-6②6x2-x-12

解①1x2

1x-3

原式=(x+2)(x-3)②2x-3

3x4

原式=(2x-3)(3x+4)

注:“ax4+bx2+c”型也可考慮此種方法。

2.5雙十字相乘法

在分解二次三項式時,十字相乘法是常用的基本方法,對于比較復雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為:

(1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖

(2)把常數項分解成兩個因式填在第二個十字的右邊且使這兩個因式在第二個十字中交叉之積的和等于原式中含y的一次項,同時還必須與第一個十字中左端的兩個因式交叉之積的和等于原式中含x的一次項

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

2xy-3

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1 ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

說明:③式補上oa2,可用雙十字相乘法,當然此題也可用分組分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三個字母滿足二次六項式,把-2z2看作常數分解即可:

2.6拆法、添項法

對于一些多項式,如果不能直接因式分解時,可以將其中的某項拆成二項之差或之和。再應用分組法,公式法等進行分解因式,其中拆項、添項方法不是唯一,可解有許多不同途徑,對題目一定要具體分析,選擇簡捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可將-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再減x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再減4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆為,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(選擇法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

2.7換元法

換元法就是引入新的字母變量,將原式中的字母變量換掉化簡式子。運用此

種方法對于某些特殊的多項式因式分解可以起到簡化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若將此展開,將十分繁瑣,但我們注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用換元法分解此題

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5則原式=(y-1)(y+1)-120

=y2-121

=(y+11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y請認真比較體會哪種換法更簡單?

2.8待定系數法

待定系數法是解決代數式恒等變形中的重要方法,如果能確定代數式變形后的字母框架,只是字母的系數高不能確定,則可先用未知數表示字母系數,然后根據多項式的恒等性質列出n個含有特殊確定系數的方程(組),解出這個方程(組)求出待定系數。待定系數法應用廣泛,在此只研究它的因式分解中的一些應用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析屬于二次六項式,也可考慮用雙十字相乘法,在此我們用待定系數法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解設可設原式=(2a-3b+m)(a+3b+n)

=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………

比較兩個多項式(即原式與*式)的系數

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注對于(*)式因為對a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>

令a=0,b=1,m=n=-1n=5

2.9因式定理、綜合除法分解因式

對于整系數一元多項式f(x)=anxn+an-1xn-1+…+a1x+a0

由因式定理可先判斷它是否含有一次因式(x-)(其中p,q互質),p為首項系數an的約數,q為末項系數a0的約數

若f()=0,則一定會有(x-)再用綜合除法,將多項式分解

例8分解因式x3-4x2+6x-4

解這是一個整系數一元多項式,因為4的正約數為1、2、4

∴可能出現的因式為x±1,x±2,x±4,∵f(1)≠0,f(1)≠0

但f(2)=0,故(x-2)是這個多項式的因式,再用綜合除法

21-46-4

2-44

1-220

所以原式=(x-2)(x2-2x+2)

當然此題也可拆項分解,如x3-4x2+4x+2x-4

=x(x-2)2+(x-2)

=(x-2)(x2-2x+2)

分解因式的方法是多樣的,且其方法之間相互聯系,一道題很可能要同時運用多種方法才可能完成,故在知曉這些方法之后,一定要注意各種方法靈活運用,牢固掌握!

----------------

不知道你是什么教材的初中的都給你好了

----------------過兩點有且只有一條直線兩點之間線段最短 同角或等角的補角相等同角或等角的余角相等 過一點有且只有一條直線和已知直線垂直 直線外一點與直線上各點連接的所有線段中,垂線段最短 平行公理 經過直線外一點,有且只有一條直線與這條直線平行如果兩條直線都和第三條直線平行,這兩條直線也互相平行同位角相等,兩直線平行內錯角相等,兩直線平行同旁內角互補,兩直線平行

12兩直線平行,同位角相等兩直線平行,內錯角相等兩直線平行,同旁內角互補 定理 三角形兩邊的和大于第三邊推論 三角形兩邊的差小于第三邊 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和推論3 三角形的一個外角大于任何一個和它不相鄰的內角全等三角形的對應邊、對應角相等

22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等定理1 在角的平分線上的點到這個角的兩邊的距離相等 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上角的平分線是到角的兩邊距離相等的所有點的集合 等腰三角形的性質定理 等腰三角形的兩個底角相等(即等邊對等角)

推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

推論1 三個角都相等的三角形是等邊三角形

推論 2 有一個角等于60°的等腰三角形是等邊三角形

在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

直角三角形斜邊上的中線等于斜邊上的一半

定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 

逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理1 關于某條直線對稱的兩個圖形是全等形

定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形

48定理 四邊形的內角和等于360°

49四邊形的外角和等于360°

50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°

51推論 任意多邊的外角和等于360°

52平行四邊形性質定理1平行四邊形的對角相等 53平行四邊形性質定理2平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1 矩形的四個角都是直角

61矩形性質定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質定理1 菱形的四條邊都相等

65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71定理1 關于中心對稱的兩個圖形是全等的

72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一 點平分,那么這兩個圖形關于這一點對稱

74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段

相等,那么在其他直線上截得的線段也相等

推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊

三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半

梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h

83(1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S∕ ?

84(2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

判定定理3 三邊對應成比例,兩三角形相似(SSS)

定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

性質定理2 相似三角形周長的比等于相似比

性質定理3 相似三角形面積的比等于相似比的平方

任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值

100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值

101圓是定點的距離等于定長的點的集合

102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線

109定理 不在同一直線上的三點確定一個圓。

110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

112推論2 圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半

117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角

121①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r ?

122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線

123切線的性質定理 圓的切線垂直于經過切點的半徑

124推論1 經過圓心且垂直于切線的直線必經過切點

125推論2 經過切點且垂直于切線的直線必經過圓心

126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理 弦切角等于它所夾的弧對的圓周角

129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等

131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項

132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項

133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134如果兩個圓相切,那么切點一定在連心線上

135①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)

④兩圓內切 d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理 相交兩圓的連心線垂直平分兩圓的公*弦

137定理 把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139正n邊形的每個內角都等于(n-2)×180°/n

140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長撲愎劍篖=n兀R/180

145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內公切線長= d-(R-r)外公切線長= d-(R+r)(還有一些,大家幫補充吧)

實用工具:常用數學公式

公式分類 公式表達式

乘法與因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2)?

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a 根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

判別式

b^2-4ac=0 注:方程有兩個相等的實根

b^2-4ac>0 注:方程有兩個不等的實根  b^2-4ac<0 注:方程沒有實根,有*軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

下載初二數學公式:三角函數萬能公式word格式文檔
下載初二數學公式:三角函數萬能公式.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    三角函數公式及證明

    三角函數公式及證明 (本文由hahacjh@qq.com 編輯整理 2013.5.3) 基本定義 1.任意角的三角函數值: 在此單位圓中,弧AB的長度等于?; B點的橫坐標x?cos?,縱坐標y?sin? ; (由 三角形OBC面積......

    三角函數、極限、等價無窮小公式

    三角函數公式整合: 兩角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =......

    三角函數中萬能公式總結

    兩角和與差的三角函數 三角函數基本公式總結 1.和、差角公式 sin(???)?sin?cos??cos?sin?;cos(???)?cos?cos??sin?sin?; tg(???)?tg??tg?. 1?tg?tg?2.二倍角公式 sin2??2sin?cos?;cos2??cos2??sin2??2cos2??1?1?2sin2?; tg2??2tg?.......

    三角函數的誘導公式教案

    1.3 三角函數的誘導公式 賈斐 三維目標 1、通過學生的探究,明了三角函數的誘導公式的來龍去脈,理解誘導公式的推導過程;培養學生的邏輯推理能力及運算能力,滲透轉化及分類......

    高中數學三角函數公式定理口訣

    高中數學三角函數公式定理口訣三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。 同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割; 中心記上數字......

    三角函數誘導公式練習題含答案

    三角函數定義及誘導公式練習題1.將120o化為弧度為A.B.C.D.2.代數式的值為A.B.C.D.3.A.B.C.D.4.已知角α的終邊經過點(3a,-4a)(a......

    高中數學--三角函數公式大全doc

    高中數學—三角函數公式大全銳角三角函數公式sin α=∠α的對邊 / 斜邊cos α=∠α的鄰邊 / 斜邊tan α=∠α的對邊 / ∠α的鄰邊cot α=∠α的鄰邊 / ∠α的對邊倍角公式Si......

    三角函數誘導公式-教學反思

    我的教學反思 《三角函數的誘導公式(一)》講課教師:詹啟發 根據學校教務處和數學教研組的教學工作安排,我于12月22日在高一(8)班講授了一節《三角函數的誘導公式》公開課。......

主站蜘蛛池模板: 国产无遮挡无码视频免费软件| 日韩色欲人妻无码精品av| 内射一区二区精品视频在线观看| 波多野结衣久久一区二区| 2020久热爱精品视频在线观看| 人妻熟妇乱又伦精品无码专区| 中文av无码人妻一区二区三区| 欧美日韩综合一区二区三区| 亚洲男人电影天堂无码| 国产真实乱对白精彩久久| 国产精品亚洲精品一区二区| 精品国产三级| 午夜三级a三级三点在线观看| 亚洲国产精品第一区二区| 国精产品999国精产| 色综合天天天天综合狠狠爱| 国产欧美一区二区三区免费视频| 午夜理论无码片在线观看免费| 亚洲风情亚aⅴ在线发布| 天天躁夜夜躁天干天干2020| 午夜福利视频一区二区手机免费看| 玖玖资源站亚洲最大的网站| 日本熟妇色xxxxx日本免费看| 欧美成人午夜免费影院手机在线看| 无码啪啪熟妇人妻区| 亚洲中文在线播放一区| 中文字幕无码家庭乱欲| 男人的天堂在线视频| 日本高清视频wwww色| 人妻少妇偷人精品无码| 亚洲中文字幕无码卡通动漫野外| 久久996re热这里有精品| 在线播放亚洲人成电影| 国产亚洲精品久久久久久国模美| 精品少妇一区二区三区免费观| 久久精品免费一区二区| 亚洲 欧美 国产 制服 动漫| 东北女人被狂躁A片| 少妇无码av无码专线区大牛影院| 在线天堂资源www在线中文| 一本一道av无码中文字幕﹣百度|