第一篇:英語專業論文開場白
Good afternoon, Distinguished professors and teachers.I am Gu Danni From the class of English translation.First, I would like to express my sincere gratitude to my supervisor, Ms.Wang, for her intellectual guidance, invaluable instructions and comments on my thesis.It is with her valuable assistance that I have finally accomplished this paper.The title of my paper is Strategies in Humor Translation of American Sitcom Friends.As a vital part in translation, the translation of humor in subtitle is gradually capturing an increasing attention and developing into an independent research field.The purpose of the paper is to explore the interpretation of verbal humor in American sitcoms Friends under the guidance of the Functional Equivalence Theory, with the hope of helping people express humor and understand humor effectively.The final goal of translating a sitcom is to ensure that the target audience can get the humor and appreciate it in the exactly the same manner as the original audiences do,here is an outline of my presentation and I divide my paper into five parts.Part one and two presents an introduction of this study and Nida’s Functional Equivalence Theory, Part three makes a clear illustration of the different categories of humor in Friends,and discussed the features of language.Then I apply these strategies to the subtitling of Friends featuring humorous language.Part five draws some conclusions that translators should try to find appropriate strategies to convey the humorous effect and make the cross-cultural communication smoothly.I hope the paper can provide some insightful opinions for the improvement of humor translation in American sitcoms.However, due to limited time and resources, the paper may have some deficiency, and there is still a long way to go..I’m looking forward to your sincere comments and suggestions.That’s all.Thank you.
第二篇:英語專業論文
英語專業文學方向本科畢業論文寫作問題探究
[摘 要]英語畢業論文由于從事英美文學教學的教師理論水平參差不齊、教師對學生文藝理論接受能力的懷疑、商品經濟時代文學和文藝理論曲高和寡等因素,造成文學學習和文學方向畢業論文寫作中缺乏科學的分析方法。本研究將探索將文藝理論引入本科畢業生的論文寫作課程中的必要性和可行性,從而建構以文藝理論為中心的英語專業文學方向畢業論文寫作的新模式。
[關鍵詞]文學理論;讀者反映理論;認知教學法
依據《高等教育法》(1998)的本科教育學業標準,學生應比較系統地掌握本專業所必需的基礎理論知識、基本技能和相關知識,并“具有從事本專業實際工作和研究工作的初步能力”。這一標準強調了研究性教學(research-oriented teaching)的重要性,無疑為英美文學教學中理論研究與實踐的有機融合提出了要求,而這種融合往往體現在學生文學論文寫作的能力之中。然而,高校中實用主義風氣、急功近利思想和“重技能,輕人文”弊端的集中體現沖擊著文學課教學,助長了學生輕視與人文修養有關的課程,助長了他們對文學作品敬而遠之的傾向(馬愛華, 2006)。作為全面考核畢業生綜合素質的有效途徑,畢業論文寫作是本科學生畢業前必須經受的考驗關口,是師生教學相長的過程。本文將從文學課教學的現狀出發,通過畢業論文寫作的過程,在揭示現象、總結經驗的基礎上,提出重視文藝理論的教學,提高學生的文學素養,培養研究性學習能力的意義。
一、研究現狀
部分專家認為英語專業(張沖, 2003)是“英語語言技能的專業訓練和對英語語言文化的專門研究”,其特征為“技能加專業,復合而開放”,其培養目標為“純熟的語言能力,深度的專題研究”。這一專業定位除了強調語言技能之外,著重強調了“文化”和“研究”。文化理解和專題研究的基礎在于學生文學課程的給養過程,其中,文學理論分析則既指導了文學課程的學習,又加深了學生對文學作品的理解。文學作品的學習與文藝理論的關系好比材料和工具的關系,“工欲善其事,必先利其器”,如果學生沒有相關的文藝理論的學習,就好比一個沒有工具的工匠,只能望天興嘆。
二、問題成因
文藝理論是學習英美文學的分析和鑒賞工具,研究生階段的文藝理論教學已經有了一定的歷史,但在英語專業本科教學中文藝理論的教學目前尚未展開。這直接導致學生的文學畢業論文的寫作難度增大,出現了許多亟待解決的問題。主要成因如下:
1.從事英美文學教學的教師理論水平參差不齊。部分教師講授英美文學,而其自身很少涉及文藝理論的使用,或者說自己的文學批評理論知識匱乏,因此不可能在授課時有意識地將文藝理論融入到教學中去。
2.輕視或放低對學生的人文素質和評析能力的生成要求。有些教師擔心學生的接受能力,甚至害怕因為學生不能正確理解文藝理論的精髓而將其誤用或者濫用。《高等學校英語專業英語教學大綱》(2000)明確規定了文學課程的教學目的“在于培養學生閱讀、欣賞、理解英語文學原著的能力,掌握文學批評的基本知識和方法。通過閱讀和分析英美文學作品,促進學生語言基本功和人文素質的提高,增強學生對西方文學及文化的了解”,顯而易見,加大文學批評理論的講授和研討是符合《大綱》要求的。
3.所學知識與研究性寫作存在三個“不和諧”關系:文學課的教與學脫節;文學課與語言實踐脫節;文學教學理論的研究與外語教學實踐脫節(馬愛華, 2006)。學生習得的知識孤立于其寫作實踐之外。人才培養目標不明確,學生急功近利,一成不變的文學課程教學脫離實際人才
培養模式。學生將文藝理論視為紙上談兵。因而,導致“文學理論教材和教學實踐逐漸偏離當今消費時代的審美精神”以及“文學理論的教學被大學生們冷落”(李迪江, 2002)。
三、文藝理論在文學論文寫作中的意義
1.文學理論的專業知識學習,鋪墊了文學論文的研究能力。“文學理論教學應該優先地培養大學生的理論素養,更多地培養大學生的應用能力,如從文學作品的分析討論中,來培養大學生的理解能力、分析能力和表達能力等(李迪江, 2002)”。本科學生已經有了一定的文學常識,至少對于著名作品的情節有了一定程度的了解,文學名著選讀課使用文學名著的原版書籍作為教材,使得學生有機會對文學文本進行仔細研讀,為文藝理論的學習奠定了基礎。
2.畢業論文寫作,完成學生從讀者到理論分析的升華。Guerin認為,“讀者參與在文本的創作中”。作品的意義是文本和讀者相互作用的結果,它強調讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補或具體化(劉辰誕, 1999)。文學作品須由接受者內化和心靈化,即需要接受者的理解、體驗、加工、補充和創造,融入接受者的思想和情感、傾向和評價,只有這樣,作品中的時間、人物形象等才會活生生地呈現在自己的頭腦中(郭宏安, 1997)。從這個角度暴露了英語專業教育中一貫的“知識單一和技能單一”問題,帶來的思考是應該如何培養學生多種語言技能,滿足其獨立學習的需要。
3.文學史學習為文藝理論的學習奠定基礎。心理學、原型批判、女權主義、馬克思主義的文學評論等可將傳統文學史中作家、作品按照時間排序的方式打破。從各種文藝理論的角度對作家、作品重新排序,不同的文學作品可以用相同的文藝理論進行分析,既起到梳理文學史和文學作品的目的,又使學生對文學作品甚至文學史的認識提升到一個新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊含著戀母情結的心理學分析。以此為基礎,給學生補充講述古希臘劇作家索福克里斯的著名悲劇作品《俄狄浦斯王》,能幫助學生探究作品人物的內心世界,為論文寫作奠定基礎的同時,也有助于選擇一個更為可行的題目。
4.結合文本與文藝理論,豐富學生的論文選題。學生文學專業畢業論文選題往往單一,如選擇:《偉大的蓋茨比》中美國夢破滅的主題或美國夢的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經典作家的代表作品為研究對象并不是不可以,但對于一般本科生而言,要就這些作品的某一方面進行較為深入、有創意的探討,還是有相當難度的。因為,對于某一經典文本的某些問題,國內外評論界可能早有定論,而一般的學生“尚不能用當代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。
5.研讀詩歌,理論先行。在歷屆本科英語專業畢業生的論文中,有關詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運用意象和象征等寫作手法,再加上詩人用特有的音韻感和
第三篇:英語專業答辯開場白
英語專業答辯開場白
篇一:3分鐘英語專業畢業論文論文答辯開場白
Good morning, professors and everyone.I come from JMU College.I am XXX and my supervisor is prof XXX.With her sincere and intellectual guidance, I have finished my paper.The title of my paper is An Analysis of Ahab’s Personality Tragedy in Moby Dick.I choose this title as my topic due to the following reasons.Firstly, I am fond of literature works , especially gothic literature works.Secondly, I am quite familiar with this work as this is one of the texts in our American literature course.Last but not least , Moby-Dick is widely recognized as the summit not only of Melville’s art but of American nineteenth-centry fiction.The purpose of this essay is to study Captain Ahab,the role in Moby-Dick, whose leg was bitten by the white whale in his process of the whaling.After losing his leg, he determined to revenge Moby Dick and tried to kill it.In order to revenge, Ahab ultimately dooms the crew of the Pequod(save for Ishmael)to death by his obsession with Moby Dick.By taking the comprehensive analysis perspective of Moby-Dick, this thesis will point out that the main characteristics of Ahab.This paper consists of three parts.Part one presents an introduction to the Social Background and the life of the Author Herman Melvillehe ,Part two presents The Main Characteristics of Ahab.there are three aspects have been divided to analyze his characters: his monomania , his selfishness, and his individualism.Part three presents The Consequences of Ahab's Personality Tragedy.OK, that's all.Thank you!Questions : 1.怎樣運用理論去分析的
2.針對你論文中的某個商標翻譯而考你噢,所以要熟悉你論文中作為例子的翻譯 3.什么是monomania(偏執狂)?
4.白鯨記的象征意義有哪些
5.亞哈船長為何復仇選擇我們,選擇成功!
如需備注,請自行寫在下面: 篇二:英文論文答辯開場白
英文論文答辯開場白
Opening Speech
(一)Good morning, Distinguished professors and teachers, ladies and gentlemen, thank you for attending the oral defense.(或Welcome to attend the oral defense.):
I am Zhao Jing.Firstly, I would like to express my sincere gratitude to my supervisor Zhong Ming, for his intellectual guidance, invaluable instructions and comments on my thesis.It is with his valuable assistance that I have finally accomplished this thesis.The title of my paper is The Masculine Spirit of The Old Man and the Sea The whole thesis consists of 3 parts.The first part will give brief introductions on the background which contains the social and cultural aspects and the introduction to the author of the masterpiece.In The second part is going to have a brief introduction of the old man and the sea and analyze the masculine spirits in the old man and the sea such as the faith optimistic and the wisdom of the hero.In the third part, it is the natural conclusion and the deep consideration.I choose this as my topic due to the following reasons.Firstly, I am fond of literature works.Secondly, I am quite familiar with this novel as this is one of the texts in our intensive teaching course and I have taught this text for more than 3 times.Last but not the least, I’m deeply appreciated to the masculine spirit and hope I can get and practice it in my future.For the above facts, I select the subject of The Masculine Spirit of The Old Man and the Sea as the title of my paper.I hope by studying this novel we can know more about the author Hemingway and his honorable masculine spirit.“A man can be destroyed but not be defeated.” Such kind of spirit can help us raise our independence and confidence and show more concern for our mental health.That’s all.Thank you!
2、主要陳述內容():
(1)自己選擇這個題目的原因;
(2)設計和實施的簡單過程(如,商務方向:采用什么方法來搜集信息、資料等);search the information from library and then internet(3)自己論文的主要內容(不要念論文,最好用4、5句話簡單介紹論文內容,如,商務方向:做了哪些調查,得出什么結論,計劃如何實施項目);
(4)仍然存在的問題(如,商務:在實施項目中可能會遇到的風險以及如何解決);the aspect which I have quoted may be not perfect and have many deficiencies
3、最好準備相關文字并熟記(答辯時要脫稿陳述,但是可以看PPT文件)。
4、語言最好簡單清楚,不要直接用論文中內容,應該用解釋性的句式,如:When I was designing the lessons, I found that….二、回答老師問題(老師用英語提問,學生用英語回答):
1、大約有4-6個問題,時間將持續10-15分鐘。
2、首先要聽清楚問題,如果沒有聽清,可以要求老師重復問題(可以說pardon之類的話)。
3、回答時首先要態度好,要切題,而且不要保持沉默,不會時可以表示抱歉。
4、常見問題:
(1)Will you please give us a self-introduction? 有些學生可能由于緊張沒聽清問題便開始背誦論文的內容,結果造成答非所問。
(2)Give us a presentation of your thesis.有些學生一聽到thesis便詳細而又不理解地背誦其論文內容, 在被打斷之后便不知該說什么。其實, 考官只是想知道你對論文的總體了解, 讓你簡單闡明自己論文的內容與觀點。
(3)Why do you choose such a theme?/ What do you want the reader get from your thesis? 對于這個問題,你可以談談你的喜好,你想要讀者從中得到什么。
(4)What is the uniqueness of your point of view? 對于這個問題,你可以談談你的觀點與他人不同之處及原因。這就要求你有相關知識。
之后便是針對你的論文的問題了。
(5)關于選題:如Why did you choose this topic for your paper?或Why were you interested in this project?
(6)關于具體部分:
商務方向:SWOT,COSTING,FLOWCHART,RISK,STAKEHOLDER,如Do you think is this a necessary activity for the project?(7)關于背景知識及理論知識:如What does SWOT stand for?(商務)(8)關于論文存在的問題:如In the last sentence on page … there are some grammatical errors.(9)關于項目或論文將來的發展:如:商務方向:If possible, will you ca 篇三:最新英語專業畢業論文答辯開場白結束語精品范文
最新英語專業畢業論文
開場白結束語優秀范文
尊敬的各位老師:
早上好!
我叫××,是英語專業××班的學生,我的論文題目是×××(這里改成英語專業論文題目)。首先,感謝您們在百忙之中抽出寶貴時間傾聽我的英語專業畢業論文答辯。我英語專業論文導師是××(改成英語論文導師名字)教授,無論從確定選題、擬定提綱、完成初稿,還是到最后定稿,我都得到了××(改成英語論文導師名字)教授的精心細致指導。借此機會,我要向我的導師表示深深的謝意,同時對任教我的各位英語專業相關老師表示由衷的敬意。下面我將英語專業論文設計的主要內容向各位老師作一匯報,懇請各位老師批評指導:
首選,允許我介紹一下我的英語專業畢業論文的選題背景和研究意義。隨著時代和社會發展,英語領域相關理論和技術研究日新月異……(簡單闡述本論文在英語領域的背景和研究意義)。因此,×××(這里改成英語專業論文研究內容)在英語研究領域和社會上有著廣泛的應用前景。
其次,我想介紹一下×××(這里改成英語專業論文題目)這篇論文的主要結構和內容。論文結構包括摘要與關鍵詞、目錄、正文、附錄、參考文獻等五個部分。×××(這里改成英語專業論文題目)正文主要內容包括論文綜述、研究過程和方法、研究結果和結論分析。(這
第四篇:英語專業論文題目參考
英語專業論文題目
語言與語言學類
001 從歷史文化的發展看某個英語詞或短語的語義演變
002 英詩中常用的修辭
003 英語諺語的修辭手法
004 委婉語種
005 英語中的縮略語
006 英語詞匯中的外來語單詞
007 英語新詞新意探究
008 美國英語的特色
009 如何正確把握英語定語從句(或其他各種從句或語法形式)在句子中的確切含義
010 Fuzzy Words and Their Uses in Human Communication
011 Ambiguity and Puns in English
012 Some basic consideration of style
013 English by Newspaper
014 English Personal Pronouns: a Preliminary Textual Analysis
015 Thematic Network and Text Types
016 An Inquiry into Speech Act Theory
017 On Lexical Cohesion in Expository Writing
018 The Inferences of Conversational Implications
019 Context and Meaning
020 The Construction and Interpretation of Cohesion in Texts 語言教學類
001 擴大詞匯量和提高英語閱讀能力的關系
002 提高英語閱讀速度的主要障礙
003 英語閱讀能力和閱讀速度的關系
004 通過擴大知識面提高英語閱讀能力
005 如何在閱讀實踐中提高英語閱讀能力
006 閱讀英文報刊的好處
007 如何處理精讀和泛讀的關系
008 如何對付英語閱讀材料中的生詞
009 如何通過閱讀擴大詞匯量
010 提高閱讀能力和提高英語聽力的關系
011 英語聽說讀寫四種技能的關系
012 通過英語閱讀提高英語寫作能力
013 英語快速閱讀能力的構成成分
014 中學生英語自主學習能力的培養
015 英語教學中的語言焦慮及解決策略
016 簡筆畫-英語教學中簡單高效的教學手段
017 提高英語聽力理解能力的策略和技巧
018 電子辭典與英語教學
019 普通話對英語語音的遷移作用
020 母語遷移在基礎教育各階段中的作用
021 提高大班課堂教學的效果
022 《英語課程標準》研究
023 口語教學中教師的角色
024 從心理學角度探討少兒英語教學
025 英語課堂提問的策略研究
026 英語后進生產生的原因以及補差方法研究
027 英語詞匯教學方法探討
028 小學生英語口語能力評估方法研究
029 朗讀在英語教學中的作用
030 任務型教學法研究
031 方言對學生英語語音的影響
032 英語閱讀課堂教學模式探討
033 英語課堂的合作學習策略研究
034 中學生英語學習策略的培養
035 探究式教學法在中學英語教學中的應用
036 現代信息技術在英語教學中的應用
037 教師教學行為對高中生英語學習的影響
038 實施成功教育減少兩極分化
039 小學英語活動課教學模式研究
040 中學英語聽力訓練最佳方案
041 原版電影與英語學習
042 中學生英語興趣的培養
043 《瘋狂英語》(或各種教學方式)的利與弊
044 張思中教學法實踐調查報告
045 如何杜絕中式英語
046 英語教師的文化素養
047 網絡時代如何學好英語
048 背景知識與閱讀理解
049 上下文在閱讀理解中的作用
050 家庭教師在中學生英語學習中的利弊
051 中學英語教學現狀分析
052 中學英語課堂上的Daily Report
053 中外教師解釋課文方法比較
054 中外教師課堂提問方法比較
055 中外教師課堂鼓勵性用語比較
056 中外教師對學生總體要求之比較
057 計算機輔助英語教學中的諸問題
058 不同種類的計算機輔助英語教學方式
059 計算機輔助英語教學中的教學法原則
060 The Instructive Meaning of Inter-language Pragmatics for foreign Language Teaching
061 Pedagogical Translation and Translation Teaching
062 The Importance of Cultural Authenticity in Teaching Materials
063 Micro-teaching and Student Teacher Training
064 How to Evaluate the Teacher www.tmdps.cn Performance-A Case Study 065 English Test Design 066 The Interference of Native Language in English Writing or Translation 067 Translation Methods and English Teaching
第五篇:英語專業論文翻譯
A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?
Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the
paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section
Materials and instruments
All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20
(1/T1)obs ?(1/T1)d + r1[M](1)
where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions
In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427