久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

一元一次方程應用題教學設計

時間:2019-05-12 16:43:03下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《一元一次方程應用題教學設計》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《一元一次方程應用題教學設計》。

第一篇:一元一次方程應用題教學設計

一元一次方程應用題教學設計

作者: 田利霞(初中數學 河南安陽滑縣初中數學一班)評論數/瀏覽數: 9 / 2555 發表日期:

2011-01-05 17:53:29 教學設計

【教學目標】

1、通過對多個實際問題的分析,讓學生體驗從算術方法到代數方法是一種進步,歸納并理解一元一次方程的概念,領悟一元一次方程的意義和作用.2、在學生根據問題尋找相等關系、根據相等關系列出方程的過程中,培養學生獲取信息、分析問題、處理問題的能力.3、使學生經歷把實際問題抽象為數學方程的過程,認識到方程是刻畫現實世界的一種有效的數學模型,初步體會建立數學模型的思想.【教學重點、難點】使學生理解問題情境,探究情境中包含的數量關系,最終用方程來描述和刻畫事物間的相等關系.【教學方法】啟發式講授法

【教學過程】

[階段1] 情境導入

回顧舊知

今年進行的德國世界杯足球賽,吸引了全球的目光.你喜歡足球嗎?下面來看一個與足球場有關的問題.引例: 德國世界杯足球賽萊比錫賽場為長方形的足球場,周長為310米,長和寬之差為25米,這個足球場的長與寬分別是多少米?

教師給出引例,帶領學生進入到實際問題的情境中.1、算術方法:

足球場長與寬的和為 310÷2=155(米).由和差關系,得

足球場的長度為(155+25)÷2=90(米),寬度為90-25=65(米).2、方程方法:

設足球場的長度為 米,那么足球場的寬度能用含 的式子表示為 米.根據“長方形的周長=(長+寬)×2”,列出方程:.教師指出,如何解出方程中的未知數 ,是今后要學習的知識.然后,請學生回顧方程的概念:含有未知數的等式,叫做方程.教師引導學生總結引例的研究方法,啟發學生比較算術方法和方程方法的區別:

用算術方法解決問題時,只能用已知數,而用方程方法解題時用字母表示的未知數也可以參與運算.算術方法主要運用逆向思維,列方程主要運用正向思維.依據新課程的理念,教師要創造性地使用教材.作為引入本課的第一個例子,選用了“世界杯足球賽賽場問題”,以激發學生的學習興趣,而且設置了符合學生認知水平的問題情境,以達到由淺入深、逐步提高的目的.[階段2]聯系實際

探究新知

請同學們用方程來研究問題.例1:某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?

分析:題中給出的已知量為倉庫中存放的面粉運出15%;倉庫中還剩余42500千克。

未知量為倉庫中原來有多少面粉。已知量與未知量之間的一個相等關系:

原來重量-運出重量=剩余重量

設原來有x千克面粉,運出15%千克,還剩余42500千克。列出:

左邊:原來由x千克,運出15%·x千克 右邊:還剩下42500千克

解:設原來有x千克面粉,那么運出了15%x千克,根據題意,得 x-15%·x=42500 85%·x=42500 x=50000

答:原來有50000千克面粉。

說明:(1)此應用題的相等關系也可以是 原來重量=運出重量+剩余重量,原來重量-剩余重量=運出重量。

它們與“原來重量-運出重量=剩余重量”形式上不同,實際上是一樣的,可以任意選擇其中的一個相等關系來列方程。(2)例題的解方程較為簡捷,應注意摸仿。

總結:根據例題分析,列一元一次方程解應用題的方法和步驟如下:(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;

(2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵步驟);

(3)根據相等關系,正確列出方程,即所列方程應滿足兩邊的量要相等;方程兩邊代數式的單位要相同;題中條件要充分利用,不能漏也不能將一個條件重復利用等;

(4)根據方程的同解性原理,解方程,求出未知數的值;(5)檢驗后完整寫出答案。

例2 將一個底面半徑是5厘米、高為36厘米的“瘦長”型圓柱鋼材鍛壓成高為9厘米的“矮胖”型圓柱鋼材,底面半徑變成了多少厘米? 歸納概念: 只含有一個未知數(元),并且未知數的指數是1(次)的方程叫做一元一次方程.讓學生板書 [階段3]鞏固練習拓展思維

練習:1要過年了,集貿市場有一些雞和兔,總共有頭44個,120只腳,則集貿市場雞和兔各有多少只?

2媽媽買梨和蘋果共32個共用20元,每個梨0.8元,比蘋果貴0.6元,求梨個蘋果各多少個?

3小紅騎車上學12分鐘到校,放學時,車子壞了,步行回家,用25分鐘,騎車的速度為240米/分,則步行的速度為多少? [階段4]歸納小結

布置作業:課本本節習題。

歸納小結: 列一元一次方程解應用題時,既是沒有規律可循,雜亂無章的,又是可以靈活運用,具體問題具體對待的。最主要的是只要多練習,就一定能夠掌握列一元一次方程解應用題的技巧和方法的。

第二篇:一元一次方程應用題

一元一次方程的解法

(1)x+1.5-9x

8?5=0

24y?12y?5(2)y?-=2-336

(3)

(4)

(5)

2311[3(x-)-3]-2=x 24214(1-x)-(2-)=2 3213x43x?1.50.2?0.1-0.20x.03=2.5

第三篇:一元一次方程應用題

1、運送29.5噸煤,先用一輛載重4噸的汽車運3次,剩下的用一輛載重為2.5噸的貨車運.還要運

幾次才能完? 還要運x次才能完

29.5-3*4=2.5x 17.5=2.5x x=7

還要運7次才能完

2、一塊梯形田的面積是90平方米,上底是7米,下底是11米,它的高是幾米?

它的高是x米

x(7+11)=90*2

18x=180 x=10 它的高是10米

3、某車間計劃四月份生產零件5480個.已生產了9天,再生產908個就能完成生產計劃,這9天中平均每天生產多少個? 這9天中平均每天生產x個

9x+908=5408 9x=4500 x=500

這9天中平均每天生產500個

4、甲乙兩車從相距272千米的兩地同時相向而行,3小時后兩車還相隔17千米.甲每小時行45千米,乙每小時行多少千米?

乙每小時行x千米

3(45+x)+17=272 3(45+x)=255 45+x=85 x=40

乙每小時行40千米

5、某校六年級有兩個班,上學期級數學平均成績是85分.已知六(1)班40人,平均成績為87.1分;六(2)班有42人,平均成績是多少分?

平均成績是x分

40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成績是83分

6、學校買來10箱粉筆,用去250盒后,還剩下550

盒,平均每箱多少盒?平均每箱x盒

10x=250+550 10x=800 x=80 平均每箱80盒

7、四年級共有學生200人,課外活動時,80名女生都去跳繩.男生分成5組去踢足球,平均每組多

少人?平均每組x人

5x+80=200 5x=160 x=32 平均每組32人

8、食堂運來150千克大米,比運來的面粉的3倍少30千克.食堂運來面粉多少千克?

食堂運來面粉x千克

3x-30=150

3x=180 x=60

食堂運來面粉60千克

9、果園里有52棵桃樹,有6行梨樹,梨樹比桃樹多20棵.平均每行梨樹有多少棵?

平均每行梨樹有x棵

6x-52=20 6x=72 x=12

平均每行梨樹有12棵

10、一塊三角形地的面積是840平方米,底是140

米,高是多少米?

高是x米

140x=840*2 140x=1680 x=12 高是12米

11、李師傅買來72米布,正好做20件大人衣服和16件兒童衣服.每件大人衣服用2.4米,每件兒

童衣服用布多少米? 每件兒童衣服用布x米

16x+20*2.4=72 16x=72-48 16x=24

x=1.5

每件兒童衣服用布1.5米 12、3年前母親歲數是女兒的6倍,今年母親3

3歲,女兒今年幾歲? 女兒今年x歲

30=6(x-3)6x-18=30 6x=48 x=8 女兒今年8歲

13、一輛時速是50千米的汽車,需要多少時間才能追上2小時前開出的一輛時速為40千米汽車?

需要x時間

50x=40x+80 10x=80 x=8 需要8時間

14、小東到水果店買了3千克的蘋果和2千克的梨共付15元,1千克蘋果比1千克梨貴0.5元,蘋果和梨每千克各多少元?

蘋果x 3x+2(x-0.5)=15

5x=16 x=3.2

蘋果:3.2 梨:2.7

15、甲、乙兩車分別從A、B兩地同時出發,相向而行,甲每小時行50千米,乙每小時行40千米,甲比乙早1小時到達中點.甲幾小時到達中點?

甲x小時到達中點

50x=40(x+1)10x=40 x=4

甲4小時到達中點

16、甲、乙兩人分別從A、B兩地同時出發,相向而行,2小時相遇.如果甲從A地,乙從B地同時出發,同向而行,那么4小時后甲追上乙.已知甲速度是15千米/時,求乙的速度.乙的速度x 2(x+15)+4x=60 2x+30+4x=60

6x=30 x=5 乙的速度5

17.兩根同樣長的繩子,第一根剪去15米,第二根比第一根剩下的3倍還多3米.問原來兩根繩

子各長幾米? 原來兩根繩子各長x米

3(x-15)+3=x 3x-45+3=x 2x=42 x=21

原來兩根繩子各長21米

18.某校買來7只籃球和10只足球共付248元.已知每只籃球與三只足球價錢相等,問每只籃球

和足球各多少元? 每只籃球x 7x+10x/3=248 21x+10x=744 31x=744

x=24 每只籃球:24 每只足球:8 這還有 追問:

再多點,那里沒答案!

追答:

16.(9分)某市中學生排球賽中,按勝一場得2分,平一場得1分,負一場得0分計算,市第四中學排球隊參加了8場比賽,保持不敗的記錄,共得了13分,問其中勝了幾場? 設勝了x場,可列方程:2x+(8-x)=13,解之得x=5 17.(9分)小趙和小王交流暑假中的活動,小趙說:“我參加科技夏令營,外出一個星期,這七天的日期數之和是84,你知道我是幾號出去的嗎?”小王說:“我假期到舅舅家去住了七天,日期數的和再加月份數也是84,你能猜出我是幾月幾號回家的?”試試看,列出方程,解決小趙與小王的問題. 小趙是9號出去的,小王是7月15號回家的(提示:可設七天的中間一天日期數是x,則其余六天分別為x-3,x-2,x-1,x+1,x+2,x+3,由題意列方程,易求得中間天數,對小王的情形,由于七天的日期數之和是7的倍數,因為84是7的倍數,所以月份數也是7的倍數,可知月份數是7,且在8號至14號在舅舅家.故于7月15號回家. 18.(9分)一批樹苗按下列方法依次由各班領取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后樹苗全部被取完,且各班的樹苗數都相等,求樹苗總數和班級數. 樹苗共8100棵,有9個班級(提示:本題的設元列方程有多種方法,可以設樹苗總數x棵,由第一、第二兩個班級的樹苗數相等可列方程: 100+(x-100)=200+ [x-200-100- ?(x-100)],也可設有x個班級,則最后一個班級取樹苗100x棵,倒數第二個班級先取100(x-1)棵,又取“余下的 ”也是最后一個班級的樹苗數的,由最后兩班的樹苗相等,可得方程: 100(x-1)+ x=100x若注意到倒數第二個班級先取的100(x-1)棵比100x棵少100棵,即得 =100,還可以設每班級取樹苗x棵,得 =100. 19.(9分)李紅為班級購買筆記本作晚會上的獎品,回來時向生活委員劉磊交賬時說:“共買了36本,有兩種規格,單價分別為1.80元和2.60元,去時我領了100元,現在找回27.60元”劉磊算了一下說:“你一定搞錯了”李紅一想,發覺的確不對,因為他把自己口袋里原有的2元錢一起當作找回的錢款交給了劉磊,請你算一算兩種筆記本各買了多少?想一想有沒有可能找回27.60元,試用方程的知識給予解釋. 設購買單價1.80元的筆記本x本,列方程可得:1.8x+2.6?(36-x)=100-27.60,解之得x=2.60不符合實際問題的意義,所以沒有可能找回27.60元.

第四篇:淺談一元一次方程應用題的教學

淺談一元一次方程應用題的教學

王美華

黃鋪鎮中心學校 1329200204@QQ.com

【摘要】:列一元一次方程解應用題的教學是七年級教學中一個重點和難點,列一元一次方程解應用題就是用數學語言或符號把應用題中所包含的已知量與未知量之間的數量關系轉化為方程去解決問題。筆者在教學過程中,嘗試運用了“以學定教、以教導學”的新模式進行教學,在教學中注重培養學生分析問題、解決問題的能力。在教師的正確指導下,讓學生能夠學會怎樣學習,明確學習的重要性,從而提高學生學習主動性、創造性,讓學生在汲取知識的同時,掌握正確的

數學思想方法,重點是歸類教學化繁瑣為簡單,培養學生養成舉一反三的能力。

【關鍵詞】: 列方程解應用題 應用題教學 一元一次方程 等量關系歸類 數學思想方法 解決問題

【 正文 】 :一年一度的黃鋪鎮教研活動月已順利閉幕。在此次公開課的教學評比中,我的《用方程解決實際問題》的課題教學獲得了優勝獎。總結獲勝的原因是因為我改變了傳統的“以教定學”教學理念,充分發揮學生的主體作用。嘗試運用了“以學定教、以教導學”的新模式,使課堂教學變得更有效。

作為一名數學教學工作者,我們深知從小學到初中,文字應用題一直是我們和學生頭痛的一大難題,特別是一元一次方程的應用題,學生初學列方程解應用題時,往往弄不清解題步驟,分析問題不夠明確。初一學生在解應用題時,主要存在三方面的困難:(1)找不出相等關系;(2)找出相等關系后,不會列方程;(3)習慣用算術方法,對用代數方法解應用題不適應。而在這三方面中,首要的是抓相等關系,等量關系找到了,其它兩個問題就可以解決了。對一元一次方程解應用題的方法掌握不夠牢固和熟練等問題的存在。直接影響學生對數學這門學科的學習興趣。我們知道興趣是最好的老師,為了提高學生的積極性,也為了引導學生學習數學的主動性,我認為在一元一次方程應用題的教學中,教師應做到以下兩點:

一、聯系生活選例題,在生活中學數學

數學來源于生活,數學根植于生活,生活中處處有數學,數學蘊藏在生活中的每個角落。生活是數學的大課堂,回歸生活學數學,既是讓數學自身的魅力得到充分展現,又讓學生積極主動地學到了富有真情實感的、能動的、有活力的知識。切記:聯系生活學數學,絕非回到生活中放任自流地學數學,而是充分發揮課堂“主陣地”的作用,并重在數學與生活的有機結合。我們要重視挖掘生活素材,將數學來源于生活又服務于生活的精神落到實處,領悟到數學的魅力,感受到數學的樂趣,更好地通過數學的學習促進自身的發展。

二、加強數學思想方法的教學

數學思想方法是數學學科的精髓,是數學素養的重要內容之一,學生只有領悟了數學思想方法,才能有效的應用知識,形成能力。因此,在數學教學中特別重視數學思想方法的滲透,重視培養學生的思 維能力,積累數學活動經驗。數學思想蘊含在數學知識的形成,發展和應用的過程中,應結合具體內容的教學,讓學生在積極參與教學活動的過程中通過獨立思考、合作交流、逐步感悟數學思想。同樣,教學活動經驗也需要在“做”的過程和思考的過程中積淀,教學中要結合具體的學習內容,設計有效的數學探究活動,使學生經歷數學的發生發展過程,積累數學活動經驗,引導學生在讀書中體會數學思想方法,讓學生“能在閱讀中思考,思考中閱讀”。

基于以上兩點,我就以解一元一次方程應用題為例,作一簡單分析。

我認為解一元一次方程應用題的關鍵是找出代表題目全部含義的數量關系,每道應用題都包含著事物的情節和數量兩個方面,都由已知條件和問題兩部分構成。學生們只有對情節和數量關系理解和掌握了,才能將數量關系概括為抽象的數學問題,正確列出方程,這就需要同學們抓住關鍵語句理清解題思路。另外,把應用題的條件和問題通過線段圖或列表表示出來,可以使抽象的數量關系具體化、直觀化,便于理解題意,找出已知數,更好的列出一元一次方程應用題。然后根據解方程的一般步驟進行解答,因為是實際問題一定要檢驗看結果是否符合實際情況。

一元一次方程應用題的教學我采用歸類的數學思想實施教學,我認為這樣對初一的學生會有很大的幫助,現列舉以下九類常見的數學問題加以闡述。

1、和差倍分問題。(1)倍數關系:通過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾……”來體現。

(2)多少關系:通過關鍵詞語“多、少、和、差、不足、剩余……”來體現。

例:已知甲,乙、丙、丁 四個數,甲比乙多3,丙比甲的2倍多7,丁比乙的2倍多5,四個數的總和為45,求這四個數各為多少?

分析:題目中已知的有: 甲=乙+3 丁=乙*2+5 丙=甲*2+7 甲+乙+丙+丁=45

未知的有:甲乙丙丁四個數

通過分析我們可以看出能夠包含全部題意的等式是 甲+乙+丙+丁=45

2、等積變形問題。

這一類問題是以形狀改變而體積不變為前提。常用數量關系為:①形狀面積變了,周長沒變。

②原料體積=成品體積

例:小明想用一根長為10米的鐵絲圍成一個長方形。使得這個長方形的長比寬多1.4米,此時長方形的長、寬各為多少米?

解:設此時長方形的寬為x米,則它的長為(x+1.4)米,根據題意,得 x+x+1.4=10÷2

3、勞力調配問題:這一類問題要搞清人數的變化,常見題型有:(1)既有調入又有調出。

(2)只有調入,沒有調出,調入部分變化,其余不變。(3)只有調出沒有調入,調出部分變化,其余不變。

例:在甲處勞動的有27人,在乙處勞動有19人,現另外調20人去支援,使在甲處工作的人數是乙處的2倍,問往甲、乙處各調多少人?

線段圖:

表格圖:

相等關系:甲原有人數+調入人數=(乙原有人數+調入人數)×2 解:設調往甲處x人,則調往乙處(由題意得:

4、比例分配問題。

這類問題的一般思路為:設其中一份為未知數,利用已知的比,寫出相應的代數式,常用數量關系:各部分之和=總量

例:男女生若干人,男生與女生人數之比為4:3,后來走了12名女生這時男生人數是女生的2倍。求原來男女生人數?)人

解:設男生人數為4x,則女生人數為3x 方程:4x=2(3x-12)

5、數字問題

數字問題是常見的數學問題。一元一次方程應用題中的數字問題多是整數,要注意數位、數位上的數字、數值三者間的關系:任何數=∑(數位上的數字×位權),如兩位數 10a+b;三位數100a+10b+c。在求解數字問題時要注意整體設元思想的運用。

例:一個五位數最高位上的數字是2,如果把這個數字移到個位數字的右邊,那么所得到的數比原來的數的3倍多489,求原數

解:設后四位是x 則原來是20000+x 現在是10x+2 所以10x+2=3(20000+x)+489

6、工程問題

這類問題中的三個量及其關系為:工作總量=工作效率×時間 例:一件工作,甲單獨做20小時完成,乙單獨做12小時完成。問:甲乙合做,需幾小時完成這件工作?

解:設甲乙合作x小時完成這件工作所以(1/20+1/12)x=1

7、行程問題

(1)行程問題中的三個基本量及其關系:路程=速度×時間(2)基本類型有:

①相遇問題。

②追及問題;常見的還有:相背而行;行船問題;環形跑道問題。例:甲乙兩人相距40千米,甲先出發1.5小時乙再出發,甲在后乙在 前,二人同向而行,甲的速度是每小時8千米,乙的速度是每小時6千米,甲出發幾小時后追上乙?

分析:根據題意有相等關系:甲走的路程-乙走的路程=兩人原來的距離。如果設甲出發x小時后追上乙,則乙運動的時間為(x-1.5)小時,所以甲走的路程為8x千米,乙走的路程為6(x-1.5)千米。列方程解答過程略。

8、利潤盈虧問題

(1)銷售問題中常出現的量有:進價、售價、標價、利潤等。(2)有關關系式:

商品利潤=商品售價-商品進價=標價×折扣率-進價

利潤率=利潤/進價

售價=標價×折扣率

例:一家商店將某種服裝按進價提高40%后標價,又以8折優惠賣出,結果每件仍獲利15元,這種服裝每件的進價是多少?

[分析]找出題目中隱含的條件:折扣后價格—進價=利潤

9、儲蓄問題

這類問題的關系式:利息=本金×利率×期數

本息和=本金+利息

利息稅=利息×稅率

例:王大爺購買價值5270元的一臺家用電器,購買時首付1000元,以后每年付一次款,且每次付款數相等,經2年付清全部售價和欠款的利息.設年利率為4.5%(不計復利),問王大爺每次需付款多少 元(折合成購買時的值計算)? 解:設每次需要付款x元,列方程

【4270×(1+4.5%)-x】×(1+4.5%)=x

除了我以上介紹的九類應用題型以外,還會涉及以下“方案決策問題、雞兔同籠問題、積分問題、購票問題”等等我這里就不做具體介紹了。

總之,關于一元一次方程的應用題,教師在教學中一定要突出關于問題解決的策略、方法的引導。要引導學生會具體情況具體分析,靈活運用所學知識,逐步用方程模型解決實際問題。這就是我對一元一次方程應用題教學的一些膚淺的認識。

第五篇:一元一次方程應用題教案

《列一元一次方程解應用題》教學設計

-----多角度尋找題目中的等量關系與列方程

主講教師:劉露蓮

【教學目標】

1.弄清楚題目中各數量之間的關系,找出等量關系。

2.能根據題意設未知數,列出相應的方程,并明白列方程的實質。

3.通過用一元一次方程解決生活中的實際問題,讓學生感受到數學和我們的生活息息相關,從而增強學生使用數學的意識和對數學的興趣。

【教學重、難點】

重點: 將實際問題轉化為數學問題,找出等量關系 難點: 明白列方程的實質。【教學方法】

采用探究、合作、交流等教學方式完成教學。

【教學手段】

多種媒體輔助教學.【教學流程】

一、復習引入 :找等量關系并列出方程 1.某數的三分之一比這個數小1,求這個數。2.某數與7的和的四分之一是10,求這個數。3.某數的30%與5的差是8,求這個數。

4.某數的30%與5的差的三分之一等于3,求這個數。

5.甲、乙兩組共50人,且甲隊人數比乙隊人數的2倍少10人,求兩隊各有多少人?(方法一)(方法二)

6.一個數的3倍與(-9)的絕對值的和恰好等于這個數的6倍,求這個數。

7.甲組4名工人1月完成的總工作量比該月人均定額的4倍多20件,乙組5名工人1月完成的總工作量比該月的人均定額的6倍少20件。

(1)設月人均定額為X件,則甲組人均生產量為 乙組人均生產量為(2)若兩組工人人均生產量相等,可列方程為(3)若甲組人均生產量比乙組多2件,可列方程為(4)若甲組人均生產量比乙組少2件,可列方程為

8.小王買了6斤蘋果,他給了老板50元,老板找回他26元,求蘋果的單價。9.長方形的周長為60米,已知長是寬的1.5倍,求它的面積。

10.某廠今年產值為600萬元,今年比去年增長了20%,求去年的產值。11.某商品進價為200元,按標價的九折賣出后,利潤率為35%,求標價。

12.已知三個連續奇數的和為105,求這三個奇數。歸納小結:找等量關系主要應,注意關鍵詞語。(1)倍數關系:通過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率,它們的比是……”來體現。(2)多少關系:通過關鍵詞語“多、少、和、差、不足、剩余……”來體現。(3)基本的數量關系與公式:路程=速度×時間,行船問題:V順=V靜+V水 V逆= V靜-V水,飛行問題:V順=V靜+V風,V逆=V靜-V風,工作總量=工作效率×工作時間,長方形周長=2(長+寬)等等。(4)理解文字找等量關系。會找等量關系,咱們解應用題就成功了一半。

二、小組嘗試:(小組活動)

例4 某制藥廠制造一批藥品,如用舊工藝,則廢水排量要比環保限制的最大量還多200 t;如用新工藝,則廢水排量比環保限制的最大量少100 t.新舊工藝的廢水排量之比為2:5,兩種工藝的廢水排量各是多少?

思考:

(1)你能在問題中把表示等量關系的語句找出來,并用等式進行表示嗎?(2)你準備設哪個未知數

等量關系:舊工藝的廢水排量=環保限制的最大量+200;

新工藝的廢水排量=環保限制的最大量—100; 新工藝的廢水排量:舊工藝的廢水排量 = 2:5 解:設新、舊工藝的廢水排量分別為2x t和5x t.根據廢水排量與環保限制最大量之間的關系,得

5x-200=2x+100(問:等號兩邊代表哪個數量)移項,得

5x-2x=100+200

合并同類項,得

3x=300

系數化為1,得

x=100

所以 2x=200,5x=500.答:新舊工藝產生的廢水數量分別為200 t和500 t.三、歸納小結:

通過剛才咱們一起探究的過程,咱們來總結一下運用方程解決實際問題的一般過程。1.審題:分析題意,找出題中的數量關系及其等量關系(也就是將實際問題轉化為數學問題); 2.設元:選擇一個適當的未知數用字母表示(例如x); 3.列方程:根據等量關系列出方程; 4.解方程:求出未知數的值; 5.檢驗6.答。而我們知道前3步是咱們用方程解應用題的制勝關鍵,接下來咱們重點練習前3個步驟。

四、課堂檢測(回答:列方程的實質是什么?)

1.某科技興趣小組共32人,其中男生與女生的人數之比為3:5,問男、女生各有多少人?

2.一個三角形三邊長度的比為3:4:5,最短的邊比最長的邊短4 cm,則這個三角形的周長是多少?

3.某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求這批樹有多少棵.4.某工人在一定時間內加工一批零件,如果每天加工44個就比規定任務少加工 20個;如果每天加工50個,則可超額10個.求規定加工的零件數和計劃加工的天數.

(附加題)5.一架飛機在兩城之間飛行,順風需要4小時,逆風需要4.5小時;測得風速為45千米/時,求 兩城之間的距離。

(附加題)6.小聰從家到學校,如果每分鐘走100米,就會遲到3分鐘;如果每分鐘走150米,就會早到3分,問小聰每分鐘走多少米才能按時到校

(答案:列方程的實質就是用兩種不同的方法來表示同一個量。單位統一)【布置作業】 1.教科書第92頁習題3.2第10,11題.

下載一元一次方程應用題教學設計word格式文檔
下載一元一次方程應用題教學設計.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    一元一次方程典型應用題

    小學數學典型應用題分析歸納 (1)平均數問題:平均數是等分除法的發展。 解題關鍵:在于確定總數量和與之相對應的總份數。 算術平均數:已知幾個不相等的同類量和與之相對應的份數......

    一元一次方程應用題及答案

    1.兩車站相距275km,慢車以50km/一小時的速度從甲站開往乙站,1h時后,快車以每小時75km的速度從乙站開往甲站,那么慢車開出幾小時后與快車相遇? 設慢車開出a小時后與快車相遇 50a+7......

    《列一元一次方程解應用題》教學反思

    《列一元一次方程解應用題》教學反思 《列一元一次方程解應用題》的教學反思 利用一元一次方程解應用題是數學教學中的一個重點,而對于學生來說卻是學習的一個難點。七年級......

    一元一次方程應用題匹配問題

    一元一次方程應用題匹配問題 例:某車間22名工人生產螺釘和螺母,每人每天平均生產螺釘1200個或螺母2000個,一個螺釘要配兩個螺母。為了使每天的產品剛好配套,應該分配多少名工人......

    如何學好一元一次方程解應用題

    如何學好一元一次方程解應用題 安徽省蕪湖市南陵縣東河初中 開平列一元一次方程解應用題是七年級數學教學中重點和難點,如何讓學生熟練掌握列方程解應用題的技巧,教師要根據......

    一元一次方程應用題----工作量問題

    一元一次方程應用題-----工作量問題 工作量問題的基本關系: 工作量=工作效率×工作時間 ;工作效率=工作量÷工作時間 ;工作時間=工作量÷工作效率 注意:一般情況下把總工作量設......

    一元一次方程應用題測試15篇

    一元一次方程應用題專題訓練 命題人:張書涵 《一元一次方程》應用題專項訓練 密1.某人從甲地到乙地,全程的11乘車,全程的乘船,最后又步行4km到達乙地。23......

    行程問題--一元一次方程經典應用題

    行程問題 一、相遇問題: 路程=速度×時間 甲、乙相向而行,則: 甲走的路程+乙走的路程=總路程 二、追及問題:甲、乙同向不同地,則: 追者走的路程=前者走的路程+兩地間的距離 三、環形......

主站蜘蛛池模板: 无码爆乳超乳中文字幕在线| 久久久无码视频| 华人在线亚洲欧美精品| 日本大乳高潮视频在线观看| 超碰国产精品久久国产精品99| 亚洲 欧美日韩 综合 国产| 国产午夜无码视频免费网站| 国产丝袜一区视频在线观看| 国产成人拍精品视频午夜网站| 亚洲av不卡一区二区三区| 国内精品久久久久久影院| 亚洲人成网站在线播放2020| 熟女人妻国产精品| 亚洲欧洲日产国码无码av喷潮| 亚洲不卡av一区二区无码不卡| 99久热re在线精品99re8热视频| 国产精品一区二区香蕉| 国产精品制服丝袜第一页| 亚洲视频一区| 熟妇人妻午夜寂寞影院| 国产精品极品美女自在线观看免费| 国产又粗又猛又爽又黄的视频在线观看动漫| 亚洲精品中文字幕无码蜜桃| 成人爽a毛片免费视频| 把插八插露脸对白内射| 国产成_人_综合_亚洲_国产| 真实国产熟睡乱子伦视频| 国产成人精品视频一区二区不卡| 国产精品美女一区二区视频| 亚洲处破女av日韩精品| 日韩一区二区三区无码免费视频| 久久强奷乱码老熟女| 欧美精品欧美人与动人物牲交| 婷婷五月婷婷五月| 18禁无遮挡免费视频网站| 亚洲欧美国产制服图片区| 亚洲图片日本v视频免费| 亚洲免费观看在线视频| 精品无码无人网站免费视频| 国产粉嫩高中无套进入| 亚洲 欧美 另类图片|