第一篇:中考數(shù)學(xué)證明題
中考數(shù)學(xué)證明題
O是已知線段AB上的一點(diǎn),以O(shè)B為半徑的圓O交AB于點(diǎn)C,以線段AO為直徑的半圓圓o于點(diǎn)D,過點(diǎn)B作AB的垂線與AD的延長線交于點(diǎn)E
(1)說明AE切圓o于點(diǎn)D
(2)當(dāng)點(diǎn)o位于線段AB何處時,△ODC恰好是等邊三角形〉?說明理由
答案:一題:顯然三角形DOE是等邊三角形:
理由:
首先能確定O為圓心
然后在三角形OBD中:BO=OD,再因角B為60度,所以三角形OBD為等邊三角形;
同理證明三角形OCE為等邊三角形
從而得到:角BOD=角EOC=60度,推出角DOE=60度
再因?yàn)镺D=OE,三角形DOE為等腰三角形,結(jié)合上面角DOE=60度,得出結(jié)論:
三角形DOE為等邊三角形
第三題沒作思考,有事了,改天再解
二題:
要證明三角形ODE為等邊三角形,其實(shí)還是要證明角DOE=60度,因?yàn)槲覀冎廊切蜲DE是等腰三角形。
此時,不妨設(shè)角ABC=X度,角ACB=Y度,不難發(fā)現(xiàn),X+Y=120度。
此時我們要明確三個等腰三角形:ODE;BOD;OCE
此時在我們在三角形BOD中,由于角OBD=角ODB=X度
從而得出角BOD=180-2X
同理在三角形OCE中得出角EOC=180-2Y
則角BOD+角EOC=180-2X+180-2Y,整理得:360-2(X+Y)
把X+Y=120代入,得120度。
由于角EOC+角BOD=120度,所以角DOE就為60度。
外加三角形DOE本身為等腰三角形,所以三角形DOE為等邊三角形!
圖片發(fā)不上來,看參考資料里的1如圖,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求證:AC=EF。
2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD
(1)求證:△BCE全等△DCF
3.如圖所示,過三角形ABC的頂點(diǎn)A分別作兩底角角B和角C的平分線的垂線,AD垂直于BD于D,AE垂直于CE于E,求證:ED||BC.4.已知,如圖,pB、pC分別是△ABC的外角平分線,且相交于點(diǎn)p。
求證:點(diǎn)p在∠A的平分線上。
回答人的補(bǔ)充2010-07-1900:101.在三角形ABC中,角ABC為60度,AD、CE分別平分角BAC角ACB,試猜想,AC、AE、CD有怎么樣的數(shù)量關(guān)系
2.把等邊三角形每邊三等分,經(jīng)其向外長出一個邊長為原來三分之一的小等邊三角形,稱為一次生長,如生長三次,得到的多邊形面積是原三角形面積的幾倍
求證:同一三角形的重心、垂心、三條邊的中垂線的交點(diǎn)三點(diǎn)共線。(這條線叫歐拉線)求證:同一三角形的三邊的中點(diǎn)、三垂線的垂足、各頂點(diǎn)到垂心的線段的中點(diǎn)這9點(diǎn)共圓。~~(這個圓叫九點(diǎn)圓)
3.證明:對于任意三角形,一定存在兩邊a、b,滿足a比b大于等于1,小于2分之根5加
14.已知△ABC的三條高交于垂心O,其中AB=a,AC=b,∠BAC=α。請用只含a、b、α三個字母的式子表示AO的長(三個字母不一定全部用完,但一定不能用其它字母)。
5.設(shè)所求直線為y=kx+b(k,b為常數(shù).k不等于0).則其必過x-y+2=0與x+2y-1=0的交點(diǎn)(-1,1).所以b=k+1,即所求直線為y=kx+k+1(1)過直線x-y+2=0與Y軸的交點(diǎn)(0,2)且垂直于x-y+2=0的直線為y=-x+2(2).直線(2)與直線(1)的交點(diǎn)為A,直線(2)與直線x+2y-1=0的交點(diǎn)為B,則AB的中點(diǎn)為(0,2),由線段中點(diǎn)公式可求k.6.在三角形ABC中,角ABC=60,點(diǎn)p是三角ABC內(nèi)的一點(diǎn),使得角ApB=角BpC=角CpA,且pA=8pC=6則pB=2p是矩形ABCD內(nèi)一點(diǎn),pA=3pB=4pC=5則pD=3三角形ABC是等腰直角三角形,角C=90O是三角形內(nèi)一點(diǎn),O點(diǎn)到三角形各邊的距離都等于1,將三角形ABC饒點(diǎn)O順時針旋轉(zhuǎn)45度得三角形A1B1C1兩三角形的公共部分為多邊形KLMNpQ,1)證明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC與三角形A1B1C1公共部分的面積。
已知三角形ABC,a,b,c分別為三邊.求證:三角形三邊的平方和大于等于16倍的根號3(即:a2+b2+c2大于等于16倍的根號3)
初一幾何單元練習(xí)題
一.選擇題
1.如果α和β是同旁內(nèi)角,且α=55°,則β等于()
(A)55°(B)125°(C)55°或125°(D)無法確定
2.如圖19-2-(2)
AB‖CD若∠2是∠1的2倍,則∠2等于()
(A)60°(B)90°(C)120°(D)150
3.如圖19-2-(3)
∠1+∠2=180°,∠3=110°,則∠4度數(shù)()
(A)等于∠1(B)110°
(C)70°(D)不能確定
4.如圖19-2-(3)
∠1+∠2=180°,∠3=110°,則∠1的度數(shù)是()
(A)70°(B)110°
(C)180°-∠2(D)以上都不對
5.如圖19-2(5),已知∠1=∠2,若要使∠3=∠4,則需()
(A)∠1=∠2(B)∠2=∠
3(C)∠1=∠4(D)AB‖CD
6.如圖19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,則∠BED為()
(A)銳角(B)直角
(C)鈍角(D)無法確定
7.若兩個角的一邊在同一條直線上,另一邊相互平行,那么這兩個角的關(guān)系是()
(A)相等(B)互補(bǔ)(C)相等且互補(bǔ)(D)相等或互補(bǔ)
8.如圖19-2-(8)AB‖CD,∠α=()
(A)50°(B)80°(C)85°
答案:1.D2.C3.C4.C5.D6.B7.D8.B
初一幾何第二學(xué)期期末試題
1.兩個角的和與這兩角的差互補(bǔ),則這兩個角()
A.一個是銳角,一個是鈍角B.都是鈍角
C.都是直角D.必有一個直角
2.如果∠1和∠2是鄰補(bǔ)角,且∠1>∠2,那么∠2的余角是()
3.下列說法正確的是()
A.一條直線的垂線有且只有一條
B.過射線端點(diǎn)與射線垂直的直線只有一條
C.如果兩個角互為補(bǔ)角,那么這兩個角一定是鄰補(bǔ)角
D.過直線外和直線上的兩個已知點(diǎn),做已知直線的垂線
4.在同一平面內(nèi),兩條不重合直線的位置關(guān)系可能有()
A.平行或相交B.垂直或平行
C.垂直或相交D.平行、垂直或相交
5.不相鄰的兩個直角,如果它們有一條公共邊,那么另一邊互相()
A.平行B.垂直
C.在同一條直線上D.或平行、或垂直、或在同一條直線上
答案:1.D2.C3.B4.A5.A回答人的補(bǔ)充2010-07-1900:211.如圖所示,一只老鼠沿著長方形逃跑,一只花貓同時從A點(diǎn)朝另一個方向沿著長方形去捕捉,結(jié)果在距B點(diǎn)30cm的C點(diǎn)處捉住了老鼠。已知老鼠與貓的速度之比為11:14,求長方形的周長。設(shè)周長為X.則A到B的距離為X/2;X/2-30:X/2+30=11:14X=500cm如圖,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的長解:過點(diǎn)A作AB‖DE。∵AB‖DE,AD‖BC∴四邊形ADEB是平信四邊形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四邊形ADEB是平信四邊形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如圖:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周長為30CM,求AB、BC的長。因?yàn)榈妊菪蜛BCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周長為5AB=30所以AB=6,BC=12回答人的補(bǔ)充2010-07-0311:25如圖:正方形ABCD的邊長為4,G、F分別在DC、CB邊上,DG=GC=2,CF=1.求證:∠1=∠2(要兩種解法提示一種思路:連接并延長FG交AD的延長線于K)
1.連接并延長FG交AD的延長線于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠
22.延長AC交BC延長線與E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如圖,四邊形ABCD是平行四邊形,BE平行DF,分別交AC于E、F連接ED、BF求證∠1=∠2
答案:證三角形BFE全等三角形DEF。因?yàn)镕E=EF,角BEF=90度=角DFE,DF=BE(全等三角形的對應(yīng)高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形對應(yīng)角相等)
就給這么多吧~~N累~!回答人的補(bǔ)充2010-07-1900:341已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,F(xiàn)D平分∠ADC。求證:BE+CF>EF。
2已知ΔABC,BD是AC邊上的高,CE是AB邊上的高。F在BD上,BF=AC。G在CE延長線上,CG=AB。求證:AG=AF,AG⊥AF。
3已知ΔABC,AD是BC邊上的高,AD=BD,CE是AB邊上的高。AD交CE于H,連接BH。求證:BH=AC,BH⊥AC。
4已知ΔABC,AD是BC邊上的中線,AB=2,AC=4,求AD的取值范圍。
5已知ΔABC,AB>AC,AD是角平分線,p是AD上任意一點(diǎn)。求證:AB-AC>pB-pC。
6已知ΔABC,AB>AC,AE是外角平分線,p是AE上任意一點(diǎn)。求證:pB+pC>AB+AC。
7已知ΔABC,AB>AC,AD是角平分線。求證:BD>DC。
8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。連接CD,BE。求證:CD=BE,CD⊥BE。
9已知ΔABC,D是AB中點(diǎn),E是AC中點(diǎn),連接DE。求證:DE‖BC,2DE=BC。
10已知ΔABC是直角三角形,AB=AC。過A作直線AN,BD⊥AN于D,CE⊥AN于E。求證:DE=BD-CE。
等形2
1已知四邊形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC邊上,BE=CD。AE交BD于F。求證:AE⊥BD。
2已知ΔABC,AB>AC,BD是AC邊上的中線,CE⊥BD于E,AF⊥BD延長線于F。求證:BE+BF=2BD。
3已知四邊形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。
4已知ΔABC是直角三角形,AC=BC,BE是角平分線,AF⊥BE延長線于F。求證:BE=2AF。
5已知ΔABC,∠ACB=90°,AD是角平分線,CE是AB邊上的高,CE交AD于F,F(xiàn)G‖AB交BC于G。求證:CD=BG。
6已知ΔABC,∠ACB=90°,AD是角平分線,CE是AB邊上的高,CE交AD于F,F(xiàn)G‖BC交AB于G。求證:AC=AG。
7已知四邊形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。
8已知ΔABC,AC=BC,CD是角平分線,M為CD上一點(diǎn),AM交BC于E,BM交AC于F。求證:ΔCME≌ΔCMF,AE=BF。
9已知ΔABC,AC=2AB,∠A=2∠C,求證:AB⊥BC。
10已知ΔABC,∠B=60°。AD,CE是角平分線,求證:AE+CD=AC
全等形4
1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,連接CD,BE,M是BE中點(diǎn),求證:AM⊥CD。
2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。
3已知∠AOB,p為角平分線上一點(diǎn),pC⊥OA于C,∠OAp+∠OBp=180°,求證:AO+BO=2CO。
4已知ΔABC是直角三角形,AB=AC,M是AC中點(diǎn),AD⊥BM于D,延長AD交BC于E,連接EM,求證:∠AMB=∠EMC。
5已知ΔABC,AD是角平分線,DE⊥AB于E,DF⊥AC于F,求證:AD⊥EF。
6已知ΔABC,∠B=90°,AD是角平分線,DE⊥AC于E,F(xiàn)在AB上,BF=CE,求證:DF=DC。
7已知ΔABC,∠A與∠C的外角平分線交于p,連接pB,求證:pB平分∠B。
8已知ΔABC,到三邊AB,BC,CA的距離相等的點(diǎn)有幾個?
9已知四邊形ABCD,AD‖BC,AD⊥DC,E為CD中點(diǎn),連接AE,AE平分∠BAD,求證:AD+BC=AB。
10已知ΔABC,AD是角平分線,BE⊥AD于E,過E作AC的平行線,交AB于F,求證:∠FBE=∠FEB。
第二篇:中考數(shù)學(xué)猜想證明題
2012年的8個解答題的類型
一實(shí)數(shù)的計(jì)算、整式的化簡求值、分式的化簡求值、解分式方程、解二元一次方程組、解不等式組并在數(shù)軸上表示解集
二畫圖與計(jì)算、圓的證明與計(jì)算、三角函數(shù)應(yīng)用題
三統(tǒng)計(jì)應(yīng)用題、用列表法或樹形圖求某以事件的概率、統(tǒng)計(jì)與概率的綜合應(yīng)用題
四一次與反比例函數(shù)的數(shù)形結(jié)合、二次函數(shù)的數(shù)形結(jié)合、列方程或方程組解應(yīng)用題
五、猜想與證明題
六、綜合應(yīng)用題
七、探索發(fā)現(xiàn)應(yīng)用題
八、動點(diǎn)應(yīng)用題
現(xiàn)在舉出典例來領(lǐng)悟猜想與證明題的解題思路:
第三篇:中考數(shù)學(xué)幾何證明題
中考數(shù)學(xué)幾何證明題
在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
第一個問我會,求第二個問。需要過程,快呀!
連接GC、BG
∵四邊形ABCD為平行四邊形,∠ABC=90°
∴四邊形ABCD為矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰Rt△
∵G為EF中點(diǎn)
∴EG=CG=FG
∵△ABE為等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB為等腰Rt△
∴∠BDG=45°
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學(xué)們一定要試一試。
(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。
第四篇:中考數(shù)學(xué)經(jīng)典幾何證明題
2011年中考數(shù)學(xué)經(jīng)典幾何證明題
(一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)EF,分別交AC、BD于點(diǎn)M、N,試判斷△OMN的形狀,并加以證明;
(2)如圖2,在四邊形ABCD中,若AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長,分別與BA、CD的延長線交于點(diǎn)M、N,請?jiān)趫D2中畫圖并觀察,圖中是否有相等的角,若有,請直接寫出結(jié)論:;
(3)如圖3,在△ABC中,AC?AB,點(diǎn)D在AC上,AB?CD,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)FE并延長,與BA的延長線交于點(diǎn)M,若?FEC?45?,判斷點(diǎn)M與以AD為直徑的圓的位置關(guān)系,并簡要說明理由.B
A
ME
DB
(4)觀察圖
1、圖
2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然具有EF、EG、CH這樣的線
段,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論.3.如圖,△ABC是等邊三角形,F(xiàn)是AC的中點(diǎn),D在線段BC上,連接DF,以DF為邊在DF的右側(cè)作等邊△DFE,ED的延長線交AB于H,連接EC,則以下結(jié)論:①∠AHE+∠AFD=180°;②AF=在線段BC上(不與B,C重合)運(yùn)動,其他條件不變時
BC;③當(dāng)D
2BH
是定值;④當(dāng)D在線段BC上(不與B,C重合)BD
BC?EC
運(yùn)動,其他條件不變時是定值;
DC
(1)其中正確的是-------------------;(2)對于(1)中的結(jié)論加以說明;
F
C
F
圖 1圖2圖
32.(1)如圖1,已知矩形ABCD中,點(diǎn)E是BC上的一動點(diǎn),過點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC于點(diǎn)G,CH⊥BD
于點(diǎn)H,試證明CH=EF+EG;
圖
1D
DC
(2)若點(diǎn)E在BC的延長線上,如圖2,過點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC的延長線于點(diǎn)G,CH⊥BD于點(diǎn)H,則EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(3)如圖3,BD是正方形ABCD的對角線,L在BD上,且BL=BC, 連結(jié)CL,點(diǎn)E是CL上任一點(diǎn), EF⊥BD于
點(diǎn)F,EG⊥BC于點(diǎn)G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
F
H
BCD
E
4.在△ABC中,AC=BC,?ACB?90?,點(diǎn)D為AC的中點(diǎn).
(1)如圖1,E為線段DC上任意一點(diǎn),將線段DE繞點(diǎn)D逆時針旋轉(zhuǎn)90°得到線段DF,連結(jié)CF,過點(diǎn)F作FH?FC,交直線AB于點(diǎn)H.判斷FH與FC的數(shù)量關(guān)系并加以證明.(2)如圖2,若E為線段DC的延長線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.
A
A
F
D F
D
E
C B
C
圖
1E
圖
2H
5.如圖12,在△ABC中,D為BC的中點(diǎn),點(diǎn)E、F分別在邊AC、AB上,并且∠ABE=∠ACF,BE、CF交于點(diǎn)O.過點(diǎn)O作OP⊥AC,OQ⊥AB,P、Q為垂足.求證:DP=DQ.
證明.
8.設(shè)點(diǎn)E是平行四邊形ABCD的邊AB的中點(diǎn),F(xiàn)是BC邊上一點(diǎn),線段DE和AF相交于點(diǎn)P,點(diǎn)Q在線段DE
上,且AQ∥PC.(1)證明:PC=2AQ.
(2)當(dāng)點(diǎn)F為BC的中點(diǎn)時,試比較△PFC和梯形APCQ面積的大小關(guān)系,并對你的結(jié)論加以證明.
6.如圖。,BD是△ABC的內(nèi)角平分線,CE是△ABC的外角平分線,過點(diǎn)A作AF⊥BD,AG⊥CE,垂足分別為F、G。
探究:線段FG的長與△ABC三邊的關(guān)系,并加以證明。
說明:⑴如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);⑵在你經(jīng)歷說明⑴的過程之后,可以從下列①、②中選取一個補(bǔ)充或更換已知條件,完成你的證明。注意:選取①完成證明得10分;選取②完成證明得7分。①可畫出將△ADF沿BD折疊后的圖形; ②將CE變?yōu)椤鰽BC的內(nèi)角平分線。(如圖2)
附加題:探究BD、CE滿足什么條件時,線段FG的長與△ABC的周長存在一定的數(shù)量關(guān)系,并給出證明。
9.兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB =∠DCE = 90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).
(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數(shù)量關(guān)系為_______和位置關(guān)系為______;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(2)如圖3,將圖1中的△DEC繞點(diǎn)C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.CH
G
A圖3 圖1 圖
27.在四邊形ABCD中,對角線AC平分∠DAB.
(1)如圖①,當(dāng)∠DAB=120°,∠B=∠D=90°時,求證:AB+AD=AC.
(2)如圖②,當(dāng)∠DAB=120°,∠B與∠D互補(bǔ)時,線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明.
(3)如圖③,當(dāng)∠DAB=90°,∠B與∠D互補(bǔ)時,線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予
10.已知△ABC中,AB=AC=3,∠BAC=90°,點(diǎn)D為BC上一點(diǎn),把一個足夠大的直角三角板的直角頂點(diǎn)放
在D處.
(1)如圖①,若BD=CD,將三角板繞點(diǎn)D逆時針旋轉(zhuǎn),兩條直角邊分別交AB、AC于點(diǎn)E、點(diǎn)F,求出重疊部分AEDF的面積(直接寫出結(jié)果).
(2)如圖②,若BD=CD,將三角板繞點(diǎn)D逆時針旋轉(zhuǎn),使一條直角邊交AB于點(diǎn)E、另一條直角邊交AB的延長線于點(diǎn)F,設(shè)AE=x,重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(3)若BD=2CD,將三角板繞點(diǎn)D逆時針旋轉(zhuǎn),使一條直角邊交AC于點(diǎn)F、另一條直角邊交射線AB于點(diǎn)E.設(shè)CF=x(x>1),重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
2、如圖,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,試探究BE與CF的數(shù)量關(guān)系。
3、如圖,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分別是AB、AC的中點(diǎn),點(diǎn)P在直線BC上,連接EQ交PC于點(diǎn)H。猜想線段EH與AC的數(shù)量關(guān)系,并證明你的猜想,若證明有困難,則可選k=1證明之。
4、在△ABC中,O是AC上一點(diǎn),P、Q分別是AB、BC上一點(diǎn),∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。試說明OP與OQ是數(shù)量關(guān)系,選擇條件:(1)m=1,(2)m=k=1。
2011年中考幾何經(jīng)典證明題
(二)1、如圖,△ABC中,∠BAC=90°,AD⊥BC,E為CB延長線上一點(diǎn),且∠EAB=∠BAD,設(shè)DC=kBD,試探究EC與EA的數(shù)量關(guān)系。
5、如圖,△ABC中,AD是BC邊上的中線,∠CAD=∠B,AC=kAB,E在AD延長線上,∠CED=∠ADB,探究AE與AD的關(guān)系。
6、如圖,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE與AE是數(shù)量關(guān)系。
第五篇:中考數(shù)學(xué)幾何證明題
中考幾何證明題
一、證明兩線段相等
1、真題再現(xiàn)
18.如圖3,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點(diǎn),2.如圖,在△ABC中,點(diǎn)P是邊AC上的一個動點(diǎn),過點(diǎn)P作直線MN∥BC,設(shè)MN交
∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.(1)求證:PE=PF;
(2)*當(dāng)點(diǎn)P在邊AC上運(yùn)動時,四邊形BCFE可能是菱形嗎?說明理由;
AP
3(3)*若在AC邊上存在點(diǎn)P,使四邊形AECF是正方形,且.求此時∠A
BC
2的大小.
C
二、證明兩角相等、三角形相似及全等
1、真題再現(xiàn)
∠BAE?∠MCE,∠MBE?45.
(1)求證:BE?ME.(2)若AB?7,求MC的長.
B
N
E
圖
321、(8分)如圖11,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′交AD于點(diǎn)G.(1)求證:AG=C′G;
(2)如圖12,再折疊一次,使點(diǎn)D與點(diǎn)A重合,的折痕EN,EN角AD于M,求EM的長.2、類題演練
1、如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30o,EF⊥AB,垂足為F,連結(jié)DF. E(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
22、(9分)AB是⊙O的直徑,點(diǎn)E是半圓上一動點(diǎn)(點(diǎn)E與點(diǎn)A、B都不重合),點(diǎn)C是BE延長線上的一點(diǎn),且CD⊥AB,垂足為D,CD與AE交于點(diǎn)H,點(diǎn)H與點(diǎn)A不重合。
(1)(5分)求證:△AHD∽△CBD
(2)(4分)連HB,若CD=AB=2,求HD+HO的值。
A
O D
B
E 20.如圖9,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G。(1)求證:△ABE≌△CBF;(4分)
(2)若∠ABE=50o,求∠EGC的大小。(4分)
C
B
圖9
第20題圖
如圖8,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90o,D在AB上.(1)求證:△AOC≌△BOD;(4分)(2)若AD=1,BD=2,求CD的長.(3分)
O
圖8
2、類題演練
1、(肇慶2010)(8分)如圖,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE與AB相交于F.(1)求證:△CEB≌△ADC; E(2)若AD=9cm,DE=6cm,求BE及EF的長.
AC
BC、CD、DA上的2、(佛山2010)已知,在平行四邊形ABCD中,EFGH分別是AB、點(diǎn),且AE=CG,BF=DH,求證:?AEH≌?CGF
B F
C3、(茂名2010)如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形C ABCD,使
AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長線交于點(diǎn)E.(1)證明:△OAB∽△EDA; BD(2)當(dāng)a為何值時,△OAB≌△EDA?*請說明理由,并求此時點(diǎn) C到OE的距離. O A E
圖
1三、證明兩直線平行
1、真題再現(xiàn)
(2006年)22.(10分)如圖10-1,在平面直角坐標(biāo)系xoy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于 A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為AE的中點(diǎn),AE交y軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-2,0),AE?8(1)(3分)求點(diǎn)C的坐標(biāo).(2)(3分)連結(jié)MG、BC,求證:MG∥BC
圖10-
12、類題演練
1、(湛江2010)(10分)如圖,在□ABCD中,點(diǎn)E、F是對角線BD上的兩點(diǎn),且BE=DF.
D
求證:(1)△ABE≌△CDF;(2)AE∥CF.C
四、證明兩直線互相垂直
1、真題再現(xiàn)
18.(7分)如圖7,在梯形ABCD中,AD∥BC, AB?DC?AD,?ADC?120.
(1)(3分)求證:BD?DC
B
C
BD(2)(4分)若AB?4,求梯形ABCD的面積
圖7
O A
E 圖
22、類題演練
1.已知:如圖,在△ABC中,D是AB邊上一點(diǎn),⊙O過D、B、C三點(diǎn),?DOC?2?ACD?90?.
(1)求證:直線AC是⊙O的切線;
(2)如果?ACB?75?,⊙O的半徑為2,求BD的長.
2、如圖,以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點(diǎn)D恰好為BC的中點(diǎn).過點(diǎn)D作⊙O的切線交AC邊于點(diǎn)E.(1)求證:DE⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.(第2題圖)3.(2011年深圳二模)如圖所示,矩形ABCD中,點(diǎn)E在CB的延長線上,使CE=AC,連結(jié)AE,點(diǎn)F是AE的中點(diǎn),連結(jié)BF、DF,求證:BF⊥
DF
CD于F,若⊙O的半徑為R求證:AE·AF=2 R2、類題演練
1.在△ABC中,AC=BC,∠ACB=90°,D、E是直線AB上兩點(diǎn).∠DCE=45°(1)當(dāng)CE⊥AB時,點(diǎn)D與點(diǎn)A重合,顯然DE=AD+BE(不必證明)(2)如圖,當(dāng)點(diǎn)D不與點(diǎn)A重合時,求證:DE=AD+BE
(3)當(dāng)點(diǎn)D在BA的延長線上時,(2)中的結(jié)論是否成立?畫出圖形,說明理由.
2.(本小題滿分10分)
如圖,已知△ABC,∠ACB=90o,AC=BC,點(diǎn)E、F在AB上,∠ECF=45o,(1)求證:△ACF∽△BEC(5分)
(2)設(shè)△ABC的面積為S,求證:AF·BE=2S(3)
3.(2)如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于D.①求證:AB=AD·AC.A ②當(dāng)點(diǎn)D運(yùn)動到半圓AB什么位置時,△ABC為等腰直角三角形,為什么?
五、證明比例式或等積式
1、真題再現(xiàn)
1.已知⊙O的直徑AB、CD互相垂直,弦AE交
第3題圖
B
第3(2)題圖
C4、(本小題滿分9分)
如圖,AB為⊙O的直徑,劣弧BC?BE,BD∥CE,連接AE并延長交BD于D.
求證:(1)BD是⊙O的切線;
2、類題演練
1、如圖5,在等腰梯形ABCD中,AD∥BC.
求證:∠A+∠C=180°
·AD.(2)AB?AC
B
第4題圖
??
5.如圖所示,⊙O中,弦AC、BD交于E,BD?2AB。
2AB?AE·AC;(1)求證:,2、如圖,在Rt△ABC中,?C?90°點(diǎn)E在斜邊AB上,以AE為直徑的⊙O與BC相切于點(diǎn)D.(1)求證:AD平分?BAC.(2)若AC?3,AE?4.①求AD的值;②求圖中陰影部分的面積.3、如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長線上,直
線CD與⊙O相切于點(diǎn)D,弦DF⊥AB于點(diǎn)E,線段CD?10,連接BD.(1)求證:?CDE?2?B;
(2)若BD:AB?2,求⊙O的半徑及DF的長.七、證明線段的和、差、倍、分
1、真題再現(xiàn)
22、(9分)AB是⊙O的直徑,點(diǎn)E是半圓上一動點(diǎn)(點(diǎn)E與點(diǎn)A、B都不重合),點(diǎn)C是BE延長線上的一點(diǎn),且CD⊥AB,垂足為D,CD與AE交于點(diǎn)H,點(diǎn)H與
(2)延長EB到F,使EF=CF,試判斷CF與⊙O的位置關(guān)系,并說明理由。
六、證明角的和、差、倍、分
1、真題再現(xiàn)
21.(本題8分)如圖10,AB是⊙O的直徑,AB=10,DC切⊙O于點(diǎn)C,AD⊥DC,垂足為D,AD交⊙O于點(diǎn)E。(1)求證:AC平分∠BAD;(4分)
3(2)若sin∠BEC=,求DC的長。(4分)
第3題圖
點(diǎn)A不重合。
(1)(5分)求證:△AHD∽△CBD
(2)(4分)連HB,若CD=AB=2,求HD+HO的值。
圖10
C2、類題演練
1.(1)如圖1,已知矩形ABCD中,點(diǎn)E是BC上的一動點(diǎn),過點(diǎn)E作EF⊥BD于點(diǎn)
F,EG⊥AC于點(diǎn)G,CH⊥BD于點(diǎn)H,試證明CH=EF+EG;
圖
1D
G
圖
3(2)若點(diǎn)E在BC的延長線上,如圖2,過點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC的延長線于點(diǎn)G,CH⊥BD于點(diǎn)H,則EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(3)如圖3,BD是正方形ABCD的對角線,L在BD上,且BL=BC, 連結(jié)CL,點(diǎn)E是
CL上任一點(diǎn), EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;(4)觀察圖
1、圖
2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然
具有EF、EG、CH這樣的線段,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論.2.設(shè)點(diǎn)E是平行四邊形ABCD的邊AB的中點(diǎn),F(xiàn)是BC邊上一點(diǎn),線段DE和AF相交于點(diǎn)P,點(diǎn)Q在線段DE上,且AQ∥PC.(1)證明:PC=2AQ.
(2)當(dāng)點(diǎn)F為BC的中點(diǎn)時,試比較△PFC和梯形APCQ
面積的大小關(guān)系,并對你的結(jié)論加以證明.
八、其他
1、真題再現(xiàn)
如圖5,在梯形ABCD中,AB∥DC,DB平分∠ADC,過點(diǎn)A作AE∥BD,交CD的延長線于點(diǎn)E,且∠C=2∠E. AB(1)求證:梯形ABCD是等腰梯形.
(2)若∠BDC=30°,AD=5,求CD的長. D DC2、類題演練 圖
51.(肇慶2010)如圖,四邊形ABCD是平行四邊形,AC、BD交于點(diǎn)O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四邊形ABCDDC
2..如圖(2),AB是⊙O的直徑,D是圓上一點(diǎn),AD=DC,連結(jié)AC,過點(diǎn)D作弦AC的平行線MN.(1)求證:MN是⊙O的切線;(2)已知AB?10,AD?6,求弦BC的長.圖(2)
3.如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上
.一點(diǎn),且?AED?45°
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為3cm,AE?5cm,求?ADE的正弦值.(第3題)