第一篇:極限證明
極限證明
1.設(shè)f(x)在(??,??)上無窮次可微,且f(x)??(xn)(n???),求證當(dāng)k?n?1時,?x,limf(k)(x)?0. x???
2.設(shè)f(x)??0sinntdt,求證:當(dāng)n為奇數(shù)時,f(x)是以2?為周期的周期函數(shù);當(dāng)n為
偶數(shù)時f(x)是一線性函數(shù)與一以2?為周期的周期函數(shù)之和. x
f(n)(x)?0.?{xn}?3.設(shè)f(x)在(??,??)上無窮次可微;f(0)f?(0)?0xlim求證:n?1,???
?n,0?xn?xn?1,使f(n)(xn)?0.
sin(f(x))?1.求證limf(x)存在. 4.設(shè)f(x)在(a,??)上連續(xù),且xlim???x???
5.設(shè)a?0,x1?2?a,xn?1?2?xn,n?1,2?,證明權(quán)限limn??xn存在并求極限值。
6.設(shè)xn?0,n?1,2,?.證明:若limxn?1?x,則limxn?x.n??xn??n
7.用肯定語氣敘述:limx???f?x????.8.a1?1,an?1?1,求證:ai有極限存在。an?
1t?x9.設(shè)函數(shù)f定義在?a,b?上,如果對每點(diǎn)x??a,b?,極限limf?t?存在且有限(當(dāng)x?a或b時,為單側(cè)極限)。證明:函數(shù)f在?a,b?上有界。
10.設(shè)limn??an?a,證明:lima1?2a2???nana?.n??2n
211.敘述數(shù)列?an?發(fā)散的定義,并證明數(shù)列?cosn?發(fā)散。
12.證明:若???
af?x?dx收斂且limx???f?x???,則??0.11?an?收斂。?,n?1,2,?.求證:22an?1an13.a?0,b?0.a1?a,a2?b,an?2?2?
n
14.證明公式?k?11k?2n?C??n,其中C是與n無關(guān)的常數(shù),limn???n?0.15.設(shè)f?x?在[a,??)上可微且有界。證明存在一個數(shù)列?xn??[a,?),使得limn??xn???且limn??f'?xn??0.16.設(shè)f?u?具有連續(xù)的導(dǎo)函數(shù),且limu???f'?u??A?0,D??x,y?|x2?y2?R2,x,y?0
??
?R?0?.I
?1?證明:limu??f?u????;?2?求IR???f'?x2?y2?dxdy;?3?求limR2
R??
D
R
17.設(shè)f?x?于[a,??)可導(dǎo),且f'?x??c?0?c為常數(shù)?,證明:
?1?limx???f?x????;?2?f?x?于[a,??)必有最小值。
18.設(shè)limn???an?a,limn???bn?b,其中b?0,用??N語言證明lim
ana?.n???bbn
?Sn?x??19.設(shè)函數(shù)列?Sn?x??的每一項Sn?x?都在x0連續(xù),U是以x0為中心的某個開區(qū)間,在U??x0?內(nèi)閉一致收斂于S?x?,又limn??Sn?x0????,證明:limS?x????.x?x0
20.敘述并證明limx???f?x?存在且有限的充分必要條件?柯西收斂原理?
??a
23.設(shè)?
f(x)= 0.證明xlimf(x)dx收斂,且f(x)在?a,???上一致連續(xù),???
24.設(shè)a1>0,an?1=an+,證明=1 nan25.設(shè)f?x?在a的某領(lǐng)域內(nèi)有定義且有界,對于充分小的h,M?h?與m?h?分別表示f?x?在?a?h,a?h?上的上、下確界,又設(shè)?hn?是一趨于0的遞減數(shù)列,證明:
1)limn??M?hn?與limn??m?hn?都存在;
2)limn?0M?h??limn??M?hn?,limn?0m?h??limn??m?hn?;
3)f?x?在x?a處連續(xù)的充要條件是llimn??M?hn??imn??m?hn?26設(shè)?xn?滿足:|xn?1?xn|?|qn||xn?xn?1|,|qn|?r?1|,證明?xn?收斂。
27.設(shè)an?a,用定義證明:limn???an?a
28.設(shè)x1?0,xn?1?
31?xn,(n?1,2,?),證明limxn存在并求出來。
n??3?xn
??
29.用“???語言”證明lim30.設(shè)f(x)?
(x?2)(x?1)
?0
x?1x?3
x?2,數(shù)列?xn?由如下遞推公式定義:x0?1,xn?1?f(xn),(n?0,x?1
n??
1,2,?),求證:limxn?2。
31.設(shè)fn(x)?cosx?cos2x???cosnx,求證:
(A)對任意自然數(shù)n,方程fn(x)?1在[0,?/3)內(nèi)有且僅有一個正根;
(B)設(shè)xn?[0,1/3)是fn(x)?1的根,則limxn??/3。
n??
32.設(shè)函數(shù)f(t)在(a,b)連續(xù),若有數(shù)列xn?a,yn?a(xn,yn?(a,b))使
Limf(xn)?A(n??)及Limf(yn)?B(n??),則對A,B之間的任意數(shù)?,可找到數(shù)列xn?a,使得Limf(zn)??
33.設(shè)函數(shù)f在[a,b]上連續(xù),且
f?0,記fvn?f(a?v?n),?n?
?exp{
b?a,試證明:n
1b
lnf(x)dx}(n??)并利用上述等式證明下?ab?a
式
2?
?
2?
ln(1?2rcosx?r2)dx?2lnr(r?1)
f(b)?f(a)
?K
b?a
34.設(shè)f‘(0)?K,試證明lim
a?0?b?0?
35.設(shè)f(x)連續(xù),?(x)??0f(xt)dt,且lim
x?0
論?'(x)在x?0處的連續(xù)性。
f(x),求?'(x),并討?A(常數(shù))
x
36. 給出Riemann積分?af(x)dx的定義,并確定實數(shù)s的范圍使下列極限收斂
i1
lim?()s。n??ni?0n
?x322,x?y?0?2
37.定義函數(shù)f?x???x?y2.證明f?x?在?0,0?處連續(xù)但不可微。
?0,x?y?0?
n?1
b
38.設(shè)f是?0,??上有界連續(xù)函數(shù),并設(shè)r1,r2,?是任意給定的無窮正實數(shù)列,試證存在無窮正實數(shù)列x1,x2,?,使得:limn???f?xn?rn??f?xn???0.39.設(shè)函數(shù)f?x?在x?0連續(xù),且limx?0
f?2x??f?x??A,求證:f'?0?存在且等于A.x
1n
40.無窮數(shù)列?an??,bn?滿足limn??an?a,limn??bn?b,證明:lim?aibn?1-i?ab.n??ni?1
41.設(shè)f是?0,??上具有二階連續(xù)導(dǎo)數(shù)的正函數(shù),且f'?x??0,f''有界,則limt??f'?t??0
42.用???分析定義證明limt??1
x?31
? x2?92
43.證明下列各題
?1?設(shè)an??0,1?,n?1,2,?,試證明級數(shù)?2nann?1?an?n收斂;
n?1
?
?2?設(shè)?an?為單調(diào)遞減的正項數(shù)列,級數(shù)?n2000an收斂,試證明limn2001an?0;
n??
n?1
?
?3?設(shè)f?x?在x?0附近有定義,試證明權(quán)限limx?0f?x?存在的充要條件是:對任何趨于0的數(shù)列?xn??,yn?都有l(wèi)imn???f?xn??f?yn???0.?1?44.設(shè)?an?為單調(diào)遞減數(shù)列的正項數(shù)列,級數(shù)?anln?1?an?0???收斂,試證明limn??n?n?1?
a?1。45.設(shè)an?0,n=1,2,an?a?0,(n??),證 limn
n??
?
46.設(shè)f為上實值函數(shù),且f(1)=1,f?(x)=〔1,+?〕
limf(x)存在且小于1+。
x?+?4,證明x?1)2
x2+f(x)
?
47.已知數(shù)列{an}收斂于a,且
a?a???aSn?,用定義證明{Sn}也收斂于a
n
48.若f?x?在?0,???上可微,lim
n??
f(x)
?0,求證?0,???內(nèi)存在一個單
x??x
調(diào)數(shù)列{?n},使得lim?n???且limf?(?n)?0
n??
x??e?sinx?cosx?,x?0
49.設(shè)f?x???2,確定常數(shù)a,b,c,使得f''?x?在???,??處處存在。
??ax?bx?c,x?0
第二篇:極限的證明
極限的證明
利用極限存在準(zhǔn)則證明:
(1)當(dāng)x趨近于正無窮時,(Inx/x^2)的極限為0;
(2)證明數(shù)列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收斂,并求其極限。
1)用夾逼準(zhǔn)則:
x大于1時,lnx>0,x^2>0,故lnx/x^2>0
且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2極限為0
故(Inx/x^2)的極限為0
2)用單調(diào)有界數(shù)列收斂:
分三種情況,x0=√a時,顯然極限為√a
x0>√a時,Xn-X(n-1)=/2<0,單調(diào)遞減
且Xn=/2>√a,√a為數(shù)列下界,則極限存在.設(shè)數(shù)列極限為A,Xn和X(n-1)極限都為A.對原始兩邊求極限得A=/2.解得A=√a
同理可求x0<√a時,極限亦為√a
綜上,數(shù)列極限存在,且為√
(一)時函數(shù)的極限:
以時和為例引入.介紹符號:的意義,的直觀意義.定義(和.)
幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.例1驗證例2驗證例3驗證證……
(二)時函數(shù)的極限:
由考慮時的極限引入.定義函數(shù)極限的“”定義.幾何意義.用定義驗證函數(shù)極限的基本思路.例4驗證例5驗證例6驗證證由=
為使需有為使需有于是,倘限制,就有
例7驗證例8驗證(類似有(三)單側(cè)極限:
1.定義:單側(cè)極限的定義及記法.幾何意義:介紹半鄰域然后介紹等的幾何意義.例9驗證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:
Th類似有:例10證明:極限不存在.例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有
=§2函數(shù)極限的性質(zhì)(3學(xué)時)
教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。
教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運(yùn)算性等。
教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計算。
教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。
教學(xué)方法:講練結(jié)合。
一、組織教學(xué):
我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.二、講授新課:
(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.1.唯一性:
2.局部有界性:
3.局部保號性:
4.單調(diào)性(不等式性質(zhì)):
Th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對有)
註:若在Th4的條件中,改“”為“”,未必就有以舉例說明.5.迫斂性:
6.四則運(yùn)算性質(zhì):(只證“+”和“”)
(二)利用極限性質(zhì)求極限:已證明過以下幾個極限:
(注意前四個極限中極限就是函數(shù)值)
這些極限可作為公式用.在計算一些簡單極限時,有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計算得所求極限.例1(利用極限和)
例2例3註:關(guān)于的有理分式當(dāng)時的極限.例4
例5例6例7
第三篇:函數(shù)極限證明
函數(shù)極限證明
記g(x)=lim^(1/n),n趨于正無窮;
下面證明limg(x)=max{a1,...am},x趨于正無窮。把max{a1,...am}記作a。
不妨設(shè)f1(x)趨于a;作b>a>=0,M>1;
那么存在N1,當(dāng)x>N1,有a/M<=f1(x)注意到f2的極限小于等于a,那么存在N2,當(dāng)x>N2時,0<=f2(x)同理,存在Ni,當(dāng)x>Ni時,0<=fi(x)取N=max{N1,N2...Nm};
那么當(dāng)x>N,有
(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n所以a/M<=^(1/n)
第四篇:如何證明極限不存在
如何證明極限不存在
反證法
若存在實數(shù)L,使limsin(1/x)=L,取ε=1/2,在x=0點(diǎn)的任意小的鄰域X內(nèi),總存在整數(shù)n,①記x1(n)=1/(2nπ+π/2)∈X,有sin=1,②記x2(n)=1/(2nπ-π/2)∈X,有sin=-1,使|sin-L|<1/3,和|sin-L|<1/3,同時成立。
即|1-L|<1/2,|-1-L|<1/2,同時成立。
這與|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2發(fā)生矛盾。
所以,使limsin(1/x)=L成立的實數(shù)L不存在。
反證法:
一個數(shù)列{an}極限存在,另一個數(shù)列{bn}極限不存在假設(shè)兩數(shù)列之和{cn}的極限存在,那么bn=cn-an極限也存在(兩個數(shù)列和的極限等于兩個數(shù)列極限的和)
矛盾
所以原命題成立
令y=x,lim(x,y)趨于(0,0)xy/x+y
=lim(x趨于0)x^2/(2x)=0
令y=x^2-x,lim(x,y)趨于(0,0)xy/x+y
=lim(x趨于0)x^3-x^2/x^2=-1
兩種情況極限值不同,故原極限不存在2答案:首先需要二項式定理:
(a+b)^n=∑C(i=0–i=n)nia^(n-i)*b^i(式一)
用數(shù)學(xué)歸納法證此定理:
n=1(a+b)^1a^(1-0)*b^0+a^(1-1)*b^1
?a+b
?故此,n=1時,式一成立。
設(shè)n1為任一自然數(shù),假設(shè)n=n1時,(式一)成立,即:
(a+b)^n1=∑C(i=0–i=n1)n1ia^(n1-i)*b^i(式二)
則,當(dāng)n=n1+1時:
式二兩端同乘(a+b)
*(a+b)=*(a+b)
=(a+b)^(n1+1)=∑C(i=0–i=(n1+1))(n1+1)ia^((n1+1)-i)*b^i(據(jù)乘法分配律)
因此二項式定理(即式一成立)
下面用二項式定理計算這一極限:
(1+1/n)^n(式一)
用二項式展開得:
(1+1/n)^n=1^n+(n/1)(1/n)+*(1/n)^2+*(1/n)^3+…+*(1/n)^(n-2)+*(1/n)^(n-1)+*(1/n)^n
由于二項展開式系數(shù)項的分子乘積的最高次項與(1/n)的次數(shù)相同,而系數(shù)為1,因此,最高次項與(1/n)的相應(yīng)次方剛好相約,得1,低次項與1/n的相應(yīng)次方相約后,分子剩下常數(shù),而分母總余下n的若干次方,當(dāng)n-+∞,得0。因此總的結(jié)果是當(dāng)n-+∞,二項展開式系數(shù)項的各項分子乘積與(1/n)的相應(yīng)項的次方相約,得1。余下分母。于是式一化為:
(1+1/n)^n=1+1+1/2!+1/3!+1/4!+1/5!+1/6!+…+1/n!(式二)
當(dāng)n-+∞時,你可以用計算機(jī),或筆計算此值。這一數(shù)值定義為e。
第五篇:數(shù)列極限的證明
例1 設(shè)數(shù)列?xn?滿足0?x1??,xn?1?sinxn?n?1,2,??。(Ⅰ)證明limxn存在,并求該極限;
n??
?xn?1?xn(Ⅱ)計算lim??。n??
?xn?
解(Ⅰ)用歸納法證明?xn?單調(diào)下降且有下界,由0?x1??,得
0?x2?sinx1?x1??,設(shè)0?xn??,則
0?xn?1?sinxn?xn??,所以?xn?單調(diào)下降且有下界,故limxn存在。
n??
記a?limxn,由xn?1?sinxn得
x??
a?sina,所以a?0,即limxn?0。
n??
(Ⅱ)解法1 因為
?sinx?lim??x?0
?x?
1x?lime
x?0
1sinxlnx2x
?lime
x?0
1?cosx1?
???
2x?sinxx?
?xsinx6x2
xcosx?sinx
?lime
x?0
2x3
?lime
x?0
?e
?
又由(Ⅰ)limxn?0,所以
n??
1xn
?xn?1??sinxn?xn2
lim???lim??n??n??xx?n??n?
?sinx?
?lim??x?0x??
解法2 因為
1xx?e
?
sinx?x
?sinx????x?
?
?sinx?x????1????x??
xsinx?x
????
x3,又因為
limsinx?x1?sinx?x???,lim?1??x?0x36x?0?x?
xnxsinx?x?e,??sinx?6所以lim?,?e?x?0?x?1
故
11?x?lim?n?1?n???xn?xn?sinxn??lim??n??x?n?
?sinx??lim??x?0?x?xn1x ?e?1
6.