第一篇:平行線與相交線知識理論:
平行線與相交線知識理論:
1、互補與互余及其性質:同角或者等角的余角(補角相等)
2、鄰補角 & 對頂角(性質):對頂角相等
3、垂線與垂足:
過一點有且僅有一條直線與已知直線垂直。
垂直于同一直線的兩條直線平行。
連接直線外一點與直線上各點的所有線段中,垂線段最短。
直線外一點到這條直線的垂線段的長度,叫做點到直線的長度。
4、同位角 & 內錯角 & 同旁內角
5、平行及其判定(重點)
(1)平行線(同一平面內兩條直線的位置關系)
(2)平行公理:
經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
(3)判定方法:
1)同位角相等,兩直線平行。
2)內錯角相等,兩直線平行。
3)同旁內角互補,兩直線平行。
6、平行線的性質:(重點)
1)兩直線平行,同位角相等。
2)兩直線平行,內錯角相等。
3)兩直線平行,同旁內角互補。
7、命題與定理:
命題
命題由題設與結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項。合唱??梢詫懗伞叭绻??那么??”的形式。如果后接題設,那么后面接結論。
真命題 & 假命題
平移(×)
第二篇:相交線平行線
一、基本概念的深入理解:例:
對頂角:“對”是正對著,“頂”是角的頂點,放在一起就是角的頂點正對著的一組角是對頂角;
同位角:“同”的意思是分別在兩條線的同一側,同時在第三條線的同一側,“位”指的是位置,放在一起就是位置相同(三條線的位置)的一組角;
內錯角:“內”指的是兩個角在兩條線的內部,“錯”指的是兩個角被第三條線分錯開,放在一起就是在兩條線內部,同時在第三條線兩側的一組角;
同旁內角:“同旁”指的是在第三條線的同一側,“內”指的是兩個角在兩條線的內部,放在一起就是在兩條線內部,同時在第三條線同一側的一組角;
二、學習習近平行線時要注意是在同一平面內;同一平面內的線的位置關
系有幾種,都是什么?線和點的位置關系有幾種,都是什么,在本章節中哪個定理性質涉及到了這一點?
如:
1、過任意一點可以做一條直線與已知直線平行是否正確?
2、過任意一點可以做一條直線與已知直線垂直是否正確?判斷這兩句話時就需要考慮“任意”的含義。
第三篇:平行線與相交線基礎知識
西安學知教育天才出于勤奮,學習要持之以恒
第二章平行線與相交線
一、余角與補角
1、如果兩個角的和是直角,那么稱這兩個角互為余角,簡稱為互余,稱其中一個角是另一個角的余角。
2、如果兩個角的和是平角,那么稱這兩個角互為補角,簡稱為互補,稱其中一個角是另一個角的補角。
3、余角和補角的性質:同角或等角的余角相等,同角或等角的補角相等。
二、對頂角
1、兩條直線相交成四個角,其中不相鄰的兩個角是對頂角。
2、一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
3、對頂角的性質:對頂角相等。
三、同位角、內錯角、同旁內角
1、兩條直線被第三條直線所截,形成了8個角。
2、同位角:兩個角都在兩條直線的同側,并且在第三條直線(截線)的同旁,這樣的一對角叫做同位角。
3、內錯角:兩個角都在兩條直線之間,并且在第三條直線(截線)的兩旁,這樣的一對角叫做內錯角。
4、同旁內角:兩個角都在兩條直線之間,并且在第三條直線(截線)的同旁,這樣的一對角叫同旁內角。
四、平行線的判定方法
1、同位角相等,兩直線平行。
2、內錯角相等,兩直線平行。
3、同旁內角互補,兩直線平行。
4、在同一平面內,如果兩條直線都平行于第三條直線,那么這兩條直線平行。
5、在同一平面內,如果兩條直線都垂直于第三條直線,那么這兩條直線平行。
五、平行線的性質
1、兩直線平行,同位角相等。
2、兩直線平行,內錯角相等。
3、兩直線平行,同旁內角互補。
六、尺規作線段和角
1、在幾何里,只用沒有刻度的直尺和圓規作圖稱為尺規作圖。
2、尺規作圖是最基本、最常見的作圖方法,通常叫基本作圖。
第四篇:相交線與平行線知識點
第五章相交線與平行線知識點小結
● 相交線
1.相交線:在同一平面內,相交的兩條直線。-----特點:有一個交點
2.對頂角----特點:(1)有一個公共定點(2)兩邊互為反向延長線
-----性質:對頂角相等
-----N條直線相交有N(N—1)對對頂角
3.鄰補角----特點:(1)有一個公共定點(2)有一條公共邊(3另一邊互為反向延長線
-----性質:鄰補角互補(和為180°)
-----N條直線相交有2N(N—1)對鄰補角
4.垂線:同一平面內,兩條直線相交,所成的夾角均為90°時,稱這兩條直線互相垂直。
---性質:(1)過直線外一點有且只有一條直線與已知直線垂直
(2)垂線段最短
----點到直線的距離:就是點到直線的垂線段的長度。
●平行線
1.平行線:在同一平面內,不相交的兩條直線。-----特點:沒有交點
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
推論----如果有一條直線與其它兩條直線平行,那么另外兩條直線也平行。
3.三線八角
形成方式-------兩條直線被第三條直線所截(這兩條直線不一定平行)名稱-----同位角(4對)內錯角(2對)同旁內角(2對)(成對出現)
4.平行線的判定方法----(1)同位角相等,兩直線平行
(2)內錯角相等,兩直線平行
(3)同旁內角互補,兩直線平行
(4)如果兩條直線分別與第三條直線平行,那么這
兩條直線也互相平行。
5.平行線的性質-------(1)兩直線平行,同位角相等
(2)兩直線平行,內錯角相等
(3)兩直線平行,同旁內角互補
6.兩條平行線間的距離-----就是兩條平行線間的垂線段的長度。
● 命題
1.定義:判斷一件事情的語句
2.組成----(1)題設(如果……)(2)結論(那么……)
3.分類----(1)真命題(2)假命題
●平移
1.定義:一個圖形沿著一定的方向平行移動。
2.特點----(1)平移后圖形的形狀、大小不變,位置改變
(2)對應點所連接的線段平行(或在同一直線上),對應角相等。
關鍵知識點:教你用倒推法做證明題
1.已知:如圖,?BAP??APD?180?,?1??2。
求證:?E??F
ABE
F
CPD
?C??D,??2,練習
已知:如圖,?1??2,?3??B,AC//DE,且B、C、D在一條直線上。求證:AE//BD
A
1E2
BCD
第五篇:相交線與平行線知識點歸納
相交線與平行線知識點小結
一、相交線
1.相交線:兩條直線相交,有且只有一個交點。(反之,若兩條直線只有一個交點,則這兩條直線相交。)
2.對頂角----特點:(1)有一個公共定點(2)兩邊互為反向延長線-----性質:對頂角相等
3.鄰補角:兩條直線相交,產生鄰補角和對頂角的概念。要注意區分互為鄰補角與互為補角的異同。
----特點:(1)有一個公共定點(2)有一條公共邊(3另一邊互為反向延長線
-----性質:鄰補角互補(和為180°)
4.垂線:同一平面內,兩條直線相交,所成的夾角均為90°時,稱這兩條直線互相垂直。
垂直是兩直線相交的特殊情況。注意:兩直線垂直,是互相垂直,即:若線a垂直線b,則線b垂直線a。
垂足:兩條互相垂直的直線的交點叫垂足。垂直時,一定要用直角符號表示出來。
---性質:(1)過直線外一點有且只有一條直線與已知直線垂直(2)垂線段最短
----點到直線的距離:就是點到直線的垂線段的長度。
注:①、同角或等角的余角相等;同角或等角的補角相等;等角的對頂角相等。反過來亦成立。
②、表述鄰補角、對頂角時,要注意相對性,即“互為”,要講清誰是誰的鄰補角或對頂角。
二、平行線
1.平行線:在同一平面內,不相交的兩條直線。-----特點:沒有交點,平行線永不相交。
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
推論----如果有一條直線與其它兩條直線平行,那么另外兩條直線也平行。
3.三線六面八角:平面內,兩條直線被第三條直線所截,將平面分成了六個部分,形成八個角
形成方式-------兩條直線被第三條直線所截(這兩條直線不一定平行,)
特別注意:① 三角形的三個內角均互為同旁內角;
② 同位角、內錯角、同旁內角的稱呼并不一定要建立在兩條平行的直線被第三條直線所截的前提上才有的,這兩條直線也可以不平行,也同樣的有同位角、內錯角、同旁內角。
名稱-----同位角(4對)內錯角(2對)同旁內角(2對)(成對出現)
4.平行線的判定方法----(1)同位角相等,兩直線平行(2)內錯角相等,兩直線平行
(3)同旁內角互補,兩直線平行(4)如果兩條直線分別與第三條直線平行,那么這兩條直線也互相平行。一個重要結論:同一平面內,垂直于同一直線的兩條直線互相平行。
5.平行線的性質-------(1)兩直線平行,同位角相等
(2)兩直線平行,內錯角相等(3)兩直線平行,同旁內角互補
6.兩條平行線間的距離-----就是兩條平行線間的垂線段的長度。
一個結論:平行線間的距離處處相等。
三、命題
判斷一件事情的語句叫命題。命題包括“題設”和“結論”兩部分,可寫成“如果??那么??”的形式。
1.2.3.四、平移
1.2.定義:一個圖形沿著一定的方向平行移動。特點----(1)平移后圖形的形狀、大小不變,位置改變 定義:判斷一件事情的語句 組成----(1)題設(如果??)(2)結論(那么??)分類----(1)真命題(2)假命題
(2)對應點所連接的線段平行(或在同一直線上),對應角相等。
特征:發生平移時,新圖形與原圖形的形狀、大小完全相同(即:對應線段、對應角均相等); 對應點
之間的線段互相平行(或在同一直線上)且相等,均等于平移距離。
畫法:掌握平移方向與平移距離,利用對應點(一般指圖形的頂點)之間連線段平行、連線段相等性質
描出原圖形頂點的對應點,再依次連接,就形成平移后的新圖形。