久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

三角函數(shù)中萬(wàn)能公式總結(jié)

時(shí)間:2019-05-12 06:02:59下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《三角函數(shù)中萬(wàn)能公式總結(jié)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《三角函數(shù)中萬(wàn)能公式總結(jié)》。

第一篇:三角函數(shù)中萬(wàn)能公式總結(jié)

兩角和與差的三角函數(shù) 三角函數(shù)基本公式總結(jié)

1.和、差角公式

sin(???)?sin?cos??cos?sin?;cos(???)?cos?cos??sin?sin?;

tg(???)?tg??tg?.

1?tg?tg?2.二倍角公式

sin2??2sin?cos?;cos2??cos2??sin2??2cos2??1?1?2sin2?;

tg2??2tg?. 1?tg2?3.降冪公式

sin?cos??11?cos2?1?cos2?;cos2??. sin2?;sin2??2224.半角公式

sin?2??1?cos?2;

cos?2??1?cos?2;tg?2??1?cos?sin?1?cos???.

1?cos?1?cos?sin?5.萬(wàn)能公式

2tgsin???2;cos??1?tg21?tg2??2;tg??22tg?2.

1?tg2?21?tg2?26.積化和差公式 sin?cos??[sin(???)?sin(???)];cos?sin??[sin(???)?sin(???)];2211 cos?cos??[cos(???)?cos(???)];sin?sin???[cos(???)?cos(???)].22 7.和差化積公式

sin??sin??2sin???2222????????????;cos??cos???2sin. cos??cos??2coscossin2222cos???;sin??sin??2cos???sin???;

倍角、半角的三角函數(shù)

二倍角公式是兩角和公式的特殊情況,即:

由此可繼續(xù)導(dǎo)出三倍角公式.觀察角之間的聯(lián)系應(yīng)該是解決三角變換的一個(gè)關(guān)鍵.二倍角公式中余弦公式有三種形式,采用哪種形式應(yīng)根據(jù)題目具體而定.倍角和半角相對(duì)而言,兩倍角余弦公式的變形可引出半角公式.推導(dǎo)過(guò)程中可得到一組降次公式,即,進(jìn)一步得到半角公式:

降次公式在三角變換中應(yīng)用得十分廣泛,“降次”可以作為三角變換中的一個(gè)原則.半角公式在運(yùn)用時(shí)一定要注意正、負(fù)號(hào)的選取,而是正是負(fù)取決于

所在的象限.而半角的正切可用α的正弦、余弦表示,即:.這個(gè)公式可由二倍角公式得出,這個(gè)公式不存在符號(hào)問(wèn)題,因此經(jīng)常采用.反之用tan也可表示sinα, cosα, tanα,即:,這組公式叫做“萬(wàn)能”公式.教材中只要求記憶兩倍角公式,其它公式并沒(méi)有給出,需要時(shí)可根據(jù)二倍角公式及同角三角函數(shù)公式推出.

第二篇:三角函數(shù)公式知識(shí)點(diǎn)總結(jié)

三角函數(shù)公式大全

三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會(huì)發(fā)現(xiàn)三角函數(shù)各個(gè)公式之間有強(qiáng)大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在,下面是為大家整理的:

銳角三角函數(shù)公式

sin

α=∠α的對(duì)邊

/

斜邊

cos

α=∠α的鄰邊

/

斜邊

tan

α=∠α的對(duì)邊

/

∠α的鄰邊

cot

α=∠α的鄰邊

/

∠α的對(duì)邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2

是sinA的平方

sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a

=

tan

a

·

tan(π/3+a)·

tan(π/3-a)

三倍角公式推導(dǎo)

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(√3/2)2-sin2a]

=4sina(sin260°-sin2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(√3/2)2]

=4cosa(cos2a-cos230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

學(xué)習(xí)方法網(wǎng)[]

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ

=

sin[(θ+φ)/2]

cos[(θ-φ)/2]

sinθ-sinφ

=

cos[(θ+φ)/2]

sin[(θ-φ)/2]

cosθ+cosφ

=

cos[(θ+φ)/2]

cos[(θ-φ)/2]

cosθ-cosφ

=

sin[(θ+φ)/2]

sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ

=

[cos(α-β)-cos(α+β)]

/2

cosαcosβ

=

[cos(α+β)+cos(α-β)]/2

sinαcosβ

=

[sin(α+β)+sin(α-β)]/2

cosαsinβ

=

[sin(α+β)-sin(α-β)]/2

誘導(dǎo)公式

sin(-α)

=

-sinα

cos(-α)

=

cosα

tan

(—a)=-tanα

sin(π/2-α)

=

cosα

cos(π/2-α)

=

sinα

sin(π/2+α)

=

cosα

cos(π/2+α)

=

-sinα

sin(π-α)

=

sinα

cos(π-α)

=

-cosα

sin(π+α)

=

-sinα

cos(π+α)

=

-cosα

tanA=

sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

萬(wàn)能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

(4)對(duì)于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0

以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

第三篇:三角函數(shù)變換公式

兩角和公式

cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ –cosαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(α+β)=(cotαcotβ-1)/(cotβ+cotα)cot(α-β)=(cotαcotβ+1)/(cotβ-cotα)和差化積

sinα+sinβ= 2sin[(α+β)/2] cos[(α-β)/2]sinα-sinβ= 2cos[(α+β)/2] sin[(α-β)/2]cosα+cosβ= 2cos[(α+β)/2] cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2] sin[(α-β)/2]tanα+tanβ=sin(α+β)/cosαcosβ

=tan(α+β)(1-tanαtanβ)

tanα-tanβ=sin(α-β)/cosαcosβ

=tan(α-β)/(1+tanαtanβ)

積化和差

sinαsinβ =-[cos(α+β)-cos(α-β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2 銳角三角函數(shù)公式

正弦:sin α=∠α的對(duì)邊/∠α 的斜邊余弦:cos α=∠α的鄰邊/∠α的斜邊正切:tan α=∠α的對(duì)邊/∠α的鄰邊余切:cot α=∠α的鄰邊/∠α的對(duì)邊 同角三角函數(shù)的基本關(guān)系

tanα= sinα/ cosα ;cotα= cosα/ sinα;secα=1 /cosα ;cscα=1/ sinα; 倒數(shù)關(guān)系:

tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的關(guān)系:

sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關(guān)系:

sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)二倍角公式:

正弦sin2α=2sinαcosα

余弦cos2a=cos2(a)-sin2(a)=2Cos2(a)-1

=1-2Sin2(a)

正切tan2α=(2tanα)/(1-tan2(α))

半角公式

tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)cot(α/2)=sinα/(1-cosα)=(1+cosα)/sinα.sin2(α/2)=(1-cos(α))/2cos2(α/2)=(1+cos(α))/2誘導(dǎo)公式

sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π-α)= sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtan(π/2+α)=-cotαtan(π/2-α)=cotα tan(π-α)=-tanαtan(π+α)=tanα 誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限 萬(wàn)能公式

sinα=2tan(α/2)/[1+(tan(α/2))2]

cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]tanα=2tan(α/2)/[1-(tan(α/2))2]三倍角公式

sin3θ= 3sinθ-4sin3θ cos3θ=4cos3θ-3cosθ sin3θ=(3sinθ-sin3θ)/4 cos3θ=(3cosθ+cos3θ)/4 一個(gè)特殊公式(sinα+sinβ)*(sinα-sinβ)=sin(α+β)*sin(α-β)證明:(sinα+sinβ)*(sinα-sinβ)=2 sin[(α+β)/2] cos[(α-β)/2] *2 cos[(α+β)/2] sin[(α-β)/2]=sin(α+β)*sin(α-β)其它公式

(1)(sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2

(4)對(duì)于任意非直角三角形,總有tanA+tanB+tanC=tanAtanBtanC

證:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得

tanA+tanB+tanC=tanAtanBtanC得證同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)cos2A+cos2B+cos2C=1-2cosAcosBcosC(8)sin2A+sin2B+sin2C=2+2cosAcosBcosC

第四篇:高中數(shù)學(xué)--三角函數(shù)公式doc

高中數(shù)學(xué)—三角函數(shù)公式大全

銳角三角函數(shù)公式

sin α=∠α的對(duì)邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對(duì)邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對(duì)邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A))三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推導(dǎo)

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin²a)+(1-2sin²a)sina

成都家教濟(jì)南家教

=3sina-4sin³a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos²a-1)cosa-2(1-sin²a)cosa

=4cos³a-3cosa

sin3a=3sina-4sin³a

=4sina(3/4-sin²a)

=4sina[(√3/2)²-sin²a]

=4sina(sin²60°-sin²a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)

cos3a=4cos³a-3cosa

=4cosa(cos²a-3/4)

=4cosa[cos²a-(√3/2)²]

=4cosa(cos²a-cos²30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ =-2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

積化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

誘導(dǎo)公式

sin(-α)=-sinα

cos(-α)= cosα

tan(—a)=-tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

sin(π/2+α)= cosα

cos(π/2+α)=-sinα

sin(π-α)= sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

萬(wàn)能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

(4)對(duì)于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得證

同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

第五篇:高中數(shù)學(xué)-三角函數(shù)公式

兩角和公式

sin(A+B)= sinAcosB+cosAsinBsin(A-B)= sinAcosB-cosAsinBcos(A+B)= cosAcosB-sinAsinBcos(A-B)= cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)倍角公式

tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A 三倍角公式

sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3-3cosA

tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式

sin(A/2)= √{(1--cosA)/2}cos(A/2)= √{(1+cosA)/2}

tan(A/2)= √{(1--cosA)/(1+cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)和差化積

sin(a)+sin(b)= 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)= 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)= 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 積化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)= 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)= 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b)= 1/2*[sin(a+b)-sin(a-b)] 誘導(dǎo)公式

sin(-a)=-sin(a)cos(-a)= cos(a)sin(π/2-a)= cos(a)cos(π/2-a)= sin(a)sin(π/2+a)= cos(a)cos(π/2+a)=-sin(a)sin(π-a)= sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tanA = sinA/cosA 萬(wàn)能公式

sin(a)= [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a)= {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a)= [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a·sin(a)+b·cos(a)= [√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a·sin(a)-b·cos(a)= [√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)= [sin(a/2)+cos(a/2)]^2;1-sin(a)= [sin(a/2)-cos(a/2)]^2;;公式一:

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanα公式二:

設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)= tanα公式三:

任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanα公式四:

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:

利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanα公式六:

π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(3π/2+α)=-cosαcos(3π/2+α)= sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinα

下載三角函數(shù)中萬(wàn)能公式總結(jié)word格式文檔
下載三角函數(shù)中萬(wàn)能公式總結(jié).doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    三角函數(shù)公式表

    角函數(shù)(Trigonometric)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的一類(lèi)函數(shù)。它們的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義......

    三角函數(shù)公式及證明

    三角函數(shù)公式及證明 (本文由hahacjh@qq.com 編輯整理 2013.5.3) 基本定義 1.任意角的三角函數(shù)值: 在此單位圓中,弧AB的長(zhǎng)度等于?; B點(diǎn)的橫坐標(biāo)x?cos?,縱坐標(biāo)y?sin? ; (由 三角形OBC面積......

    如何有效教學(xué)三角函數(shù)公式范文合集

    如何有效教學(xué)三角函數(shù)公式 數(shù)學(xué)上的很多定理,你要把它記下來(lái)很難,但你要是把這個(gè)定理求證一遍,它就活靈活現(xiàn)地展現(xiàn)在你面前,這個(gè)定理你不用記就記住了。舉例說(shuō)明,數(shù)學(xué)上三角函數(shù)......

    初二數(shù)學(xué)公式:三角函數(shù)萬(wàn)能公式

    初二數(shù)學(xué)公式:三角函數(shù)萬(wàn)能公式 學(xué)習(xí)可以這樣來(lái)看,它是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。查字典數(shù)學(xué)網(wǎng)編輯了初二數(shù)學(xué)公式:三角函數(shù)萬(wàn)能公式,希望對(duì)您有所幫助! (1)(sin)^2+(cos)......

    高數(shù)三角函數(shù)公式大全(全文5篇)

    三角函數(shù)公式大全 兩角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =......

    三角函數(shù)誘導(dǎo)公式練習(xí)題含答案

    三角函數(shù)定義及誘導(dǎo)公式練習(xí)題1.將120o化為弧度為A.B.C.D.2.代數(shù)式的值為A.B.C.D.3.A.B.C.D.4.已知角α的終邊經(jīng)過(guò)點(diǎn)(3a,-4a)(a......

    高二數(shù)學(xué)教案:三角函數(shù)兩角和公式

    大毛毛蟲(chóng)★傾情搜集★精品資料 兩角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB  cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsin......

    三角函數(shù)的誘導(dǎo)公式教案

    1.3 三角函數(shù)的誘導(dǎo)公式 賈斐 三維目標(biāo) 1、通過(guò)學(xué)生的探究,明了三角函數(shù)的誘導(dǎo)公式的來(lái)龍去脈,理解誘導(dǎo)公式的推導(dǎo)過(guò)程;培養(yǎng)學(xué)生的邏輯推理能力及運(yùn)算能力,滲透轉(zhuǎn)化及分類(lèi)......

主站蜘蛛池模板: 高潮爽死抽搐白浆gif视频| 国产成人无码aⅴ片在线观看| 色窝窝免费一区二区三区| 亚洲男人av天堂午夜在| 欧美成aⅴ人高清怡红院| 无码h黄肉动漫在线观看999| 伊人久久大香线蕉avapp下载| 成人做爰免费视频免费看| 国产精品宾馆在线精品酒店| 久久综合九色综合国产| 日产乱码一二三区别免费麻豆| 亚洲亚洲人成综合网络| 日本免费人成视频播放| 少妇人妻上班偷人精品视频| 亚洲伊人色综合www962| 国产精品无码一区二区在线观一| 一本久久知道综合久久| 99热爱久久99热爱九九热爱| 久久99精品久久久久蜜芽| 久久精品国产一区二区三区不卡| 美女又色又爽视频免费| 亚洲∧v久久久无码精品| 真人性生交免费视频| 日韩精品无码一区二区三区视频| 成人免费精品网站在线观看影片| 亚洲h成年动漫在线观看网站| 久久精品国产2020观看福利| 日本爽快片18禁免费看| 人人鲁人人莫人人爱精品| а√天堂资源8在线官网在线| 色无码| 国产 | 久你欧洲野花视频欧洲1| 美女脱了内裤张开腿让男人桶网站| 国产清纯在线一区二区vr| 吃奶还摸下面动态图gif| 8天堂资源在线| 18禁无遮挡羞羞污污污污网站| 高清破外女出血av毛片| 巨大乳女人做爰视频在线看| 久久无码中文字幕久久无码app| 亚洲综合熟女久久久30p|