第一篇:FPGA學習及設計中的注意事項
FPGA學習及設計中的注意事項1.基礎問題FPGA的基礎就是數字電路和HDL語言,想學好FPGA的人,建議床頭都有一本數字電路的書,不管是哪個版本的,這個是基礎,多了解也有助于形成硬件設計的思想。在語言方面,建議初學者學習Verilog語言,VHDL語言語法規范嚴格,調試起來很慢,Verilog語言容易上手,而且,一般大型企業都是用Verilog語言。
2.EDA工具問題
熟悉幾個常用的就可以的,開發環境QuartusII,或ISE 就可以了,這兩個基本是相通的,會了哪一個,另外的那個也就很Easy了。功能仿真建議使用Modelsim,如果你是做芯片的,就可以學學別的仿真工具,做FPGA的,Modelsim就足夠了。綜合工具一般用Synplify,初學先不用太關心這個,用Quartus綜合就OK了。
3.硬件設計思想問題
對于初學者,特別是從軟件轉過來的,設計的程序既費資源又速度慢,而且很有可能綜合不了,這就要求我們熟悉一些固定模塊的寫法,可綜合的模塊很多書上都有,語言介紹上都有,不要想當然的用軟件的思想去寫硬件。詳細資料:edu118.com
4.學習習慣問題
FPGA學習要多練習,多仿真,signaltapII是很好的工具,可以看到每個信號的真實值,建議初學者一定要自己多動手,光看書是沒用的。關于英文文檔問題,如果要學會Quartus II的所有功能,只要看它的handbook就可以了,很詳細,對于IT行業的人,大部分知識來源都是英文文檔,一定要耐心看,會從中收獲很多的。
5.算法問題
做FPGA的工程師,最后一般都是專攻算法了,這些基礎知識都是順手捏來的,如果你沒有做好搞理論的準備,學FPGA始終只能停留在初級階段上。對于初學者,數字信號處理是基礎,應該好好理解,往更深的方向,不用什么都學,根據你以后從事的方向,比如
說通信、圖像處理,雷達、聲納、導航定位等。深圳專業FPGA技術實訓江老師QQ1469217515
FPGA設計的注意事項
不管你是一名邏輯設計師、硬件工程師或系統工程師,甚或擁有所有這些頭銜,只要你在任何一種高速和多協議的復雜系統中使用了FPGA,你就很可能需要努力解決好器件配置、電源管理、IP集成、信號完整性和其他的一些關鍵設計問題。不過,你不必獨自面對這些挑戰,因為在當前業內領先的FPGA公司里工作的應用工程師每天都會面對這些問題,而且他們已經提出了一些將令你的設計工作變得更輕松的設計指導原則和解決方案。
第二篇:如何學習fpga
如何學習FPGA
關鍵詞:工作人員, 硬件, 設計, FPGA
掌握FPGA可以找到一份很好的工作,對于有經驗的工作人員,使用FPGA可以讓設計變得非常有靈活性。掌握了FPGA設計,單板硬件設計就非常容易(不是系統設計),特別是上大學時如同天書的邏輯時序圖,看起來就非常親切。但FPGA入門卻有一定難度,因為它不像軟件設計,只要有一臺計算機,幾乎就可以完成所有的設計。FPGA設計與硬件直接相關,需要實實在在的調試儀器,譬如示波器等。這些硬件設備一般比較昂貴,這就造成一定的入門門檻,新人在入門時遇到一點問題或者困難,由于沒有調試設備,無法定位問題,最后可能就會放棄。其實這時如果有人稍微指點一下,這個門檻很容易就過去。我用FPGA做設計很多年了,遠達不到精通的境界,只是熟悉使用,在這里把我對FPGA學習步驟理解寫出來,僅是作為一個參考,不對的地方,歡迎大家討論和指正。
FPGA學習步驟
1、工欲善其事,必先利其器。
計算機必不可少。目前FPGA應用較多的是Altera和xilinx這兩個公司,可以選擇安裝quartusII或者ISE軟件。這是必備的軟件環境。
硬件環境還需要下載器、目標板。雖然有人說沒有下載器和目標板也可學習fpga,但那總是紙上談兵。這就像談女朋友,總是嘴上說說,通個電話,連個手都沒牽,能說人家是你朋友?雖說搭建硬件環境需要花費,但想想,硬件環境至多幾百元錢,你要真的掌握FPGA的設計,起薪比別人都不止高出這么多。這點花費算什么?
FPGA學習步驟
2、熟悉verilog語言或者vhdl語言,熟練使用quartusII或者ISE軟件。
VHDL和verilog各有優點,選擇一個,建議選擇verilog。熟練使用設計軟件,知道怎樣編譯、仿真、下載等過程。
起步階段不希望報一些培訓班,除非你有錢,或者運氣好,碰到一個水平高、又想把自己的經驗和別人共享的培訓老師,不然的話,培訓完后總會感覺自己是一個冤大頭。入門階段可以在利用網絡資源完成。
FPGA學習步驟
3、設計一個小代碼,下載到目標板看看結果
此時可以設計一個最簡答的程序,譬如點燈。如果燈在閃爍了,表示基本入門了。如果此時能夠下載到FPGA外掛的flash,FPGA程序能夠從flash啟動,表明FPGA的最簡單設計你已經成功,可以到下一步。
FPGA學習步驟
4、設計稍微復雜的代碼,下載到目標板看看結果。
可以設計一個UART程序,網上有參考,你要懂RS232協議和FPGA內置的邏輯分析儀。網上下載一個串口調試助手,調試一番,如果通信成功了,恭喜,水平有提高。進入下一步。
FPGA學習步驟
5、設計復雜的代碼,下載到目標板看看結果。
譬如sdram的程序,網上也有參考,這個設計難度有點大。可用串口來調試sdram,把串口的數據存儲到sdram,然后讀回,如果成功,那你就比較熟悉FPGA設計了
FPGA學習步驟
6、設計高速接口,譬如ddr2或者高速串行接口
這要對FPGA的物理特性非常了解,而且要懂得是時序約束等設計方法,要看大量的原廠文檔,這部分成功了,那就對FPGA的物理接口掌握很深,你就是設計高手了
FPGA學習步驟
7、設計一個復雜的協議
譬如USB、PCIexpress、圖像編解碼等,鍛煉對系統的整體把握和邏輯劃分。完成這些,你就是一個一流的高手、FPGA學習步驟
8、學習再學習
學習什么,我也不知道,我只知道“學無止境,山外有山”。
現在很多FPGA工程師,沒找到合適,我覺得很多人從開始的時候就誤入歧途了,對新手學習FPGA設計我也說一點看法吧。我認為要從基礎開始做,基礎牢,才有成為高手的可能。
我覺得FPGA學習有以下幾步必須要走:
第一步:學習了解FPGA結構,FPGA到底是什么東西,芯片里面有什么,不要開始就拿個開發板照著別人的東西去編程。很多開發板的程序寫的很爛,我也做過一段時間的開發板設計,我覺得很大程度上,開發板在誤人子弟。不過原廠提供的正品開發板,代碼很優秀的,可以借鑒。只有了解了FPGA內部的結構才能明白為什么寫Verilog和寫C整體思路是不一樣的。
第二步:掌握FPGA設計的流程。了解每一步在做什么,為什么要那么做。很多人都是不就是那幾步嗎,有什么奇怪的?呵呵,我想至少有一半以上的人不知道synthesize和traslate的區別吧。
了解了FPGA的結構和設計流程才有可能知道怎么去優化設計,提高速度,減少資源,不要急躁,不要去在為選擇什么語言和選擇哪個公司的芯片上下功夫。語言只是一個表達的方式,重要的是你的思維,沒有一個好的指導思想,語言用得再好,不過是個懂語言的人。
第三步:開始學習代碼了。我建議要學代碼的人都去Altera或Xilinx的網站上下原廠工程師的代碼學習。不要一開始就走入誤區。
第四步:template很重要。能不能高效利用FPGA資源,一是了解fpga結構,二是了解欲實現的邏輯功能和基本機構,三是使用正確的模板。FPGA內部器件種類相對較單一,用好模板,你的邏輯才能被高效的綜合成FPGA擅長表達的結構:)
做FPGA主要是要有電路的思想,作為初學者,往往對器件可能不是熟悉,那么應該對于數字電路的知識很熟悉吧,FPGA中是由觸發器和查找表以及互聯線等基本結構組成的,其實在我們在代碼里面能夠看到的就是與非門以及觸發器,不要把verilog和c語言等同起來,根本就是不同的東西,沒有什么可比性,在寫一句程序的時候應該想到出來的是一個什么樣的電路,計數
器 選擇器 三態門等等,理解時序,邏輯是一拍一拍的東西,在設計初期想的不是很清楚的時候可以畫畫時序圖,這樣思路會更加的清晰,還有就是仿真很重要,不要寫完程序就去往FPGA中去加載,首先要仿真,尤其是對比較大型一點的程序,想像自己是在做asic,是沒有二次機會的,所以一定要把仿真做好,還有很多新手對于語言的學習不知道選vhdl好還是verilog好,個人偏好verilog,當然不是說vhdl不好,反正寫出來的都是電路,那當然就不要在語言的語法上面花太多的功夫了,verilog 言簡意賅assign always case if else 掌握這些幾乎可以寫出90%的電路了,上面是我對FPGA學習的一些愚見,希望對大家有所幫助。
第三篇:淺談FPGA學習
為什么大量的人會覺得FPGA難學?一位高人決心開貼來詳細講一下菜鳥覺得FPGA難學的幾大原因。
1、不熟悉FPGA的內部結構,不了解可編程邏輯器件的基本原理。
FPGA為什么是可以編程的?恐怕很多菜鳥不知道,他們也不想知道。因為他們覺得這是無關緊要的。他們潛意識的認為可編程嘛,肯定就是像寫軟件一樣啦。軟件編程的思想根深蒂固,看到Verilog或者VHDL就像看到C語言或者其它軟件編程語言一樣。一條條的讀,一條條的分析。如果這些菜鳥們始終拒絕去了解為什么FPGA是可以編程的,不去了解FPGA的內部結構,要想學會FPGA恐怕是天方夜譚。雖然現在EDA軟件已經非常先進,像寫軟件那樣照貓畫虎也能綜合出點東西,但也許只有天知道EDA軟件最后綜合出來的到底是什么。也許點個燈,跑個馬還行。這樣就是為什么很多菜鳥學了N久以后依然是一個菜鳥的原因。那么FPGA為什么是可以“編程”的呢?首先來了解一下什么叫“程”。啟示“程”只不過是一堆具有一定含義的01編碼而已。編程,其實就是編寫這些01編碼。只不過我們現在有了很多開發工具,通常都不是直接編寫這些01編碼,而是以高級語言的形式來編寫,最后由開發工具轉換為這種01編碼而已。對于軟件編程而言,處理器會有一個專門的譯碼電路逐條把這些01編碼翻譯為各種控制信號,然后控制其內部的電路完成一個個的運算或者是其它操作。所以軟件是一條一條的讀,因為軟件的操作是一步一步完成的。而FPGA的可編程,本質也是依靠這些01編碼實現其功能的改變,但不同的是FPGA之所以可以完成不同的功能,不是依靠像軟件那樣將01編碼翻譯出來再去控制一個運算電路,FPGA里面沒有這些東西。FPGA內部主要有三塊:可編程的邏輯單元、可編程的連線和可編程的IO模塊。可編程的邏輯單元是什么?其基本結構由某種存儲器(SRAM、FLASH等)制成的4輸入或6輸入1輸出地“真值表”加上一個D觸發器構成。任何一個4輸入1輸出組合邏輯電路,都有一張對應的“真值表”,同樣的如果用這么一個存儲器制成的4輸入1輸出地“真值表”,只需要修改其“真值表”內部值就可以等效出任意4輸入1輸出的組合邏輯。這些“真值表”內部值是什么?就是那些01編碼而已。如果要實現時序邏輯電路怎么辦?這不又D觸發器嘛,任何的時序邏輯都可以轉換為組合邏輯+D觸發器來完成。但這畢竟只實現了4輸入1輸出的邏輯電路而已,通常邏輯電路的規模那是相當的大哦。那怎么辦呢?這個時候就需要用到可編程連線了。在這些連線上有很多用存儲器控制的連接點,通過改寫對應存儲器的值就可以確定哪些線是連上的而哪些線是斷開的。這就可以把很多可編程邏輯單元組合起來形成大型的邏輯電路。最后就是可編程的IO,這其實是FPGA作為芯片級使用必須要注意的。任何芯片都必然有輸入引腳和輸出引腳。有可編程的IO可以任意的定義某個非專用引腳(FPGA中有專門的非用戶可使用的測試、下載用引腳)為輸入還是輸出,還可以對IO的電平標準進行設置。總歸一句話,FPGA之所以可編程是因為可以通過特殊的01代碼制作成一張張“真值表”,并將這些“真值表”組合起來以實現大規模的邏輯功能。不了解FPGA內部結構,就不能明白最終代碼如何變到FPGA里面去的。也就無法深入的了解如何能夠充分運用FPGA。現在的FPGA,不單單是有前面講的那三塊,還有很多專用的硬件功能單元,如何利用好這些單元實現復雜的邏輯電路設計,是從菜鳥邁向高手的路上必須要克服的障礙。而這一切,還是必須先從了解FPGA內部邏輯及其工作原理起。
2、錯誤理解HDL語言,怎么看都看不出硬件結構。
HDL語言的英語全稱是:Hardware Description Language,注意這個單詞Description,而不是Design。老外為什么要用Description這個詞而不是Design呢?因為HDL確實不是用來設計硬件的,而僅僅是用來描述硬件的。描述這個詞精確地反映了HDL語言的本質,HDL語言不過是已知硬件電路的文本表現形式而已,只是將以后的電路用文本的形式描述出來而已。而在編寫語言之前,硬件電路應該已經被設計出來了。語言只不過是將這種設計轉化為文字表達形式而已。但是很多人就不理解了,既然硬件都已經被設計出來了,直接拿去制作
部就完了,為什么還要轉化為文字表達形式再通過EDA工具這些麻煩的流程呢?其實這就是很多菜鳥沒有了解設計的抽象層次的問題,任何設計包括什么服裝、機械、廣告設計都有一個抽象層次的問題。就拿廣告設計來說吧,最初的設計也許就是一個概念,設計出這個概念也是就是一個點子而已,離最終拍成廣告還差得很遠。硬件設計也是有不同的抽象層次,每一個層次都需要設計。最高的抽象層次為算法級、然后依次是體系結構級、寄存器傳輸級、門級、物理版圖級。使用HDL的好處在于我們已經設計好了一個寄存器傳輸級的電路,那么用HDL描述以后轉化為文本的形式,剩下的向更低層次的轉換就可以讓EDA工具去做了,這就大大的降低了工作量。這就是可綜合的概念,也就是說在對這一抽象層次上硬件單元進行描述可以被EDA工具理解并轉化為底層的門級電路或其他結構的電路。在FPGA設計中,就是在將這以抽象層級的意見描述成HDL語言,就可以通過FPGA開發軟件轉化為問題1中所述的FPGA內部邏輯功能實現形式。HDL也可以描述更高的抽象層級如算法級或者是體系結構級,但目前受限于EDA軟件的發展,EDA軟件還無法理解這么高的抽象層次,所以HDL描述這樣抽象層級是無法被轉化為較低的抽象層級的,這也就是所謂的不可綜合。所以在閱讀或編寫HDL語言,尤其是可綜合的HDL,不應該看到的是語言本身,而是要看到語言背后所對應的硬件電路結構。如果看到的HDL始終是一條條的代碼,那么這種人永遠擺脫不了菜鳥的宿命。假如哪一天看到的代碼不再是一行行的代碼而是一塊一塊的硬件模塊,那么恭喜脫離了菜鳥的級別,進入不那么菜的鳥級別。
3、FPGA本身不算什么,一切皆在FPGA之外這一點恐怕也是很多學FPGA的菜鳥最難理解的地方。
FPGA是給誰用的?很多學校解釋為給學微電子專業或者集成電路設計專業的學生用的,其實這不過是很多學校受資金限制,買不起專業的集成電路設計工具而用FPGA工具替代而已。其實FPGA是給設計電子系統的工程師使用的。這些工程師通常是使用已有的芯片搭配在一起完成一個電子設備,如基站、機頂盒、視頻監控設備等。當現有芯片無法滿足系統的需求時,就需要用FPGA來快速的定義一個能用的芯片。前面說了,FPGA里面無法就是一些“真值表”、觸發器、各種連線以及一些硬件資源,電子系統工程師使用FPGA進行設計時無非就是考慮如何將這些以后資源組合起來實現一定的邏輯功能而已,而不必像IC設計工程師那樣一直要關注到最后芯片是不是能夠被制造出來。本質上和利用現有芯片組合成不同的電子系統沒有區別,只是需要關注更底層的資源而已。要想把FPGA用起來還是簡單的,因為無非就是那些資源,在理解了前面兩點再搞個實驗板,跑跑實驗,做點簡單的東西是可以的。而真正要把FPGA用好,那光懂點FPGA知識就遠遠不夠了。因為最終要讓FPGA里面的資源如何組合,實現何種功能才能滿足系統的需要,那就需要懂得更多更廣泛的知識。
目前FPGA的應用主要是三個方向:
第一個方向,也是傳統方向主要用于通信設備的高速接口電路設計,這一方向主要是用FPGA處理高速接口的協議,并完成高速的數據收發和交換。這類應用通常要求采用具備高速收發接口的FPGA,同時要求設計者懂得高速接口電路設計和高速數字電路板級設計,具備EMC/EMI設計知識,以及較好的模擬電路基礎,需要解決在高速收發過程中產生的信號完整性問題。FPGA最初以及到目前最廣的應用就是在通信領域,一方面通信領域需要高速的通信協議處理方式,另一方面通信協議隨時在修改,非常不適合做成專門的芯片。因此能夠靈活改變功能的FPGA就成為首選。到目前為止FPGA的一半以上的應用也是在通信行業。
第二個方向,可以稱為數字信號處理方向或者數學計算方向,因為很大程度上這一方向已經大大超出了信號處理的范疇。例如早就在2006年就聽說老美將FPGA用于金融數據分析,后來又見到有將FPGA用于醫學數據分析的案例。在這一方向要求FPGA設計者有一定的數學功底,能夠理解并改進較為復雜的數學算法,并利用FPGA內部的各種資源使之能夠變為實際的運算電路。目前真正投入實用的還是在通信領域的無線信號處理、信道編解碼以及圖像信號處理等領域,其它領域的研究正在開展中,之所以沒有大量實用的主要原因還是因為學金融的、學醫學的不了解這玩意。不過最近發現歐美有很多電子工程、計算機類的博士轉入到金融行業,開展金融信號處理,相信隨著轉入的人增加,FPGA在其它領域的數學計算功能會更好的發揮出來,而我也有意做一些這些方面的研究。不過國內學金融的、學醫的恐怕連數學都很少用到,就不用說用FPGA來幫助他們完成數學_運算了,這個問題只有再議了。
第三個方向,就是所謂的SOPC方向,其實嚴格意義上來說這個已經在FPGA設計的范疇之外,只不過是利用FPGA這個平臺搭建的一個嵌入式系統的底層硬件環境,然后設計者主要是在上面進行嵌入式軟件開發而已。設計對于FPGA本身來說是相當少的。但如果涉及到需要在FPGA做專門的算法加速,實際上需要用到第二個方向的知識,而如果需要設計專用的接口電路則需要用到第一個方向的知識。
就目前SOPC方向發展其實遠不如第一和第二個方向,其主要原因是因為SOPC以FPGA為主,或者是在FPGA內部的資源實現一個“軟”的處理器,或者是在FPGA內部嵌入一個處理器核。但大多數的嵌入式設計卻是以軟件為核心,以現有的硬件發展情況來看,多數情況下的接口都已經標準化,并不需要那么大的FPGA邏輯資源去設計太過復雜的接口。而且就目前看來SOPC相關的開發工具還非常的不完善,以ARM為代表的各類嵌入式處理器開發工具早已深入人心,大多數以ARM為核心的SOC芯片提供了大多數標準的接口,大量成系列的單片機/嵌入式處理器提供了相關行業所需要的硬件加速電路,需要專門定制硬件場合確實很少。通常是在一些特種行業才會在這方面有非常迫切的需求。即使目前Xilinx將ARM的硬核加入到FPGA里面,相信目前的情況不會有太大改觀,不要忘了很多老掉牙的8位單片機還在嵌入式領域混呢,嵌入式主要不是靠硬件的差異而更多的是靠軟件的差異來體現價值的。我曾經看好的是cypress的Psoc這一想法。和SOPC系列不同,Psoc的思想是在SOC芯片里面去嵌入那么一小塊FPGA,那這樣其實可以滿足嵌入式的那些微小的硬件接口差異,比如某個運用需要4個USB,而通常的處理器不會提供那么多,就可以用這么一塊FPGA來提供多的USB接口。而另一種運用需要6個UART,也可以用同樣的方法完成。對于嵌入式設計公司來說他們只需要備貨一種芯片,就可以滿足這些設計中各種微小的差異變化。其主要的差異化仍然是通過軟件來完成。但目前cypress過于封閉,如果其采用ARM作為處理器內核,借助其完整的工具鏈。同時開放IP合作,讓大量的第三方為它提供IP設計,其實是很有希望的。但目前cypress的日子怕不太好過,Psoc的思想也不知道何時能夠發光。
4、數字邏輯知識是根本。
無論是FPGA的哪個方向,都離不開數字邏輯知識的支撐。FPGA說白了是一種實現數
字邏輯的方式而已。如果連最基本的數字邏輯的知識都有問題,學習FPGA的愿望只是空中樓閣而已。而這,恰恰是很多菜鳥最不愿意去面對的問題。數字邏輯是任何電子電氣類專業的專業基礎知識,也是必須要學好的一門課。很多人無非是學習了,考個試,完了。如果不能將數字邏輯知識爛熟于心,養成良好的設計習慣,學FPGA到最后仍然是霧里看花水中望月,始終是一場空的。以上四條只是我目前總結菜鳥們在學習FPGA時所最容易跑偏的地方,FPGA的學習其實就像學習圍棋一樣,學會如何在棋盤上落子很容易,成為一位高手卻是難上加難。
第四篇:FPGA學習經驗總結
FPGA是什么?FPGA現狀?怎樣學習FPGA?
FPGA是什么?
FPGA是什么?FPGA現狀?怎樣學習FPGA?
FPGA是什么介紹
FPGA是現場可編程門陣列的簡稱,FPGA的應用領域最初為通信領域,但目前,隨著信息產業和微電子技術的發展,可編程邏輯嵌入式系統設計技術已經成為信息產業最熱門的技術之一,應用范圍遍及航空航天、醫療、通訊、網絡通訊、安防、廣播、汽車電子、工業、消費類市場、測量測試等多個熱門領域。并隨著工藝的進步和技術的發展,向更多、更廣泛的應用領域擴展。越來越多的設計也開始以ASIC轉向FPGA,FPGA正以各種電子產品的形式進入了我們日常生活的各個角落。
FPGA人才需求
中國每年對于FPGA設計人才的需求缺口巨大,FPGA設計人才的薪水也是行業內最高的。目前,美國已有FPGA人才40多萬,中國臺灣地區也有7萬多,而中國內地僅有1萬左右,可見中國渴望有更多的FPGA人才涌現出來。
如何學習FPGA?
FPGA對我們如此重要,那么對于初學者來說,到底該如何學習FPGA呢?學習一門技術最好有合適的指導老師,這樣對掌握FPGA技術更容易,可惜的是大部分的學校還未開設相關的課程,也缺少具有實踐經驗的老師,那么如何才能找到一種捷徑幫助初學者快速學會如此具有競爭力的技術呢?
(1)掌握FPGA的編程語言
在學習一門技術之前我們往往從它的編程語言開始,如同學習單片機一樣,我們從C語言開始入門,當掌握了C語言之后,開發單片機應用程序也就不是什么難事了。學習FPGA也是如此,FPGA的編程語言有兩種:VHDL和Verilog,這兩種語言都適合用于FPGA的編程,VHDL是由美國軍方組織開發的,在1987年就成為了IEEE的標準;而Verilog則是由一家民間企業的私有財產轉移過來的,由于其優越性特別突出,于是在1995年也成為了IEEE標準。VHDL在歐洲的應用較為廣泛,而Verilog在中國、美國、日本、臺灣等地應用較為廣泛,作者比較推崇是Verilog,因為它非常易于學習,很類似于C語言,如果具有C語言基礎的人,只需要花很少的時間便能迅速掌握Verilog,而VHDL則較為抽象,學習的時間較長。作為在校大學生,學習Verilog的最好時期是在大學二年級開設《電子技術基礎(數字部分)》時同步學習,不僅能夠理解數字電路實現的方式,更能通過FPGA將數字電路得以實現。大
三、大四的學生還可以進一步強化學習Verilog,建議以北京航天航空大學出版社出版的由夏宇聞教授編寫的《Verilog數字系統設計教程(第二版)》作為藍本,本書比較全面地、詳細地介紹了Verilog的基本語法。如果是其他初學者,可以直接借助《Verilog數字系統設計教程(第二版)》和本書即能全面掌握Verilog的語法,這是學習FPGA的第一步,也是必不可少的一步。
(2)FPGA實驗尤為重要
除了學習編程語言以外,更重要的是實踐,將自己設計的程序能夠在真正的FPGA里運行起來,這時我們需要選一塊板子進行實驗,一般的紅色颶風的板子基本上可以滿足大家的需求,大家感興趣的不妨買一塊做做實驗。
(3)FPGA培訓不可忽視
在有條件的情況下,參加FPGA的培訓可以在短時間內大幅提升自己的水平,因為有老師帶著可以省去了很多彎路。筆者在網上發現一個北京至芯科技FPGA培訓班http:/// 感興趣的朋友可以去看看,網上也有很多的視頻資源,也可下下來看看.我想只要大家想學FPGA,想從事FPGA工作,總會有辦法找到適合自己的方法
如何學習FGPA
第一步:學習了解FPGA結構,FPGA到底是什么東西,芯片里面有什么,不要開始就拿個開發板照著別人的東西去編程。很多開發板的程序寫的很爛,我也做過一段時間的開發板設計,我覺得很大程度上,開發板在誤人子弟。不過原廠提供的正品開發板,代碼很優秀的,可以借鑒。只有了解了FPGA內部的結構才能明白為什么寫Verilog和寫C整體思路是不一樣的。
第二步:掌握FPGA設計的流程。了解每一步在做什么,為什么要那么做。很多人都是不就是那幾步嗎,有什么奇怪的?呵呵,我想至少有一半以上的人不知道synthesize和traslate的區別吧。
了解了FPGA的結構和設計流程才有可能知道怎么去優化設計,提高速度,減少資源,不要急躁,不要去在為選擇什么語言和選擇哪個公司的芯片上下功夫。語言只是一個表達的方式,重要的是你的思維,沒有一個好的指導思想,語言用得再好,不過是個懂語言的人。第三步:開始學習代碼了。我建議要學代碼的人都去Altera或Xilinx的網站上下原廠工程師的代碼學習。不要一開始就走入誤區
做fpga主要是要有電路的思想:
作為初學者,往往對器件可能不是熟悉,那么應該對于數字電路的知識很熟悉吧,fpga中是由觸發器和查找表以及互聯線等基本結構組成的,其實在我們在代碼里面能夠看到的就是與非門以及觸發器,不要把verilog和c語言等同起來,根本就是不同的東西,沒有什么可比性,在寫一句程序的時候應該想到出來的是一個什么樣的電路,計數器 選擇器 三態門等等,理解時序,邏輯是一拍一拍的東西,在設計初期想的不是很清楚的時候可以畫畫時序圖,這樣思路會更加的清晰,還有就是仿真很重要,不要寫完程序就去往fpga中去加載,首先要仿真,尤其是對比較大型一點的程序,想象自己是在做asic,是沒有二次機會的,所以一定要把仿真做好,還有很多新手對于語言的學習不知道選vhdl好還是verilog好,個人偏好verilog,當然不是說vhdl不好,反正寫出來的都是電路,那當然就不要在語言的語法上面花太多的功夫了,verilog 言簡意賅
assignalwayscase if else 掌握這些幾乎可以寫出90%的電路了,Verilog經驗談
規范很重要
工作過的朋友肯定知道,公司里是很強調規范的,特別是對于大的設計(無論軟件還是硬件),不按照規范走幾乎是不可實現的。邏輯設計也是這樣:如果不按規范做的話,過一個月后調試時發現有錯,回頭再看自己寫的代碼,估計很多信號功能都忘了,更不要說檢錯了;如果一個項目做了一半一個人走了,接班的估計得從頭開始設計;如果需要在原來的版本基礎上增加新功能,很可能也得從頭來過,很難做到設計的可重用性。在邏輯方面,我覺得比較重要的規范有這些:
1.設計必須文檔化。要將設計思路,詳細實現等寫入文檔,然后經過嚴格評審通過后才能進行下一步的工作。這樣做乍看起來很花時間,但是從整個項目過程來看,絕對要比一上來就寫代碼要節約時間,且這種做法可以使項目處于可控、可實現的狀態。
2.代碼規范。
a.設計要參數化。比如一開始的設計時鐘周期是30ns,復位周期是5個時鐘周期,我們可以這么寫:
parameterCLK_PERIOD = 30;
parameterRST_MUL_TIME = 5;
parameterRST_TIME = RST_MUL_TIME * CLK_PERIOD;
...rst_n = 1'b0;
# RST_TIME rst_n = 1'b1;
...# CLK_PERIOD/2 clk <= ~clk;
如果在另一個設計中的時鐘是40ns,復位周期不變,我們只需對CLK_PERIOD進行重新例化就行了,從而使得代碼更加易于重用。
b.信號命名要規范化。
1)信號名一律小寫,參數用大寫。
2)對于低電平有效的信號結尾要用_n標記,如rst_n。
3)端口信號排列要統一,一個信號只占一行,最好按輸入輸出及從哪個模塊來到哪個模塊去的關系排列,這樣在后期仿真驗證找錯時后方便很多。如: module a(//input
clk,rst_n,//globle signal
wren,rden,avalon_din,//related to avalon bus
sdi,//related to serial port input
//output
data_ready,avalon_dout, //related to avalon bus
...);
4)一個模塊盡量只用一個時鐘,這里的一個模塊是指一個module或者是一個entity。在多時鐘域的設計中涉及到跨時鐘域的設計中最好有專門一個模塊做時鐘域的隔離。這樣做可以讓綜合器綜合出更優的結果。
5)盡量在底層模塊上做邏輯,在高層盡量做例化,頂層模塊只能做例化,禁止出現任何膠連邏輯(glue logic),哪怕僅僅是對某個信號取反。理由同上。
6)在FPGA的設計上禁止用純組合邏輯產生latch,帶D觸發器的latch的是允許的,比如配置寄存器就是這種類型。
7)一般來說,進入FPGA的信號必須先同步,以提高系統工作頻率(板級)。
8)所有模塊的輸出都要寄存器化,以提高工作頻率,這對設計做到時序收斂也是極有好處的。
9)除非是低功耗設計,不然不要用門控時鐘--這會增加設計的不穩定性,在要用到門控時鐘的地方,也要將門控信號用時鐘的下降沿 打一拍再輸出與時鐘相與。
clk_gate_en------------
-----------------|DQ |------------------| gate_clk
_out
||---------|)--------
------o|>|||/
clk|--------|----
-----
10)禁止用計數器分頻后的信號做其它模塊的時鐘,而要用改成時鐘使能的方式,否則這種時鐘滿天飛的方式對設計的可靠性極為不利,也大大增加了靜態時序分析的復雜性。如FPGA的輸入時鐘是25M的,現在系統內部要通過RS232與PC通信,要以rs232_1xclk的速率發送數據。不要這樣做:always(posedge rs232_1xclk or negedge rst_n)
begin
...end
而要這樣做:
always(posedge clk_25m or negedge rst_n)
begin
...else if(rs232_1xclk == 1'b1)
...end
11)狀態機要寫成3段式的(這是最標準的寫法),即
...always @(posedge clk or negedge rst_n)
...current_state <= next_state;
...always @(current_state...)
...case(current_state)
...s1:
if...next_state = s2;
......always @(posedge clk or negedge rst_n)
...else
a <= 1'b0;
c <= 1'b0;
c <= 1'b0;//賦默認值
case(current_state)
s1:
a <= 1'b0;//由于上面賦了默認值,這里就不用再對b、c賦值了(b、c在該狀態為0,不會產生鎖存器,下同)s2:
b <= 1'b1;
s3:
c <= 1'b1;
default:
......3.ALTERA參考設計準則
1)Ensure Clock, Preset, and Clear configurations are free of glitch
es.2)Never use Clocks consisting of more than one level of combinatori
al logic.3)Carefully calculate setup times and hold times for multi-Clock sy
stems.4)Synchronize signals between flipflops in multi-Clock systems when
the setup and hold time requirements cannot be met.5)Ensure that Preset and Clear signals do not contain race conditio
ns.6)Ensure that no other internal race conditions exist.7)Register all glitch-sensitive outputs.Synchronize all asynchronous inputs.9)Never rely on delay chains for pin-to-pin or internal delays.10)Do not rely on Power-On Reset.Use a master Reset pin to clear al
l flipflops.11)Remove any stuck states from state machines or synchronous logic.其它方面的規范一時沒有想到,想到了再寫,也歡迎大家補充。
======================================
時序是設計出來的我的boss有在華為及峻龍工作的背景,自然就給我們講了一些華為及altera做邏輯的一些東西,而我們的項目規范,也基本上是按華為的那一套去做。在工作這幾個月中,給我感觸最深的是華為的那句話:時序是設計出來的,不是仿出來的,更不是湊出來的。
在我們公司,每一個項目都有很嚴格的評審,只有評審通過了,才能做下一步的工作。以做邏輯為例,并不是一上來就開始寫代碼,而是要先寫總體設計方案和邏輯詳細設計方案,要等這些方案評審通過,認為可行了,才能進行編碼,一般來說這部分工作所占的時間要遠大于編碼的時間。
總體方案主要是涉及模塊劃分,一級模塊和二級模塊的接口信號和時序(我們要求把接口信號的時序波形描述出來)以及將來如何測試設計。在這一級方案中,要保證在今后的設計中時序要收斂到一級模塊(最后是在二級模塊中)。什么意思呢?我們在做詳細設計的時候,對于一些信號的時序肯定會做一些調整的,但是這種時序的調整最多只能波及到本一級模塊,而不能影響到整個設計。記得以前在學校做設計的時候,由于不懂得設計時序,經常因為有一處信號的時序不滿足,結果不得不將其它模塊信號的時序也改一下,搞得人很郁悶。在邏輯詳細設計方案這一級的時候,我們已經將各級模塊的接口時序都設計出來了,各級模塊內部是怎么實現的也基本上確定下來了。由于做到這一點,在編碼的時候自然就很快了,最重要的是這樣做后可以讓設計會一直處于可控的狀態,不會因為某一處的錯誤引起整個設計從頭進行。
如何提高電路工作頻率
對于設計者來說,我們當然希望我們設計的電路的工作頻率(在這里如無特別說明,工作頻率指FPGA片內的工作頻率)盡量高。我們也經常聽說用資源換速度,用流水的方式可以提高工作頻率,這確實是一個很重要的方法,今天我想進一步去分析該如何提高電路的工作頻率。
我們先來分析下是什么影響了電路的工作頻率。
我們電路的工作頻率主要與寄存器到寄存器之間的信號傳播時延及clock skew有關。在FPGA內部如果時鐘走長線的話,clock skew很小,基本上可以忽略, 在這里為了簡單起見,我們只考慮信號的傳播時延的因素。信號的傳播時延包括寄存器的開關時延、走線時延、經過組合邏輯的時延(這樣劃 分或許不是很準確,不過對分析問題來說應該是沒有可以的),要提高電路的工作頻率,我們就要在這三個時延中做文章,使其盡可能的小。
我們先來看開關時延,這個時延是由器件物理特性決定的,我們沒有辦法去改變,所以我們只能通過改變走線方式和減少組合邏輯的方法來提高工作頻率。
1.通過改變走線的方式減少時延。
以altera的器件為例,我們在quartus里面的timing closure floorplan可以看到有很多條條塊塊,我們可以將條條塊塊按行和按列分,每一個條塊代表1個LAB,每個LAB里有8個或者是10個LE。它們的走線時延的關系如下:同一個LAB中(最快)< 同列或者同
行 < 不同行且不同列。我們通過給綜合器加適當的約束(不可貪心,一般以加5%裕量較為合適,比如電路工作在100Mhz,則加約束加到105Mhz就可以了,貪心效果反而不好,且極大增加綜合時間)可以將相關的邏輯在布線時盡量布的靠近一點,從而減少走線的時延。(注:約束的實現不完全是通過改進布局布線方式去提高工作頻率,還有其它的改進措施)
2.通過減少組合邏輯的減少時延。
上面我們講了可以通過加約束來提高工作頻率,但是我們在做設計之初可萬萬不可將提高工作頻率的美好愿望寄托在加約束上,我們要通過合理的設計去避免出現大的組合邏輯,從而提高電路的工作頻率,這才能增強設計的可移植性,才可以使得我們的設計在移植到另一同等速度級別的芯片時還能使用。
我們知道,目前大部分FPGA都基于4輸入LUT的,如果一個輸出對應的判斷條件大于四輸入的話就要由多個LUT級聯才能完成,這樣就引入一級組合邏輯時延,我們要減少組合邏輯,無非就是要輸入條件盡可能的少,這樣就可以級聯的LUT更少,從而減少了組合邏輯引起的時延。
我們平時聽說的流水就是一種通過切割大的組合邏輯(在其中插入一級或多級D觸發器,從而使寄存器與寄存器之間的組合邏輯減少)來提高工作頻率的方法。比如一個32位的計數器,該計數器的進位鏈很長,必然會降低工作頻率,我們可以將其分割成4位和8位的計數,每當4位的計數器計到15后觸發一次8位的計數器,這樣就實現了計數器的切割,也提高了工作頻率。
在狀態機中,一般也要將大的計數器移到狀態機外,因為計數器這東西一般是經常是大于4輸入的,如果再和其它條件一起做為狀態的跳變判據的話,必然會增加LUT的級聯,從而增大組合邏輯。以一個6輸入的計數器為例,我們原希望當計數器計到111100后狀態跳變,現在我們將計數器放到狀態機外,當計數器計到111011后產生個enable信號去觸發狀態跳變,這樣就將組合邏輯減少了。
上面說的都是可以通過流水的方式切割組合邏輯的情況,但是有些情況下我們是很難去切割組合邏輯的,在這些情況下我們又該怎么做呢?
狀態機就是這么一個例子,我們不能通過往狀態譯碼組合邏輯中加入流水。如果我們的設計中有一個幾十個狀態的狀態機,它的狀態譯碼邏輯將非常之巨大,毫無疑問,這極有可能是設計中的關鍵路徑。那我們該怎么做呢?還是老思路,減少組合邏輯。我們可以對狀態的輸出進行分析,對它們進行重新分類,并根據這個重新定義成一組組小狀態機,通過對輸入進行選擇(case語句)并去觸發相應的小狀態機,從而實現了將大的狀態機切割成小的狀態機。在ATA6的規范中(硬盤的標準),輸入的命令大概有20十種,每一個命令又對應很多種狀態,如果用一個大的狀態機(狀態套狀態)去做那是不可 想象的,我們可以通過case語句去對命令進行譯碼,并觸發相應的狀態機,這樣做下來這一個模塊的頻率就可以跑得比較高了。
總結:提高工作頻率的本質就是要減少寄存器到寄存器的時延,最有效的方法就是避免出現大的組合邏輯,也就是要盡量去滿足四輸入的條件,減少
LUT級聯的數量。我們可以通過加約束、流水、切割狀態的方法提高工作頻率。
=====================================
做邏輯的難點在于系統結構設計和仿真驗證
剛去公司的時候BOSS就和我講,做邏輯的難點不在于RTL級代碼的設計,而在于系統結構設計和仿真驗證方面。目前國內對可綜合的設計強調的比較多,而對系統結構設計和仿真驗證方面似乎還沒有什么資料,這或許也從一個側面反映了國內目前的設計水平還比較低下吧。
以前在學校的時候,總是覺得將RTL級代碼做好就行了,仿真驗證只是形式而已,所以對HDL的行為描述方面的語法不屑一顧,對testbench也一直不愿意去學--因為覺得畫波形圖方便;對于系統結構設計更是一點都不懂了。到了公司接觸了些東西才發現完全不是這樣。
其實在國外,花在仿真驗證上的時間和人力大概是花在RTL級代碼上的兩倍,現在仿真驗證才是百萬門級芯片設計的關鍵路徑。仿真驗證的難點主要在于怎么建模才能完全和準確地去驗證設計的正確性(主要是提高代碼覆蓋),在這過程中,驗證速度也是很重要的。
驗證說白了也就是怎么產生足夠覆蓋率的激勵源,然后怎么去檢測錯誤。我個人認為,在仿真驗證中,最基本就是要做到驗證的自動化。這也是為什么我們要寫testbench的原因。在我現在的一個設計中,每次跑仿真都要一個小時左右(這其實算小設計)。
由于畫波形圖無法做到驗證自動化,如果用通過畫波形圖來仿真的話,一是畫波形會畫死(特別是對于算法復雜的、輸入呈統計分布的設計),二是看波形圖要看死,三是檢錯率幾乎為零。
那么怎么做到自動化呢?我個人的水平還很有限,只能簡單地談下BFM(bus function model,總線功能模型)。
以做一個MAC的core為例(背板是PCI總線),那么我們需要一個MAC_BFM和PCI_BFM及PCI_BM(PCI behavior model)。MAC_BFM的主要功能是產生以太網幀(激勵源),隨機的長度和幀頭,內容也是隨機的,在發送的同時也將其復制一份到PCI_BM中;PCI_BFM的功能則是仿PCI總線的行為,比如被測收到了一個正確幀后會向PCI總線發送一個請求,PCI_BFM則會去響應它,并將數據收進來;PCI_BM的主要功能是將MAC_BFM發送出來的東西與PCI_BFM接收到的東西做比較,由于它具有了MAC_BFM的發送信息和PCI_BFM的接收信息,只要設計合理,它總是可以自動地、完全地去測試被測是否工作正常,從而實現自動檢測。
華為在仿真驗證方面估計在國內來說是做的比較好的,他們已建立起了比較好的驗證平臺,大部分與通信有關的BFM都做好了,聽我朋友說,現在他們只需要將被測放在測試平臺中,并配置好參數,就可以自動地檢測被測功能的正確與否。
在功能仿真做完后,由于我們做在是FPGA的設計,在設計時已經基本保證RTL級代碼在綜合結果和功能仿真結果的一致性,只要綜合布局布線后的靜態時序報告沒有違反時序約束的警告,就可以下到板子上去調試了。事實上,在華為中興,他們做FPGA的設計時也是不做時序仿真的,因為做時序仿真很花時間,且效果也不見得比看靜態時序分析報告好。
當然了,如果是ASIC的設計話,它們的仿真驗證的工作量要大一些,在涉及到多時鐘域的設計時,一般還是做后仿的。不過在做后仿之前,也一般會先用形式驗證工具和通過靜態時序分序報告去查看有沒有違反設計要求的地方,這樣做了之后,后仿的工作量可以小很多。
在HDL語言方面,國內語言很多人都在爭論VHDL和verilog哪個好,其實我個人認為這并沒有多大的意義,外面的大公司基本上都是用verilog在做RTL級的代碼,所以還是建議大家盡量學verilog。在仿真方面,由于VHDL在行為級建模方面弱于verilog,用VHDL做仿真模型的很少,當然也不是說verilog就好,其實verilog在復雜的行為級建模方面的能力也是有限的,比如目前它還不支持數組。在一些復雜的算法設計中,需要高級語言做抽象才能描述出行為級模型。在國外,仿真建模很多都是用System C和E語言,用verilog的都算是很落后的了,國內華為的驗證平臺好像是用System C寫。在系統結構設計方面,由于我做的設計還不夠大,還談不上什么經驗,只是覺得必須要具備一些計算機系統結構的知識才行。劃分的首要依據是功能,之后是選擇合適的總線結構、存儲結構和處理器架構,通過系統結構劃分要使各部分功能模塊清晰,易于實現。這一部分我想過段時間有一點體會了再和大家分享,就先不誤導大家了。
第五篇:fpga學習心得體會
fpga學習心得體會
1、該課程實現了通過usb 接口將代碼與實驗設備相結合的功能,并且使我對EL-S0PC4000 實驗箱有了接觸,了解并掌握了其所具備的一些功能,在實驗中不僅使我學到了很多知識,并且其過程還充滿了樂趣。
2、QuartusII 軟件及FPGA 的設計與應用所采用的語言與我所學過的一些語言有所不同,該種語法與C 語言有一些相似之處,但在細枝末節上有該語言自己的習慣,這是學習這門語言的要點。學習一門語言并不是一周兩周就能速成的,想要掌握這門語言還是需要日后自己不斷地練習不斷地積累經驗,在完成一項工程后所帶來的成就感也是使我持續學習的動力。
3、此外,該門課程與我之前學習的數電這門課程息息相關,他也是仿真了許多數電的一些電路,使我對數電的理解更加的深刻,既鍛煉了我的動手能力,同時也鍛煉了我的邏輯思維能力。在這幾次的數電實驗中,我收獲頗多,我們經過老師的教導,學會了FPGA,Verilog編程,我們也學會了使用Quartus軟件,并用電路板進行了多次FGPA實驗,了解了Verilog的設計;實驗中我學會了用Quartus軟件繪圖、編碼以及與電路板的連接;實驗中,我遇到了很多問題,但是經過老師和同學們的幫助,我都逐一的解決了這些問題并完成了實驗。實驗中我們收獲最多重要的是,結合電路板進行代碼的編譯、調試,希望以后我們會有更多的機會學習了解verilog編程