第一篇:江南大學(xué)發(fā)酵工程研究生面試英語翻譯材料_62256
[1] Industrial biotechnology, also known as white biotechnology, is the application of modern biotechnology to the sustainable production of chemicals, materials, and fuels from renewable sources, using living cells and/or their enzymes.This field is widely regarded as the third wave of biotechnology, distinct from the first two waves(medical or red biotechnology and agricultural or green biotechnology).Much interest has been generated in this field mainly because industrial biotechnology is often associated with reduced energy consumption, greenhouse gas emissions, and waste generation, and also may enable the paradigm shift from fossil fuel-based to bio-based production of value-added chemicals.***************************************************************************************************** [2] In aerobic bioprocesses, oxygen is a key substrate employed for growth, maintenance and in other metabolic routes, including product synthesis.Due to its low solubility in broths, which are usually aqueous solutions, oxygen must be continuously provided by a gas phase, and thus the knowledge of oxygen transfer rate(OTR)is needed for bioreactor design and scale-up.The concentration of dissolved oxygen in the broth, a suspension of respiring microorganisms, depends on the OTR from the gas to the liquid phase, and on the rate of its consumption by the microorganism, the oxygen uptake rate(OUR).***************************************************************************************************** [3] An immobilized enzyme is an enzyme that is attached to an inert, insoluble material such as calcium alginate(produced by reacting a mixture of sodium alginate solution and enzyme solution with calcium chloride).This can provide increased resistance to changes in conditions such as pH or temperature.It also allows enzymes to be held in place throughout the reaction, following which they are easily separated from the products and may be used again—a far more efficient process and so is widely used in industry for enzyme catalysed reactions.An alternative to enzyme immobilization is whole cell immobilization.***************************************************************************************************** [4] The bioreactor is the heart of any biochemical process in which enzymes, microbial, mammalian or plant cell systems are used for manufacture of a wide range of useful biological products.To design a bioreactor, some objectives have to be defined.The decisions made in the design of the bioreactor might have a significant impact on overall process performance.Knowledge of reaction kinetics is essential for understanding how a biological reactor works.Other areas of bioprocess engineering such as mass and energy balances, mixing, mass transfer and heat transfer are also required.***************************************************************************************************** [5] One of the most important tools for industrial biotechnology is protein engineering.More often than not, a wild-type enzyme discovered in nature is not suitable for an industrial process.There is a need to engineer and optimize enzyme performance in terms of activity, selectivity on non-natural substrates, thermostability, tolerance toward organic solvents, enantioselectivity, and substrate/product inhibition in order for the enzymatic process to be commercially viable.***************************************************************************************************** [6] As product puri?cation is an essential part of the bioprocess, it is also evident that the development and optimization of this part has to be performed in an integral way together with other key elements like biotransformation, fermentation or biocatalyst development.Changes in the bioprocess itself or in the reaction conditions like pH, temperature and solvent, can have a decisive in?uence on the crystallization, phase separation, extraction or adsorption behavior
of
product
and
impurities.The
combination
of fermentation/biotransformation with in situ recovery techniques continues to be of much importance.***************************************************************************************************** [7] The main goal of metabolic engineering is to improve the metabolic phenotype through genetic modi?cations.Most of the recent approaches to metabolic engineering have aimed to improve a particular biosynthetic capacity through engineering of the target pathway based on rational assumptions for its improvement.The resulting phenotypes are, however, often suboptimal and unsatisfactory due to the distant effects of genetic modi?cations or unknown regulatory interactions.It is therefore strongly desirable to take into account the overall metabolic regulation mechanism in metabolic engineering.Metabolic regulation may occur either at the enzyme level or at the gene level.***************************************************************************************************** [8] Great efforts have been made in the last decade to identify genes and pathways relevant to cells enhancing productivity, ?gure out the metabolic bottlenecks, understand the mechanism of protein synthesis, develop better nutrients and media formulation, increase growth rate, and design processes with the aim to increase overall productivity.New technologies have recently become available, which allow a thoroughly high throughput assessment of changes at gene(genomics)and protein(proteomics)levels involved in determining productivity in different environmental conditions, and establish functional relationships between cellular organization and productivity.***************************************************************************************************** [9] The oxygen transfer rate(OTR)in a bioreactor depends on the liquid side mass transfer coef?cient, kL, the total speci?c surface area available for mass transfer, a, and the driving force in terms of concentrations.Since the two parameters, kL and a, can not be measured easily individually, they are usually lumped together as one single parameter called volumetric mass transfer coef?cient, kLa.The available information on kLa in bioreactors is extensive.Many empirical correlations are proposed for kLa estimation.***************************************************************************************************** [10] A fed-batch is a biotechnological batch process which is based on feeding of a growth limiting nutrient substrate to a culture.The fed-batch strategy is typically used in bio-industrial processes to reach a high cell density in the bioreactor.Mostly the feed solution is highly concentrated to avoid dilution of the bioreactor.The controlled addition of the nutrient directly affects the growth rate of the culture and allows to avoid overflow metabolism(formation of side metabolites, such as acetate for Escherichia coli, lactic acid in cell cultures, ethanol in Saccharomyces cerevisiae), oxygen limitation(anaerobiosis).***************************************************************************************************** [11] Solid-state fermentation(SSF)has long been applied to the food industry.SSFs are processes carried out with microbes growing on nutrient impregnated solid substrate with little or no free water.SSF can be directly carried out with abundant low-cost biomaterials(starch, cellulose, lignin, hemicellulose, chitin, etc.)with minimal or no pretreatment, and thus is relatively simple, uses less energy than submerged fermentation(SmF), and can provide unique microenvironments conducive to microbial growth and metabolic activities.Currently, SSF is undergoing a renewed surge of interest, primarily because of the opportunities that SSF affords for increased productivity as compared to SmF.***************************************************************************************************** [12] Fermentation broths are complex, aqueous mixtures of cells, comprising soluble extracellular, intracellular products and any unconverted substrate or unconvertible components.Recovery and extraction of product is important in bioprocess engineering.In particular, separation is a useful technique;it depends on product, its solubility, size of the process, and product value.Purification of high-value pharmaceutical products using chromatography such as hormones, antibody and enzymes is expensive and difficult to scale up.The necessary steps to follow a specific process depend on the nature of the product and the characteristics of the fermentation broth.***************************************************************************************************** [13] Sterilisation is the action of eliminating microorganisms from a medium.Sterility is the absence of any detectable and viable microbes in a culture medium or in the gas phase.Sterilisation is a process that destroys all living organisms, spores and viruses in a pressurised vessel at high temperature.In the food and dairy industries, sterilisation is commonly used to preserve food products.At the laboratory scale, huge steel vessels with live stream at 105 kPa are commonly used for 20–30 minutes.This is a closed system known as an autoclave;therefore it is batch sterilisation.Wet steam is usually used for effective autoclaving.The high temperature and long duration may kill all living microorganisms, spores and viruses.
第二篇:江南大學(xué)發(fā)酵工程專業(yè)參考書目
重慶大學(xué)發(fā)酵工程專業(yè)
參考書目:《生物化學(xué)(第三版上下冊)》 王鏡巖等主編 高等教育出版社
《化工原理(上、下冊)》 夏清陳常貴等 天津大學(xué)出版社
《微生物學(xué)教程(第二版)》 周德慶 高等教育出版社
微生物參考書: 1.諸葛健,李華鐘主編,微生物學(xué)(第二版),科學(xué)出版社,2009 2.諸葛健,李華鐘,王正祥主編,微生物遺傳育種學(xué),化學(xué)工業(yè)出版社,2008 3.周德慶,微生物學(xué)教程(第二版),高等教育出版社,2002
第三篇:江南大學(xué)發(fā)酵工程綜合 考試大綱
課程名稱:發(fā)酵工程綜合
一、考試的總體要求
發(fā)酵工程原理與技術(shù)是生物工程專業(yè)一門最重要的專業(yè)核心課程。作為江南大學(xué)發(fā)酵工程、輕工技術(shù)與工程和生物工程專業(yè)碩士研究生入學(xué)考試的復(fù)試科目,考生應(yīng)掌握發(fā)酵工程所涉及的生物化學(xué)和微生物學(xué)的基礎(chǔ)理論知識和生物技術(shù)產(chǎn)業(yè)化過程涉及的工程知識,具備發(fā)酵工程相關(guān)的研究方法與技能,并要求對發(fā)酵工程研究領(lǐng)域的發(fā)展和前沿有一定的了解。要求考生掌握發(fā)酵工程的基本原理,具備一定的融匯貫通、獨立思考的綜合分析能力能力,主要考察學(xué)生分析和解決生物技術(shù)產(chǎn)業(yè)化中關(guān)鍵問題的能力。
二、考試的內(nèi)容及比例
本課程考試內(nèi)容涉及面較廣,突出有關(guān)發(fā)酵過程的化學(xué)、生物學(xué)、生物化學(xué)和微生物學(xué)等基本原理,并結(jié)合工程學(xué)知識,內(nèi)容包括發(fā)酵過程的微生物學(xué)和生物化學(xué)基本原理、發(fā)酵原輔料處理、培養(yǎng)基及其水的處理和無菌空氣的制備,工業(yè)微生物菌種的擴大培養(yǎng)、各種發(fā)酵操作方式的工藝規(guī)律、下游工程的分離方法等發(fā)酵工程基礎(chǔ),發(fā)酵工業(yè)的主要設(shè)備的操作原理、性能及構(gòu)造和設(shè)計方法以及固態(tài)發(fā)酵、基因工程菌發(fā)酵和動植物細(xì)胞培養(yǎng)等一些非常規(guī)發(fā)酵過程。具體考試內(nèi)容和大致比例如下:
1、發(fā)酵工程的基本概念,約20%;
2、發(fā)酵原料的處理及培養(yǎng)基制備,約10%;
3、各種發(fā)酵操作方式的工藝原理和規(guī)律,約20%;
4、發(fā)酵過程的優(yōu)化及其動力學(xué)研究,約10%;
5、發(fā)酵工程的裝備,約10%;
6、下游工程的分離方法,約10%;
7、發(fā)酵工程的概況及其前沿進展,約20%。
三、試題類型及比例
1、名詞解釋: 約15%;
2、填空或判斷題: 約15%;
3、簡答題: 約30%;
4、問答題(含計算題): 約40%。
四、考試形式及時間
考試形式為筆試。考試時間為3小時。
五、主要參考教材
1.發(fā)酵工程原理與技術(shù),李艷主編,高等教育出版社
2.微生物工程工藝原理(二版),姚汝華主編,華南理工大學(xué)出版社
第四篇:2013江南大學(xué)發(fā)酵工程綜合復(fù)試題
2013年江南大學(xué)發(fā)酵工程復(fù)試真題
一、名詞解釋(每個5分,共45分)
1、功率準(zhǔn)數(shù)
2、liquification and saccharification
3、fed-batch fermatation
4、Immobilized cells
5、菌種的衰退與復(fù)壯
6、死角
7、Metabolic engineering
8、發(fā)酵強度
9、致死溫度和致死時間
二、問答題(105分)
1、固態(tài)發(fā)酵的特點,并舉五個固態(tài)發(fā)酵的例子(10分)
2、簡述微生物細(xì)胞的破碎方法(10分)
3、簡述在空氣過濾滅菌的工藝中,提高空氣過濾效率的措施(10分)
4、簡述預(yù)防噬菌體感染的措施(10分)
5、給一段英文文獻(xiàn),讓從中找出所涉及的分離方法,并說明各方法的作用或目的。本人英語不太好,只知道里面涉及到超濾、離心,好像還有別的(12)
6、什么是KLa,影響KLa的因素(13分)
7、發(fā)酵生產(chǎn)中泡沫產(chǎn)生的原因;影響泡沫穩(wěn)定性的因素;泡沫的產(chǎn)生對發(fā)酵的影響;控制泡沫的方式(15分)
8、一個綜合題,25分,給出一個圖表,是微生物生長曲線、溶氧、葡萄糖濃度及產(chǎn)物濃度四條曲線,讓回答:(1):該產(chǎn)物是初級代謝產(chǎn)物還是次級代謝產(chǎn)物,說明理由;(2):是分批發(fā)酵、半分批發(fā)酵還是連續(xù)發(fā)酵,說明理由;(3):發(fā)酵過程中有無異常現(xiàn)象,若有,該如何解決;(4):根據(jù)自己的理解,給此發(fā)酵過程一些建議
第五篇:江南大學(xué)物流工程研究生簡介
一、專業(yè)領(lǐng)域簡介
物流工程指運用現(xiàn)代工程管理的思想與方法,對物流活動進行的規(guī)劃與設(shè)計、實施與控制、組織與管理。從系統(tǒng)工程學(xué)角度看,現(xiàn)代物流系統(tǒng)的全過程包括需求預(yù)測、原材料采購、零部件支持和物料管理、物流中心選址、規(guī)劃與設(shè)計以及運輸、倉儲、包裝、配送、流通加工、信息等各種活動。這些物流活動離不開物流應(yīng)用技術(shù)的支持。物流管理是管理與技術(shù)的交叉學(xué)科,與眾多的學(xué)科相關(guān)聯(lián),如管理科學(xué)與工程、工業(yè)工程、控制工程、計算機與網(wǎng)絡(luò)技術(shù)、環(huán)境工程、建筑與土木工程等。因此,需要運用綜合工程技術(shù)與管理的手段和方法,解決物流實踐中的技術(shù)與管理問題。
二、培養(yǎng)目標(biāo)
本學(xué)科授予全日制專業(yè)碩士學(xué)位。按照教育部《關(guān)于做好全日制碩士專業(yè)學(xué)位研究生培養(yǎng)工作的若干意見》要求,遵循物流工程專業(yè)特點,制定本學(xué)科培養(yǎng)目標(biāo):掌握物流工程專業(yè)領(lǐng)域堅實的基礎(chǔ)理論和寬廣的專業(yè)知識、具有較強的解決實際問題的能力,能夠承擔(dān)物流工程專業(yè)技術(shù)或管理工作、具有良好的職業(yè)素養(yǎng)的高層次應(yīng)用型專門人才。
物流工程碩士專業(yè)學(xué)位獲得者應(yīng)德智體全面發(fā)展,具有開拓進取、銳意改革、科學(xué)嚴(yán)謹(jǐn)?shù)难芯烤瘛?yīng)堅實系統(tǒng)地掌握與本學(xué)科有關(guān)的基礎(chǔ)理論和專業(yè)知識,能獨立從事專業(yè)技術(shù)工作,研究和解決本專業(yè)方面的實際問題。能運用一種以上外語較熟練地閱讀專業(yè)書刊資料和撰寫科技論文,基本達(dá)到能讀、寫、聽、說的程度。
三、研究方向
(一)企業(yè)物流的管理與運作
現(xiàn)代企業(yè)物流管理是建立在系統(tǒng)論、信息論和控制論的基礎(chǔ)上,根據(jù)物質(zhì)資料實體流動的規(guī)律,應(yīng)用管理的基本原理和科學(xué)方法,對物流活動進行計劃、組織、指揮、協(xié)調(diào)、控制和監(jiān)督,使各項物流活動實現(xiàn)最佳的協(xié)調(diào)與配合,以降低物流成本,提高物流效率和經(jīng)濟效益。
(二)物流系統(tǒng)規(guī)劃與設(shè)計
物流系統(tǒng)是一個涉及領(lǐng)域非常廣泛的綜合系統(tǒng),物流系統(tǒng)的規(guī)劃與設(shè)計主要是對物流戰(zhàn)略層面的計劃與決策,將對象視為一個相互聯(lián)系的有機整體,從全局的觀點出發(fā),進行全面的綜合分析;在此基礎(chǔ)上,進一步掌握物流系統(tǒng)分析、優(yōu)化與整合的相關(guān)理論與方法以及物流系統(tǒng)方案的設(shè)計方法與物流系統(tǒng)的綜合評價技術(shù)。
(三)供應(yīng)鏈管理
在滿足一定的客戶服務(wù)水平的條件下,為了使整個供應(yīng)鏈系統(tǒng)成本達(dá)到最小而把供應(yīng)商、制造商、倉儲、配送中心和渠道上等有效地組織在一起來進行的產(chǎn)品制造、轉(zhuǎn)移、分銷及銷售的管理辦法。供應(yīng)鏈管理是一個動態(tài)的復(fù)雜系統(tǒng),在配送網(wǎng)絡(luò)的重構(gòu)、庫存控制、供應(yīng)鏈集成與優(yōu)化、產(chǎn)品設(shè)計、決策支持系統(tǒng)等方面是該方向研究的一些主要內(nèi)容。
(四)物流產(chǎn)業(yè)規(guī)劃與設(shè)計
依托相關(guān)物流服務(wù)設(shè)施降低物流成本、提高物流運作效率,改善企業(yè)服務(wù)有關(guān)的流通加工、原材料采購、便于消費地直接聯(lián)系的生產(chǎn)活動,具有產(chǎn)業(yè)發(fā)展的性質(zhì),還包括物流園區(qū)規(guī)劃、物流中心(配送中心)規(guī)劃與設(shè)計等。