久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

三角形內角和教學設計

2023-05-03下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了這篇《三角形內角和教學設計》及擴展資料,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《三角形內角和教學設計》。

三角形內角和教學設計15篇

三角形內角和教學設計1

【教材內容】

北京市義務教育課程改革實驗教材(北京版)第九冊數學

【教材分析】

《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°。讓學生在自主探索中發現三角形的又一特性,更加深入的培養了學生的空間觀念。

【學生分析】

在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

【教學目標】

1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°掌握并會應用這一規律解決實際的問題。

2、通過討論、爭辯、操作、推理發展學生動手操作、觀察比較和抽象概括的能力。

3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

【教學重點】

讓學生經歷“三角形內角和是180度”這一知識的形成發展和應用的全過程。

【教學難點】

能利用學到的`知識進行合情的推理。

【教具學具準備】

課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

【教學過程】

一、學具三角板,引入新課

1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

2、顧名思義一個三角形都有幾個角呀?(三個)

3、認識內角

(1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

(2)這個三角形內有幾個內角?(三個)這個呢?(三個)

(設計意圖:由學生最熟悉的三角板引入新課,激發學生興趣的同時為后面的學習做準備)

二、動手操作,探索新知

(一)直角三角形內角和

ⅰ、特殊直角三角形內角和

1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

2、觀察這兩個三角形的度數,你有什么發現?

生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

生2:我還發現他們內角加起來是180度。師:他真會觀察,你發現了嗎?快算一算是不是他說的那樣?

(課件):(1)90°+60°+30°=180°)

那么另一個三角板的三個內角的總度數是多少?

(生回答,師課件:(2)90°+45°+45°=180)

3、你指的哪是180度?(生:這三個內角合起來是180度)

4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

5、這個直角三角形的內角和是多少度?另一個呢?

6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

(師出示一個平角)問:平角是什么樣的?

7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

ⅱ、一般直角三角形內角和

1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

(1)小組活動(2)匯報

哪個組愿意把你們的研究成果向大家展示?每個小組派代表發言。(在實物展臺上演示)

三角形的種類

驗證方法

驗證結果

*“量一量”的方法:

板書:有一點誤差的度數

*“剪一剪”的方法:

我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

還有其他方法嗎?

*“折一折”的方法:

預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

學生演示(課件:折的過程)

②學生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)

*推理:

你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

3、小結

(1)通過我們剛才的研究,我們發現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

(2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

(設計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

(二)、銳角三角形、鈍角三角形的內角和

1、請你們任意畫一個鈍角三角形,一個銳角三角形

2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

3、學生模仿老師操作說理

4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。

師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

(設計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

三、鞏固新知,拓展應用

我們就用三角形的這一特性來解決一些問題

1、兩個三角形拼成大三角形

(1)每個三角形的內角和都是少度?

(2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢

2、一個三角形去掉一部分

(1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

再剪去一個三角形呢?(課件演示)

你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

(2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

(3)如果五邊形,你還能求出他的度數嗎?

(設計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

四、總結評價、延伸知識

通過這節課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

(設計意圖:幫助學生梳理本節課的知識脈絡。)

三角形內角和教學設計2

探索三角形內角和的度數以及已知兩個角度數求第三個角度數。

教學目標:

1、通過測量、撕拼、折疊等探索活動,使學生發現三角形內角和的度數是180?

2、已知三角形兩個角的度數,會求第三個角的度數。

3、培養學生動手實踐,動腦思考的習慣。

教學重點:

了解三角形三個內角的度數。

教學難點:

理解三角形三個內角大小的關系。

教具學具準備:

課件三角形若干量角器剪刀。

教材與學生

教材創設了一個有趣的問題情境,通過對大小兩個三角形內角和的大小比較來激發學生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

學生在已有的會用量角器來度量一個角的度數的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。

教學過程:

一、呈現真實狀態。

師:今天我們來研究三角形內角和度數。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內角和比較大呢?

學生各抒己見。

二、提出問題:

師;剛才我們觀察三角形哪個內角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

(1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內角和度數,并做好記錄,記錄每個內角的度數。

(2)組內交流。

(3)全班交流。由小組匯報測出結果(三角形內角和)

(4)師小結:我們通過測量發現,每個三角形的內角和測出結果接近180。

三。自主探索、研究問題、歸納總結:

師引導提問:三角形的內角和會不會就是180呢?

(一)組內探索:

(1)以小組為單位探索更好的辦法。

(2)以小組為單位邊展示邊匯報探索的過程與發現的結果。

(有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發現結果,在探索中發現問題,在討論中解決問題,是學生學習到良好的學習方法)

(3)把你沒有想到的方法動手做一次

(使學生更直觀地理解三角形的內角和是180的證明過程)

(4)根據學生的反饋情況教師進行操作演示。

(二)教師演示

撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

2.師:這三個內角放在一起你有什么發現?

生:發現三個內角拼成一個平角。

師:平角是多少度呢?說明什么?

生:180?說明三個內角和剛好等于180。

師:這種方法是不是適用各種三角形呢?

3。學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?

進行實驗后,結果發現同樣存在這一規律,三角形三個內角和是180。

折疊法:師:剛才我們通過測量發現三角形內角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發現三角形的三個內角剛好拼成一個平角,進一步說明三個內角和是180,現在再來演示另一種實驗,再次證明我們的發現。

你們也來試一試好嗎?

在學生完成這一實踐后肯定這一發現

三角形三個內角和等于180?

:充分發揮了學生的主觀能動性,讓學生大膽去思考發言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

四。鞏固練習,知識升華。

1.完成課本第28頁的“試一試”第三題。

2.想一想:鈍角三角形最多有幾個鈍角?為什么?

銳角三角形中的兩個內角和能小于90嗎?

3.有一個四邊形,你能不用量角器而算出它的四個內角和嗎?

試一試,看誰算得快。

師:誰來說說自己的計算過程?

角的和叫做三角形的內角和。(板書課題)下面請大家認真觀察這兩個算式,從結果上看,你發現了什么?

生:它們的內角和都是 180 度。

師:觀察的真仔細!(點擊課件,出示多種多樣的三角形后提問)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內角和是不是都是 180 度呢?

[回答可能有二]:

(一種全部說是:)

師:請問,你們是怎么想的,為什么這么認為?

生: ……

師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)

(一種有一部分同學說是,有一部分同學說不是:)

師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)

(二)動手操作,探究新知

師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?

生:我準備用量的方法。

師:然后呢?

生:然后把它們三個內角的度數相加起來,就知道了三角形的內角和是多少?

師:說的真不錯,還有沒有其它的方法?

生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創意, 等一會兒用你的行動來驗證你的猜想吧!)

生:……

(如生一時想不到,師可引導:他是把三個內角的度數相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發現些什么呢?)

師: 好啦, 老師相信咱們班的同學個個都是小數學家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的.三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

開始吧!(學生研究,師巡回指導)預設時間:5 分鐘

師:老師看各小組已經研究好了,哪位同學愿意上來交流一下?

師:請你告訴大家,你是怎么研究的,最后發現了什么結果?

( 預設: 如果第一類同學說的是量的方法)

師:你是用什么來研究的?

生:量角器。

師: 那請你說一下你度量的結果好嗎?

( 生匯報度量結果)

師: 剛才有的同學測量的結果是180 度,有的同學測量的結果是179 度,有的同學測量的結果是182 度,各不相同,但是這些結果都比較接近于多少?

生:180 度。

師:那到底三角形的內角和是不是180 度呢?還有哪位同學有其它的方法進行驗證嗎?

生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數。

師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點擊 FLASH :把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發現?)

師:好極了,剛才這個小組的同學用拼的方法得到XX 三角形的內角和是180 度,你們還有別的方法嗎?

生:我們還用了折的方法(生介紹方法)

師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)

生:是個平角。180 度。

師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發現了一個同學用了一種方法來進行研究,大家想知道嗎?

師:請這位同學來說給大家聽聽吧!

生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360 度,那么一個三角形的內角和就是180 度。

師:剛才我們用量、拼、折、推理的方法都得到了三角形的內角和是 180 度,同學們,現在我們回想一下,剛才測量的不同結果是一個準確數還是一個近似數?為什么會出現這種情況呢?

生 1 :量的不準。

生 2 :有的量角器有誤差。

師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是 180 度。

師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內角和,得到了一個相同的發現,這個發現就是?

生:三角形的內角和是180 度。(師板書)

師:把你們偉大的發現讀一讀吧!

(三)拓展應用,深化認識

師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

師:現在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?

(生答后師引導歸納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是 180 度。)

師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執了起來,想知道怎么回事嗎?讓我們一起去看看吧!(出示課件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!

師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

師:好,請看大屏幕!

(出示基礎練習)在一個三角形中角一是 140 度,角三是 25 度,求角二的度數。

生答后,師提問:你是怎樣想的?

生陳述后,師鼓勵:說的真好!

出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。

(出示)小紅的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70 度,它的頂角是多少度?

師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

(預設:師:根據三角形的內角和是180 度,你能求出下面四邊形、五邊形、六邊形的內角和嗎?

師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內角和,你能像他一樣棒求出五邊形和六邊形的內角和嗎?

師: 同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?

師:嗯,真不錯, 你們知道嗎? 三角形的內角和等于 180 度是 法國著名的數學家帕斯卡 在 1635 年他 12 歲時獨自發現的, 今天憑著同學們的聰明智慧也研究出了三角形的內角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!

師:好,下課!同學們再見!

三角形內角和教學設計3

教學目標:

1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內角和是180度,并運用所學知識解決簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

教學重點:

讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

教學難點:

通過小組內量一量、折一折、撕一撕等活動,驗證“三角形的內角和是180°。”

教師準備:

4組學具、課件

學生準備:

量角器、練習本

教學過程:

一、興趣導入,揭示課題

1、導入:“同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?”

(生出示三角形并匯報各類三角形及特點)

2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。“咦,不好,它們怎么吵起來了?快聽聽它們為什么吵起來了?”“哦,它們為了三個內角和的大小而吵起來。”(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

3、我們來幫幫它們好嗎?

4、那么什么叫內角啊?你們明白嗎?誰來說說?來指指。

你能標出三角形的三個角嗎?(生快速標好)

數學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節課我們就來研究一下“三角形的內角和”(課件片頭1)

“同學們,用什么方法能知道三角形的內角和?”

二、猜想驗證,探究規律 (動手操作,探究新知)

1.量角求和法證明:

先聽合作要求:拿出準備的一大一小的兩個三角形,現在我們以小組為單位來量一量它們的'內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?

(1)學生聽合作要求后分組合作,將各種三角形的內角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。

(2)指名匯報各組度量和計算內角和的結果。

(3)觀察:從大家量、算的結果中,你發現什么?

歸納:大家算出的三角形內角和都等于或接近180°。

(5)思考、討論:

通過測量計算,我們發現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

大家討論討論。

現在各小組就行動起來吧,看哪些小組的方法巧妙。看看能得出什么結論?

看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。

看老師最終把三個角拼成了一個什么角?平角。是多少角?

“180°是一個什么角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?”(課件3)

現在,我們可驗證三角形的內角和是(180度)?

2、那么對任意三角形都是這個結論?請看大屏幕。

演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)

你們想不想去試一試。

1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學生)

2、“你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)”,生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)

a、驗證直角三角形的內角和

折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結論?

引導生歸納出:直角三角形的內角和是180°

折法2 我們還可以得出什么結論?

引導生歸納出:直角三角形中兩個銳角的和是90°。

(即:不必三個角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)

b、驗證銳角、鈍角三角形的內角和。

歸納:銳角、鈍角三角形的內角和也是180°。

放手發動學生獨立完成 ,逐一種類匯報 師給予鼓勵

三、總結規律

剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大小!我們可以得出一個怎樣的結論?

(三角形的內角和是180°。)

(教師板書:三角形的內角和是180°學生齊讀一遍。)

為什么用測量計算的方法不能得到統一的結果呢?

(量的不準。有的量角器有誤差。)

老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

四、應用新知,知識升華。

(讓學生體驗成功的喜悅)

現在,我們已經知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?

(課件5……)

在一個三角形中,有沒有可能有兩個鈍角呢?

(不可能。)

追問:為什么?

(因為兩個銳角和已經超過了180°。)

有兩個直角的一個三角形

(因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

問:那有沒有可能有兩個銳角呢?

(有,在一個三角形中最少有兩個內角是銳角。)

1、看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

2、做一做:

在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數、

3、27頁第3題(數學信息較為隱藏和生活中的實際問題)

4.思考題、

五、總結

今天,我們在研究三角形的內角和時經歷了猜想、驗證、得出結論的過程,并且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經歷這樣的過程,同時,它也是一種科學的研究方法。

板書設計:

三角形內角和

量一量 拼一拼 折一折

三角形內角和是180°

三角形內角和教學設計4

微課作品介紹本微課是蘇教版小學數學四年級下冊《三角形內角和》的課前先學指導,學生在家觀看視頻內容,同時結合學習任務單,在視頻的指導下通過猜、量、算、剪、拼等方法探索三角形的內角和是180度。學生在課前利用視頻完成學習任務單,然后到學校課堂中和老師、同學進行交流,再進一步提升。

教學需求分析適用對象分析該微課的適用對象是蘇教版四年級下學期的小學生,學生應認識三角形的基本特征,學習過角和角的度量,知道平角是180度。具備了一定的動手操作能力和數學思維能力。

學習內容分析該微課讓學生發現、驗證三角形的內角和是180度的結論。這部分內容是在學生認識了三角形的基本特征和三邊的關系后,三角形分類前學習的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內角和是學生進一步學習和探究三角形分類方法的重要前提。學生知道了三角形的內角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。

教學目標分析:

1、通過學生的實際操作,理解并驗證三角形的內角和等于180°,并能夠運用結論解決簡單的實際問題;

2、使學生通過觀察、實驗,經歷猜想與驗證三角形內角和的探索過程,在活動中發展學生的空間觀念和推理能力。

3、已經有不少學生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在學習時的主要目標是驗證三角形的內角和是180度。

教學過程設計本微課教學過程:

一、明確多邊形的內角、內角和概念。

首先要明確概念,才好繼續研究。內角、內角和以前學生沒有學過,還是有必要給學生明確的。

二、探索三角尺的內角和,猜想三角形的內角和。

從學生熟悉的三角板開始計算三角板的內角和,引發學生猜想,三角形的內角和是多少。

三、驗證三角形內角和是否為180°。

驗證分為三個層次:首先是量教材提供的三角形,算出內角和,可能會有誤差。其次把三角形三個內角拼在一起,拼成是平角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結論。讓學生經歷由特殊到一般的認知過程。

四、拓展延伸,探究梯形、平行四邊形和六邊形內角和。

由三角形的內角和,學生自然就會想到已學過的梯形、平行四邊形和六邊形內角和是多少呢。教師留下問題讓學有余力的學生進一步去探索。

五、自主學習檢測

學生觀看完了視頻是否學會了,是需要檢測的。學生通過做完自主檢測后進行校對,檢驗自己所學。

學習指導本微視頻應配合下面的學習任務單共同使用,在觀看視頻時,根據視頻提示隨時暫停視頻依次完成任務單。

自主學習前準備:

請在自主學習前閱讀學習任務單的學習指南,并準備好數學書、一副三角尺、量角器、剪刀、鉛筆等學習用具。

自主學習任務單:

通過觀看教學資源自學,完成下列學習任務:

任務一:明確多邊形的內角、內角和概念

1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。

2、你剛才標出的角,又叫做每個圖形的。

3、如果把一個圖形所有的內角的度數加起來,所得的總和就是這個圖形的'()。

4、你知道圖中長方形和正方形的內角和是多少度嗎?你是怎么知道的?

長方形內角和正方形內角和

任務二:探索三角尺的內角和,猜想三角形的內角和。

1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數?在圖上標出來。

2、算一算,每個三角尺3個內角的和是多少度。

3、根據你剛才的計算結果,你能猜想一下,任意一個三角形它的內角和的度數呢?

任務三:驗證任意三角形內角和是否為180°

1、請從數學書本第113頁剪下3個三角形,用量角器量出每個三角形3個內角的度數。

算一算,每個三角形3個內角的和是多少度。

2還可以用什么辦法來驗證剪下的這3個三角形的內角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。

溫馨提示:平角正好是180°,這三個內角能正好拼成一個平角嗎?

3、自己任意畫一個三角形,先剪下來,再拼一拼。

4、你發現了什么?寫在下面。

5、請你回顧一下我們研究三角形形內角和是180度的過程?簡單的寫下來。

任務四:拓展延伸

任務一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內角和。

任務五:自主學習檢測

1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°

2、第3個三角形還可以怎樣計算,哪種更簡便?

3、一塊三角尺的內角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內角和是多少度?

4、用一張長方形紙折一折,填一填

配套學習資料蘇教版小學數學四年級下冊教材

制作技術介紹Camtasia Studio軟件制作、PPT。

三角形內角和教學設計5

設計思路

本節課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再引導學生通過折角的方法也發現這個結論,由此獲得三角形的內角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發現、推理歸納出三角形的內角和是180°。

最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內角的度數,說出另外一個內角,有唯一的答案。給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中拓展學生思維。

教學目標

1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

3、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

教學重點

讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

教學準備

教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

學具:三角形

教學過程

一、引入

(一)認識三角形的內角及三角形的內角和

師:我們已經學習了三角形的分類,誰能說說老師手上的是什么三角形?

師:今天我們來學習新的'知識《三角形內角和》,誰能說說哪些角是三角形的內角?(讓學生邊說邊指出來)

師:那三角形的內角和又是什么意思?(把三角形三個內角的度數合起來就叫三角形的內角和。)

(二)設疑,激發學生探究新知的心理

師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)

生:能。

師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:……

師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、動手操作,探究三角形內角和

(一)猜一猜。

師:猜一猜三角形的內角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……

(二)操作、驗證三角形內角和是180°。

1、量一量三角形的內角

動手量一量自己手中的三角形的內角度數。

師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內角的度數,再加起來。

師:哦,也就是測量計算,是嗎?

學生匯報結果。

師:請匯報自己測量的結果。

生1:180°。

生2:175°。

生3:182°。

……

2、拼一拼三角形的內角

學生操作

師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

師:怎樣才能把三個內角放在一起呢?(學生操作)

生:把它們剪下來放在一起。

師:很好。

匯報驗證結果。

師:通過拼合我們得出什么結論?

生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

生2:直角三角形的內角和也是180°。

生3:鈍角三角形的內角和還是180°。

課件演示驗證結果。

師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

師:我們可以得出一個怎樣的結論?

生:三角形的內角和是180°。

(教師板書:三角形的內角和是180°學生齊讀一遍。)

師:為什么用測量計算的方法不能得到統一的結果呢?

生1:量的不準。

生2:有的量角器有誤差。

師:對,這就是測量的誤差。

3、折一折三角形的內角

師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內角和是180°。

如果學生說不出來,教師便提示或示范。

學生操作

4、小結:三角形的內角和是180°。

三、解決疑問。

師:現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

生:因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。

師:在一個三角形中,有沒有可能有兩個鈍角呢?

生:不可能。

師:為什么?

生:因為兩個銳角和已經超過了180°。

師:那有沒有可能有兩個銳角呢?

生:有,在一個三角形中最少有兩個內角是銳角。

四、應用三角形的內角和解決問題。

1、下面說法是否正確。

鈍角三角形的內角和一定大于銳角三角形的內角和。()

在直角三角形中,兩個銳角的和等于90度。()

在鈍角三角形中兩個銳角的和大于90度。()

④一個三角形中不可能有兩個鈍角。()

⑤三角形中有一個銳角是60度,那么這個三角形一定是個銳角三角形。()

2、看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

3、游戲鞏固。

由一個同學出題,其它同學回答。

(1)給出三角形兩個內角,說出另外一個內角(有唯一的答案)。

(2)給出三角形一個內角,說出其它兩個內角(答案不唯一,可以得出無數個答案)。

4、根據所學的知識算出四邊形、正五邊形、正六邊形的內角和。

五、全課總結。

今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?

反思:

在本節課的學習活動過程中,先讓學生進行測量、計算,但得不到統一的結果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。

但因為是借班上課,對學生了解不多,學生前面的內容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。

三角形內角和教學設計6

教學內容:人教版小學數學第八冊第85頁例5及”做一做”

教學目標:

1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想

3、在探索中體驗發現的樂趣,增強學好數學的信心、

教學重點

讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

教學難點 :

驗證所有三角形的內角之和都是180°

教具準備:多媒體課件。

學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

教學過程:

一、設疑引思

1、分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內角的度數、

2、每小組請一位同學說出自已量的三角形中兩個角的度數老師迅速”猜出”第三個角的度數、

3、設問:老師為什么能很快”猜” 出第三個角的度數呢?

三角形還有許多奧妙,等待我們去探索、<導入新課,板書課題>

二、探索交流,獲取新知

1、量一量:每個學生將自已剛才量出的三角形的內角和的度數相加,初步得出”三角形的內角和是180°”的結論、

2、折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發現:一個三角形的內角和就是正方形4個角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、

3、拼一拼:學生先動手剪拼所準備的.三角形,進一步驗證得出”三角形的內角和是180°”的結論、

4、師利用課件演示將一個三角形的三個角拼成一個平角的過程、

5、驗證:FLASH演示三種三角形割補過程

發現1: 通過把直角三角形割補后,內角∠2,∠3 組成了一個角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。

發現2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。

6、小結:剛才能過量一量折一折拼一拼,你發現了什么?

生說,師板書:三角形的內角和———180°

三、應用練習,拓展提高

1、書例5后”做一做”

思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

2、下面哪三個角會在同一個三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

(結合學生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

四 作業:作業本

五 全課總結

總結:今天這節課我們研究了三角形的內角和,你們學到了哪些知識,有什么收獲?

板書設計:三角形的內角和

三角形的內角和———180°

三角形內角和教學設計7

【教學內容】

《人教版九年義務教育教科書 數學》四年級下冊《三角形的內角和》

【教學目標】

1.使學生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見的問題。

2.讓學生經歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內角和是180 。

3.培養學生自主學習、互動交流、合作探究的能力和習慣,培養學習數學的興趣,感受學習數學的樂趣。

【教學重點】

使學生知道三角形的內角和是180 ,并能運用它解決生活中常見的問題。

【教學難點】

通過多種方法驗證三角形的內角和是180 。

【教學準備】

課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

【教學過程】

一、激趣導入,提煉學習方法

1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學生面前。激發學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

2.繼續以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

3.選擇工具,總結方法。

讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

4.導入新課。

圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

二、動手操作,探索交流新知

1.分組活動,探索新知

根據學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

量一量組同學發給以下幾種學具:

折一折組同學發給上面的三角形一組。

拼一拼組同學發給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

2.多方互動,交流新知

師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

(1)首先要求學生說一說你們小組是怎樣進行探究的。

(2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

(3)請學生說說通過探究活動你們組得出的結論是什么。

師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

引導這一組從探究的過程和結論與同學、老師交流。

師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。

同樣引導這一組從探究的過程和結論與同學、老師交流。

3.思想碰撞,夯實新知

師:三個徒弟你們能說說誰的方法最好嗎?

學生都會說自己的方法最好,再讓其他同學發表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的`方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180 。(板書:三角形的內角和是180 )

四、走進生活,提升運用能力

1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

2.給你三根木條,能做出一個有兩個直角的三角形嗎?

五、總結

師:徒弟們你們經過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

六、拓展新知,課外延伸

師:俗話說“活到老,學到老。”你們下山后還要繼續探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

大屏幕出示:

能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

三角形內角和教學設計8

【教學目標】

1、學生動手操作,通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。

2、在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。

3、體驗探究的過程和方法,感受思維提升的過程,激發求知欲和探索興趣。

【教學重點】探究發現和驗證“三角形的內角和180度”這一規律的過程,并歸納總結出規律。

【教學難點】對不同探究方法的指導和學生對規律的靈活應用。

【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

【教學過程】

一、激趣引入。

1、猜謎語

師:同學們喜歡猜謎語嗎?

生:喜歡。

師:那么,下面老師給大家出個謎語。請聽謎面:

形狀似座山,穩定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

生:三角形

2、介紹三角形按角的分類

師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

師分別出示卡片貼于黑板。

3、激發學生探知心里

師:大家會不會畫三角形啊?

生:會

師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

生:試著畫

師:畫出來沒有?

生:沒有

師:畫不出來了,是嗎?

生:是

師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)

二、探究新知。

1、認識三角形的內角

看看這三個字,說說看,什么是三角形的內角?

生:就是三角形里面的角。

師:三角形有幾個內角啊?

生:3個。

師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

師:你知道什么是三角形“內角和”嗎?

生:三角形里面的角加起來的度數。

2、研究特殊三角形的內角和

師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數,那這個三角形的內角和是多少度?

生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

師:180°也是我們學習過的什么角?

生:平角

師:從剛才兩個三角形的內角和的計算中,你發現了什么?

3、研究一般三角形的內角和

師:猜一猜,其它三角形的內角和是多少度呢?

生:

4、操作、驗證

師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

要求:

(1)每4人為一個小組。

(2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

(3)驗證的方法不只一種,同學們要多動動腦子。

師:好,開始活動!

師:巡視指導

師:好!請一組匯報測量結果。

生:通過測量我們發現每個三角形的三個內角和都在180度左右。

師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

生:我是用撕的`方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。

師:好!非常好!

師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

現在老師問同學們,三角形的內角和是多少?

生:180度。

師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度。現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是180°”。

三、解決疑問

師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

生:沒有

師:那你能用這節課的知識解釋一下為什么畫不出來嗎?

生:兩個直角是180度,沒有第三個角了。

師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

師:學會了知識,我們就要懂得去運用。

四、鞏固提高。

1、填空。

(1)三角形的內角和是度。

(2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。

2、求下面各角的度數。

(1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

(2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

3、判斷每組中的三個角是不是同一個三角形中的三個內角。

(1)80° 95° 5°( )

(2)60° 70° 90°( )

(3)30° 40° 50°( )

4、紅領巾是一個等腰三角形,求底角的度數。(多媒體出示)

對學生進行思品教育。

5、思考延伸。

根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

五、總結。

三角形內角和教學設計9

教學內容

人教版小學數學第八冊第五單元第85頁例5

任務分析

教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;并在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數并求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

教學目標

1、通過實驗、操作、推理歸納出三角形內角和是180°。

2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實際生活問題。

3、通過拼擺,感受數學的轉化思想。

教學重點

探究發現和驗證“三角形的內角和180度”。

教學難點

驗證三角形的內角和是180度。

教學準備

多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

教學過程

一、復習舊知,學習鋪墊

1、一個平角是多少度?等于幾個直角?

2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解規律

1、說明三角形的三個內角和

說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的`度數和叫做三角形的內角和。

板書課題:“三角形的內角和”。

揭示課題:今天我們一起來探究三角形的內角和有什么規律。

2、探究三角形的內角和規律

探究1:量一量,算一算

以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

生討論匯報,并引導學生發現:三角形的內角和接近180°。

師:三角形的內角和接近180°,那它到底與180° 有怎樣的關系呢?

學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

探究2:擺一擺,拼一拼

引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

如圖:

(1)

銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

(2)

讓學生小組合作用同樣的方法,發現:直角三角形的內角和也是180°.

(3)

讓學生獨立用同樣的方法,發現:鈍角三角形的內角和也是180°.

引導學生歸納:三角形的內角和是180°。

是不是所有的三角形的內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

板書:三角形的內角和是180°

三、鞏固練習,應用規律

1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

學生獨立完成,并說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展練習,深化規律

1、求出下面各角的度數。

(1) (2)

2、判斷

(1)三角形任意兩個內角的和大于第三個角。( )

(2)銳角三角形任意兩個內角的和大于直角。( )

(3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

( ) ( )

五、課堂小結,分享提升

1、談談這節課你有什么收獲?

2、課后思考題

三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

板書設計

三角形內角和教學設計10

教學目標:

1、教會學生主動探究新識的方法,學會運用轉化遷移數學思想。

2、學生通過量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動掌握三角形內角和是1800,并運用所學知識解決簡單的實際問題,發展學生的觀察、歸納、概括能力和初步的空間想象力。

教學重點:

理解并掌握三角形的內角和是180°。

教學難點:

驗證所有三角形的內角之和都是180°。

教具準備:

多媒體課件。

學具準備:

量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

教學過程:

一、導入

師:知道今天我們學習什么內容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

師:什么是內角?你能把你手中三角形的三個內角用角1、角2、角3標出來嗎?

師:還有一個關鍵字“和”,什么是三角形的內角和?

師:你認為三角形的內角和是多少度?你呢?都知道啊?是多少度啊?看來都知道了,就不用再學了吧?你還想學什么?

師:看來我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

生:量一量的方法。

師:光量就知道了?還要算一算。

師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內角,再計算求和。小組長把計算的過程記錄下來。開始吧。

驗證:量角、求和

小組匯報

生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內角和是180度。

生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內角和是180度。

生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內角和是180度。

師:從剛才的交流中,你發現了什么?

生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現誤差,得出的結論就難以讓人信服。看來似乎用量的方法還不能充分證明。(劃問號)

師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

師:你們小組每個同學都動腦筋了,謝謝你們。

師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

師:其實大家能用3種方法證明已經很不簡單了,現在我們就能很自信的說三角形的內角和是180度。

師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創造性的方法。現在我們再來一塊回顧一下。

師:這幾種方法都足以說明三角形的內角和是180度。(結論)

師:剛才同學們發揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發現了什么?

請你再仔細觀察,你發現了什么?其實兩個底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態過程是不是也能證明三角形的'內角和是180度?

師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

師:現在我們知道了“三角形的內角和是180度”,能不能用這個知識來解決一些問題啊?

生:能。

二、遷移和應用

(一)點將臺:

下面哪三個角是同一個三角形的內角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我會算

1、已知∠1,∠2,∠3是三角形的三個內角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73°求∠1

2、已知∠1和∠2是直角三角形中的兩個銳角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

(三)。變變變!

(1)一個三角形中,∠1 、∠2、∠3。

(2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

(3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

三、全課小結

師:通過一節課的探索,你有什么收獲?

我的幾點認識:

結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡單的談一下自己的認識。

空間與圖形這一部分內容,可以用這幾個字來概括:難理解,難受,難掌握。在本節課的教學中,三角形的內角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

1、根據學生的知識特點和生活經驗,在原有基礎上創造性的使用教材。

在教學本節課的內容時,學生在自己的日常生活或大部分都已經知道三角形的內角和是180。因材在這樣的情況下,我創造性的使用教材。不是讓學生通過自己動手操作之后才發現三角形的內角和是180,而是直接把問題拋給學生,你們知道三角形的內角和是多少度嗎?

你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,

立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發興趣,提高積極性。

2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發現三角形的內角和的確是180度。

總之,在教學空間與圖形的內容時,一定要讓學生看到“圖形“,讓學生想象”空間”。

三角形內角和教學設計11

教學要求

1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

3、培養學生動手動腦及分析推理能力。

教學重點

三角形的內角和是180°的規律。

教學難點

使學生理解三角形的內角和是180°這一規律。

教學用具

每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

教學過程:

一、出示預習提綱

1、三角形按角的不同可以分成哪幾類?

2、一個平角是多少度?1個平角等于幾個直角?

3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

二、展示匯報交流

1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

2、三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規律。

3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

4、指名學生匯報各組度量和計算的結果。你有什么發現?

5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

6、剛才我們計算三角形的內角和都是先測量每個角的`度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

提示學生,可以把三個內角拼成一個角,就只需測量一次了。

7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什么?(直角三角形和鈍角三角形的內角和也是180°)

10、那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內角和是180°。

12、一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

13、出示教材85頁做一做。讓學生試做。

14、指名匯報怎樣列式計算的。兩種方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

課后反思:

對于三角形的內角和,學生并不陌生,在平時的做題中已經涉及到了。可是學生并不知道如何去驗證,所以本節課,重點讓孩子們經歷體驗,感悟圖形。從而收獲了經驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

三角形內角和教學設計12

設計思路

遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。學生對三角尺上每個角的度數比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內角的和是180°,引發學生的猜想:其它三角形的內角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數學思想,為后繼學習奠定了必要的基礎。

最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數學信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內角的度數,說出另外一個內角。有唯一的答案。訓練多次后,只給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中消除疲倦激發興趣,拓展學生思維。兼顧到智力水平發展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。

教學目標

1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

3、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

教材分析

三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的`分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。

因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。

教學重點

讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

教學準備

多媒體課件、學具。

教學過程

一、激趣引入

(一)認識三角形內角

師:我們已經認識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。(這里,有必要向學生直觀介紹“內角”。)

(二)設疑,激發學生探究新知的心理

師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)

生:能。

師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、動手操作,探究新知

(一)研究特殊三角形的內角和

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數。(課件閃動其中的一塊三角板)

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

師:也就是這個三角形各角的度數。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內角的度數合起來就叫三角形的內角和。

師:(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內角和的計算中,你發現什么?

生1:這兩個三角形的內角和都是180°。

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形內角和

1、猜一猜。

師:猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

2、操作、驗證一般三角形內角和是180°。

(1)小組合作、進行探究。

師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內角的度數,再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)

(2)小組匯報結果。

師:請各小組匯報探究結果。

生1:180°。

生2:175°。

生3:182°。

(三)繼續探究

師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

師:怎樣才能把三個內角放在一起呢?

生:把它們剪下來放在一起。

1、用拼合的方法驗證。

師:很好,請用不同的三角形來驗證。

師:小組內完成,仍然先分工怎樣才能很快完成任務,開始吧。

2、匯報驗證結果。

師:先驗證銳角三角形,我們得出什么結論?

生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

生2:直角三角形的內角和也是180°。

生3:鈍角三角形的內角和還是180°。

3、課件演示驗證結果。

師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

師:我們可以得出一個怎樣的結論?

生:三角形的內角和是180°。

(教師板書:三角形的內角和是180°學生齊讀一遍。)

師:為什么用測量計算的方法不能得到統一的結果呢?

生1:量的不準。

生2:有的量角器有誤差。

師:對,這就是測量的誤差。

三角形內角和教學設計13

一、教學目標

1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發現三角形三個內角的度數和等于180°這一規律,并能實際應用。

2.能力目標:培養學生主動探索、動手操作的能力。使學生養成良好的合作習慣。

3.情感目標:讓學生體會幾何圖形內在的結構美。并充分體會到學習數學的快樂。

二、教學過程

(一)創設情境,導入新課

1、師:我們已經認識了三角形,你知道哪些關于三角形的知識?

(學生暢所欲言。)

2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

師口述:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,

3、到底誰說的對呢?今天我們就來研究有關三角形內角和的知識。(板書課題:三角形內角和)

(二)自主探究,發現規律

1、認識什么是三角形的內角和。

師:你知道什么是三角形的內角和嗎?

通過學生討論,得出三角形的內角和就是三角形三個內角的度數和。

2、探究三角形內角和的特點。

①讓學生想一想、說一說怎樣才能知道三角形的內角和?

學生會想到量一量每個三角形的內角,再相加的方法來得到三角形的內角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)

②小組合作。

通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結果)讓學生們發現每個三角形的內角和都在180°左右。

引導學生推測出三角形的內角和可能都是180°。

3、驗證推測。

讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

(小組合作驗證,教師參與其中。)

4、全班交流,共同發現規律。

當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。

學生交流、師生共同總結出三角形的內角和等于180°。教師同時板書(三角形內角和等于180°。)

5、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

(三)鞏固練習,拓展應用

根據發現的三角形的新知識來解決問題。

1、完成“試一試”

讓學生獨立完成后,集體交流。

2、游戲:選度數,組三角形。

請選出三個角的度數來組成一個三角形。

150°10°15°18°20°32°

35°50°52°54°56°58°

130°70°72°75°60°

學生回答的同時,教師操作課件,把學生選擇的度數拖入方框內,通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的`對了以后,再讓學生判斷選擇的度數所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

3、“想想做做”第1題

生獨立完成,集體訂正,并說說解題方法。

4、“想想做做”第2題

提問:為什么兩個三角形拼成一個三角形后,內角和還是180度?

5、“想想做做”第3題

生動手折折看,填空。

提問:三角形的內角和與三角形的大小有關系嗎?三角形越大,內角和也越大嗎?

6、“想想做做”第5題

生獨立完成,說說不同的解題方法。

7、“想想做做”第6題

學生說說自己的想法。

8、思考題

教師拿一個大三角形,提問學生內角和是多少?用剪刀剪成兩個三角形,提問學生內角和是多少?為什么?再剪下一個小三角形,提問學生內角和是多少?為什么?最后建成一個四邊形,提問學生內角和是多少?你能推導

出四邊形的內角和公式嗎?

(四)課堂總結

本節課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規律,再將規律運用到實踐當中去。

三教后反思:

“三角形的內角和”是小學數學教材第八冊“認識圖形”這一單元中的一個內容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:

1、通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的度數和等于180度。

2、已知三角形兩個角的度數,會求出第三個角的度數。

本節教學是在學生在學習“認識三角形”的基礎上進行的,“三角形內角和等于180度”這一結論學生早知曉,但為什么三角形內角和會一樣?這也正是本節課要與學生共同研究的問題。所以我將這節課教學的重難點設定為:通過動手操作驗證三角形的內角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結合自己的教學,談幾點體會。

(一)創設情景,激發興趣

俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學內容和學生實際,精心設計每一節課的開頭導語,用別出心裁的導語來激發學生的學習興趣,讓學生主動地投入學習。本節課先創設畫角質疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。

(二)給學生空間,讓他們自主探究

“給學生一些權利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創設有助于學生自主探究的機會,通過“想辦法驗證三角形內角和是180度”這一核心問題,引發學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。這樣,學生在經歷“再創造”的過程中,完成了對新知識的構建和創造。

(三)以學定教,注重教學的有效性

新課表指出:數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。要把學生的個人知識、直接經驗和現實世界作為數學教學的重要資源,即以學定教,注重每個教學環節的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形。“為什么會這樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內角和是180度,兩個直角已經有180度了,所以不可能有兩個角是直角。”這樣的回答把本來設計的教學環節打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內角和是180度、誰都知道三角形的內角和是180度”等,當我看到大多數的已經知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度。”激發了學生探究的興趣,使學生馬上投入到探究之中。

在練習的時候,由于形式多樣,所以學生的興趣非常高漲,效果很好。通過多邊形內角和的思考以及驗證,發展了學生的空間想象力,使課堂的知識得以延伸。<

三角形內角和教學設計14

教學目標:

1.知道三角形的內角和是180度,理解三角形內角和與三角形的大小無關。

2.通過測量、計算、猜想、實驗等數學活動,積累認識圖形的方法和經驗,逐步推理、歸納出三角形內角和。

3.關注學生在操作活動中遇到的真問題,培養學生誠實嚴謹的實驗態度,實事求是的科學的態度。

教學重點:

知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無關。

教學難點:

經歷操作活動,推理、歸納出三角形的內角和。

教學資源:

多煤體課件,各種三角形,三角板,量角器,剪刀。

教學活動:

一、創設情境,導入新課。

1.昨天我們學習了三角形的分類,三角形按角的特征怎么分類?按邊的特征怎么分類?

2.信封中裝一個三角形露出一個銳角,猜一猜信封中裝的是一個什么三角形?能確定嗎?(露出一個鈍角)現在能確定了嗎?為什么現在就能確定了?(有一個鈍角,兩個銳的三角形是鈍角三角形)。

3.三角形中還隱藏著那些知識?三角形的三個內角的和是多少度?這節課我們研究三角形的內角和。(板書課題:三角形的內角和)

二、合件交流,操作發現。

1.(課件)你知道三角尺內角的度數分別是多少嗎?每個直角三角尺的內角度數之和都是多少度?我們能根據三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學習單)。

2.組織學生小組合作:

請同學們以4人為一個小組,三個人分別量一量,算一算一種三角形的內角的度數,小組長填寫學習單。老師巡視。①師:能不能只量出兩個角的度數,不量第三個角的度數,就開始填表、計算?(我們的研究必須是科學的、實事求是的,測量的數據必須是真實的,來不的半點馬虎)。②同桌交流,你們有什么發現?

3.組織學生匯報交流:

①那個組說一說你們組測量的數據和計算的結果?(學生的計算不是正好180度時,問:大約是多少度?)②你們有什么發現?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。③你能提出什么猜想?(我猜三角形的內角和是180度)老師板書:三角形的內角和是180°我們的猜想對不對,(在板書后面打上“?”),就需要我們驗證,請同學們想辦法驗證我們的.猜想對不對?(學生通過折的方法剪拼進行驗證;學生通過剪、拼的方法進行驗證。)

4.學生展臺展示自己的難方法。通過驗證,我們發現三角形的內角和是180度。老師把“?”改為“!”。

5.操作總會有誤差,有沒有別的方法說明呢?(老師課件演示長方形的四個角都是直角,所以長方形的內角和應為:90°×4=360°。將長方形沿對角線分割,可以分成兩個完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)

三、實踐應用,拓展延伸。

1.這里有一條紅領巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=°,∠3=()°。

2.把下面這個三角形沿虛線剪成兩個小三角形,每個小三角形的內角和是多少度?(把一個三角形剪成兩個小三角形,雖然大小發生了變化,可是內角和依然是180度,說明三角形的內角和與三角形大小無關)。

四、反思總結,自我建構。

這節課你有什么收獲?

這節課我們就研究到這兒,同學們再見!

三角形內角和教學設計15

【教材內容】:

北師大版四年級數學下冊

【教學目標】:

1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。

2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。

3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣。

【教學重點和難點】:

重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。

【教材分析】

《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發現三角形的內角和是180°。擴充了學生認識圖形的一般規律從直觀感性的認識到具體的性質探索,更加深入的.培養了學生的空間觀念。

【教學過程】

一、創設情境,激發興趣。

出示課件,提出兩個兩個疑問:

1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?

2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發現它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?

二、初建模型,實際驗證自己的猜想

在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。

三角形的形狀

三角形每個內角的度數

內角和

銳角三角形

鈍角三角形

直角三角形

等腰三角形

等邊三角形

三、再建模型,徹底的得出正確的結論

因為在上一環節學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。

四、應用新知,鞏固練習

1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)

2、試一試,在直角三角形中已知其中的一個角求另一個角的度數

3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。

4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?

五、拓展與延伸

通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。

三角形內角和教學設計

一、教學目標:

1、通過小組猜想、探索、驗證三角形的內角和等于180°,并能運用知識解決簡單問題。

2、經歷三角形內角和的探究過程,體驗“猜想——驗證——應用”的學習模式。

3、通過各種實踐活動,激發學習興趣,體驗學習成功感,并在教學中,感受數學與生活的密切聯系。

二、教學重難點

教學重點:學生運用各種方法,探索三角形的內角和是180度這一知識的全過程

教學難點:運用三角形的內角和解決實際問題。

三、教具、學具準備:

課件、一副三角尺、幾個三角形。學生準備一副三角尺。

四、教學過程:

一、創設情境 揭示課題。

師:猜謎語 形狀似座山,穩定性能堅;三竿首尾連,學問不簡單。(打一幾何圖形)生:三角形

師:前面我們已經認識三角形,誰能給大家介紹一下? 學生講學過的三角形知識。分類

師:我們在討論三角形知識的時候,三角形中的三個兄弟卻吵了起來,想知道怎么回事嗎?讓我們一起去看看吧!

師:呦,瞧,三個兄弟在爭論呢。(播放課件)它們在爭論什么呀? 生:它們在爭論誰的內角和大。

師:哦,原來如此。那么,你們知道什么是三角形的內角? 三角形的內角和又是指什么嗎?(生:三角形的內角就是三角形里面的三個角。內角和就是三個內角的度數和。)

師:這個同學說得真好,(課件)我們把三角形里面的這三個角,就叫做三角形的內角,而這三個角的度數和,我們就稱為三角形的內角和。

今天我們就來研究有關三角形內角和的知識。(板書課題)

二、探索交流,解決問

(一)、大膽猜想,產生分歧

師:理解了三角形的內角和,那請你們給評評理:這三個大小不一樣的三角形,到底是誰的內角和大啊?(這位同學手舉得最高,請你來說。)

生1:我認為是這樣的,因為大三角形大,所以它的內角和更大。(哦,你是這樣認為的,請坐。還有不同意見嗎?這位同學很著急,好,你來。)

生2:我不同意,我認為兩個三角形內角和的度數都是一樣的。(很好,這是你的想法。還有同學想說,你來。)

生3:當然是大三角形的內角和大了。(你回答的聲音真響亮。請坐)生4:我同意第二個同學的意見,兩個三角形的內角和一樣大。

師:現在出現了兩種不同的意見,有的同學認為大三角形的內角和大,還有部分同學認為兩個三角形的內角和的度數都是一樣的。那么到底誰說得對呢?

(二)驗證猜想,解決問題

師拿出兩個三角尺,問:它們是什么三角形? 生:直角三角形。

師:請大家拿出自己的兩個三角尺,同桌之間說說每一個三角尺上三個角的度數,并求出這兩個直角三角形的內角和。(學生們能夠很快求出每塊三角尺的3個角的和都是180°)

師:你們算出來,這兩個三角尺的內角和是多少度啊? 生齊:180°。

師:那??其他三角形的內角和也是180°嗎?(這位同學手舉得真端正,你來說。)生1:其他三角形的內角和也是180°(好,還有誰想說?)生2:其他三角形的內角和不是180°

師:看來呀,大家都有不同的看法。我們學過三角形的分類,知道直角、銳角、鈍角三角形可以代表所有的三角形。那下面就請同學們小組合作,從組里找出這

三類三角形,量一量每個三角形內角的度數,并求出它們的內角和,把結果填在表格里。(板書:測量)師:你們發現了什么?

生1:通過測量我們發現每個三角形的內角和都是180°。生2:不對,應該是180°左右,因為我們組算出來也有175°的。

師:噢!是呀,因為我們在測量時可能會出現一些誤差,所以測量出的結果不是很準確,因此我們只能猜測三角形的內角和可能是180°。

師:那么,同學們能發揮你們的聰明才智,通過動手操作,想辦法來驗證自己的猜想嗎?請同學們先獨立思考一下,再在小組內把你的想法與同伴進行交流,然后每組選一種方法進行驗證,看哪組最先發現其中的“奧秘”。(1)小組合作,討論驗證方法(2)匯報驗證方法、結果。

師:誰愿意第一個向大家介紹你們組的驗證方法?

組1:我們小組是用剪拼的方法(板書:剪拼),將三角形的三個角剪下來,拼成一個平角,得到三角形的內角和是180度。

師:上來展示給大家瞧一瞧。(投影儀)你們看這位同學多細心呀,為了方便、不混淆,在剪之前,他先給3個角標上了符號。

師:現在請同學們看大屏幕,老師在電腦里把剛才剪拼的過程重播一遍。你們看,成功了,3個角拼成了一個平角。可是,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢,它們能不能拼成一個平角啊? 生齊:能!

師:好。那就是說,剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內角和是180°了。你們覺得這種方法好不好啊?那我們把掌聲送給剛才這個小組。還有其他方法嗎?

組2:我們小組是用折的方法(板書:折圖),同樣得到三角形的內角和是180度。(這個小組真了不起,竟能想出如此獨特的方法,很有新意,非常好!)師:聽起來有點抽象,請這位同學上來折給大家看看好不好呀?(投影儀展示)

(展示:3個角折成了一個平角。)

師:真是個手巧的孩子。不過呢,他剛才折的是一個直角三角形,那其他兩類三角形呢,是不是也能折出平角呢,誰來告訴大家?

組3:可以,這三類三角形都能折出平角。(這一組探索數學的能力也真棒!)師小結:剛才同學們用量、剪、拼、折等方法證明了,無論是什么樣的三角形,內角和都是1800,(板書:三角形的內角和是180°)現在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是1800”。師:(出示一個大三角形)它的內角和是多少度? 生:180 °

師:(出示一個很小的三角形)它呢? 生:180 °

師:一個三角形的內角和是180°,那兩個同樣的三角形拼成一個大三角形,它的內角和又是多少呢?

(生有的答360°,有的180 °。)

師:咦?有兩種不同的聲音哦。那到底哪一種是正確的呢?

師:(學生個個臉上露出疑問)大家可以在小組內拼一拼,并討論討論。(經過一翻激烈的討論探究后,學生開始舉手回答。)

生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內角和總是180°。(想一想,做一做,數學之門就被這組同學打開了,真棒!哈,還有同學要說,好,你再說。)

生2:我發現兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內角和還是180°,不是360°。

師:你分析問題這么透徹,老師真希望每節課都能聽到你的發言。現在,老師把剛才這位同學說的用課件演示一遍,注意看哦。(課件演示)

師:好,這個問題解決了。那么,把大三角形平均分成兩份。它的(指均分后的一個小三角形)內角和是多少度? 生齊:180°。

師:哈,看來已經騙不倒我們班的同學勒。答案還是180°,不是90°哦。師總結:所以說,三角形不論位置、大小、形狀如何,它的內角和總是180°

三、鞏固應用,內化提高

1、解決問題:

學會了知識,我們就要懂得去運用。下面,我們就根據三角形內角和的知識來解決一些相關的數學問題。(課件演示練習題)(1)在能組成三角形的三個角后面畫“√”(2)判斷下列說法對嗎?(3)你能求出被遮住的角嗎?(4)67頁的做一做。(5)你會求下面圖形的角嗎?

四、回顧整理,反思提升

通過今天的學習,大家有什么收獲?

拓展創新

小明不小心將鏡框上的一塊三角形玻璃摔成了兩半,玻璃裂成了兩塊。一塊只有原來的一個角,另一塊有原來的兩個角。他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

下載三角形內角和教學設計word格式文檔
下載三角形內角和教學設計.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    《三角形內角和》教學設計

    《三角形的內角和是180°》教學設計 教學思路: 由在數學王國里,銳角、直角、鈍角三角形內角和大小的爭論,引出什么是內角與內角和,并開始討論內角和的大小。引導學生經歷對三個......

    三角形內角和教學設計

    冀教版教材小學數學四年級下冊 《三角形內角和》4+4N教學模式講析課 ——承德縣上谷學區中心校 一、創設情境 創設情境的目的:是以情境問題的解決為需求,激發學生在情境中發......

    三角形內角和教學設計[★]

    《三角形的內角和》教學設計 沈蕓 教學內容 義務教育課程標準實驗教科書(蘇教版)四年級數學(下)第28-29頁 教學目標 認知目標 1. 讓學生運用量、拼、擺等方法,主動探索并掌......

    三角形內角和教學設計

    《三角形的內角和》教學設計 新華實驗小學安利 教材內容:人教版四年級下冊數學第85頁例6 教學目標: 1、通過“量一量”“算一算”“拼一拼”“折一折”的方法,讓學生推理歸納三......

    《三角形內角和》教學設計

    《三角形內角和》教學設計 【教材內容】 北京市義務教育程改革實驗教材(北京版)第九冊數學 【教材分析】 《三角形內角和》是北京市義務教育程改革實驗教材(北京版)第九冊第三單......

    《三角形內角和》 教學設計

    《三角形內角和》 教學設計 【教學內容】四年級下冊教科書第24頁“探索與發現:三角形內角和。” 【學習目標】 1.讓學生親自動手,通過量、剪、拼等直觀操作活動,探索、發現并證......

    三角形內角和教學設計

    三角形內角和教學設計 一、教材分析: 教材的小標題為“探索與發現”,說明這部分內容要求學生自主探索,并發現有關三角形內角和性質。 教材創設了一個有趣的問題情境,以此激發學......

    三角形內角和教學設計

    三角形內角和教學設計 知識目標: 掌握三角形內角和是180度這一規律,并能實際應用。 能力目標: 培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納信息的能力。使學......

主站蜘蛛池模板: 麻批好紧日起要舒服死了| 午夜影视啪啪免费体验区| 在线观看国产成人av片| 婷婷五月六月激情综合色中文字幕| 男人的天堂2018无码| 色在线 | 国产| 久久精品黄aa片一区二区三区| 天天爽夜夜爽视频精品| 欧美成人午夜免费影院手机在线看| 97人妻无码专区| 国产真实乱对白精彩久久老熟妇女| 久久伊人热热精品中文字幕| 调教套上奶牛榨乳器喷奶水| 97se亚洲精品一区| 亚洲精品久久久久999666| 欧美孕妇xxxx做受欧美88| 尤物tv国产精品看片在线| 国产精品美女久久久久久福利| 无码人妻一区二区无费| 国产xxxx69真实实拍| 精品无码av不卡一区二区三区| 亚洲成av人片一区二区三区| 久久99精品久久久久蜜芽| 日韩一区国产二区欧美三区| 亚洲日本精品国产一区vr| 国产精品无码久久久久久| 少妇久久久久久人妻无码| 久久中文字幕人妻熟av女| 亚洲а∨天堂2019在线无码| 日本最新免费二区| 99久久婷婷国产综合精品| 日本狂喷奶水在线播放212| 曰本丰满熟妇xxxx性| 无码精品人妻一区二区三区影院| 特级精品毛片免费观看| 伊人久久综合无码成人网| 一本久久伊人热热精品中文| 精品无人区乱码1区2区3区在线| 国产精品视频第一区二区三区| 久久久久人妻一区二区三区| 亚洲一区二区色一琪琪|