倒數的認識教學設計
倒數的認識教學設計1
教學目標
1.學生通過觀察算式的特點,引出倒數的意義,并能夠真正的理解和掌握。
2.學習求一個數的倒數的方法,使學生能夠正確地求出一個數的倒數。
3.培養學生的.觀察能力和概括能力。
教學重點和難點
1.正確理解倒數的意義及互為的含義。
2.正確地求出一個數的倒數。
教學過程設計
(一)激發興趣,引出概念
1.投影。哪個同學和老師比賽?誰說得快?
師:你們想知道老師為什么說得這么快嗎?這兩個因數之間有什么聯系嗎?這節課老師就要把這中間的奧秘告訴你們,相信你們得知后比老師說得還快。這節課我們一起學習倒數的認識。(板書課題)
2.同學認真觀察每個算式,你發現了什么?同桌互相說一說。指名說。
板書:乘積是1 兩個數
3.你還能很快說出乘積是1的兩個數嗎?你為什么說得這么快,有什么竅門嗎?
生:兩個數分子、分母顛倒位置就可以了。
師:說得好,因此我們把乘積是1的兩個數叫做互為倒數。(把板書補充完整)
4.舉例說明,什么叫互為倒數?
師:3是倒數這句話對嗎?為什么?
你們說得對,誰能說出幾組倒數?
同桌互相說,每人說兩組。(指名說)
問:怎樣判斷他們說得是否正確?
生:看這組數的乘積是否是1。如果乘積是1,這兩個數是互為倒數;如果乘積不等于
倒數的認識教學設計2
學習目標:
1、理解倒數的意義,掌握求一個數倒數的方法,能準確熟練地寫出一個數的倒數。
2、通過獨立思考、小組合作、展示質疑,在探索活動中,培養觀察、歸納、推理和概括能力。
3、激情投入,挑戰自我。
教學重點:
求一個數倒數的方法。
教學難點:
1和0倒數的問題。
教學過程:
離上課還有一點時間,咱們先聊一會吧。同學們,我給你們代數學課多長時間了?(一年)一年時間雖然不是很長,但我覺得我們之間已經互相成為了朋友,你有這種感覺嗎?該怎樣表述我們之間的朋友關系呢?(你是我的朋友,我是你的朋友,互相應該是雙方面的。)就先聊到這兒吧?好,上課!
一、導入:
同學們,在上數學課之前,老師想考你們一個語文知識,怎么樣?(出示“杏”和“呆”)看到這兩個字,你發現了什么?
生:上下兩部分調換了位置,變成了另一個字。
師:對了,把其中任一個字上下兩部分倒過來,就變成了另一個字,這個現象很有趣很奇妙吧!
師小結:這種奇妙有趣的現象不僅出現在語文中,其實在數學中也存在著,想了解嗎?今天我們就一起揭秘這種現象,好吧?
二、合作探究:
(一)揭示倒數的意義
1.(出示例題課件)請看大屏幕,先計算,再觀察這些算式,同桌互相說一說它們有什么規律?(學生自學,經歷自主探索總結的過程,并獨立完成)。
請同學們按照要求逐一完成,看誰是認真仔細的人,既能準確的計算,又能發現其中的秘密。
師:同學們,在以前我們看來非常簡單的乘積是1的兩個數,研究起來有如此大的發現,那么,像符合這種規律的兩個數叫什么數呢?誰能給這種數取個名字?(生取名字)
師:那么根據剛才的計算結果與發現的規律你能說出什么叫倒數嗎?(生答)
師板書:乘積是1的兩個數互為倒數。
你認為哪些字或詞比較重要?你是如何理解“互為”的?你能用舉例子的'方法來說明嗎?(生答)
師小結:剛才我們認識了倒數的意義,知道乘積是1的兩個數互為倒數,而且倒數不能單獨存在,是相互依存的。就像課前我們聊得話題,老師和你互相成為了好朋友,就是說“老師是你的朋友”,“你是老師的朋友”,我們倆是雙方面的。
(二)小組探究求一個倒數的方法
1.出示例題2課件:下面哪兩個數互為倒數?
師:同學們知道了什么是倒數,那你能找出一個數的倒數嗎?那好,請完成這道題。
出示課件,請看這里,哪兩個數互為倒數?(生找)(生說教師演示)
提問:你用什么好辦法這么快就找出了這三組數的倒數?(同桌互相說說看)(找幾名學生匯報)
師板書:求倒數的方法:分數的分子、分母交換位置。
同學們想出了找倒數的好方法,那就是分數的分子、分母交換位置,你們把老師想說的都說出來了,太棒了!我們一起來看一看(出示課件)。在這三組數里哪一組不同于其它兩組?對,6是整數,像6這樣的整數找倒數的方法可以先把整數寫成分母是1的分數,再找倒數。
2.師提問:再次出示連線題的課件,本題中的還有哪些數據沒有找到倒數?它們有沒有倒數?如果有,又是多少呢?同桌討論說說你的發現。
3.出示課件想一想。
我的發現:1的倒數是(1),0(沒有)倒數。
師提問:(1)為什么1的倒數是1?
生答:(因為1×1=1“根據乘積是1的兩個數互為倒數”,所以1的倒數是1)
(2)為什么0沒有倒數?
生答:(因為0與任何數相乘都等于0,而不等于1,所以0沒有倒數)
4.探討帶分數、小數的倒數的求法
師:看來像這樣的分數與整數它的倒數求法很簡單,可是我們學過的不僅僅是分數、整數,還有呢?這些數的倒數又該怎樣求呢?請同桌的同學討論一下,把你們討論的結果填在表格上。(課件出示)
你們有結果了嗎?誰愿意到這里把你們組的討論結果說出來與大家共享(師切換實物投影),小組匯報討論結果,學生自己用投影展示討論結果并說明。
(師切換投影):老師也把求這一類數的倒數的方法寫出來了,一起看看我們想的是否一樣呢?(出示課件5)。
當你給帶分數、小于1的小數、大于1的小數找出倒數后你有沒有發現什么規律?請你對照大屏幕說說自己的發現:
發現1:帶分數的倒數都(小于)本身;
發現2:比1 小的小數的倒數都(大于)本身,并且都(大于)1。
發現3:比1 大的小數的倒數都(小于)本身,并且都(小于)1。
(三)學以致用:
師:探究到這里,大家肯定有了很大的收獲,現在請大家閉上眼睛休息一下,休息時想一想什么是倒數?再想一想求倒數的方法是什么?讓學生再次記憶找倒數的方法。
1.想不想檢驗一下自己學的怎么樣?
請打開課本24頁完成做一做和25頁練習六的第4題,(讓學生做在課本上,并找學生口答做一做的題。練習六的第4題連線用投影展示學生的作業)。
2.(課件出示)請你以打手勢的形式告訴老師你的答案。
(四)全課總結
今天學習了什么?我們一起回顧總結出來好嗎?
什么叫倒數?怎樣找出一個數的倒數?
倒數的認識教學設計3
教學目標:
1、引導學生通過體驗、研究、類推等實踐活動,理解倒數的意義,讓學生經歷提出問題、自探問題、應用知識的過程,自主總結出求倒數的方法。
2、通過合作活動培養學生學會與人合作,愿與人交流的習慣。
3、通過學生自行實施實踐方案,培養學生自主學習和發展創新的意識。
教學重點:
理解倒數的意義和怎樣求倒數。理解倒數的意義,掌握求倒數的'方法。
教學難點:掌握求倒數的方法。
教具準備:多媒體課件。
教學過程:
一、舊知鋪墊(課件出示)
1、口算:
(1)× × 6× ×40
(2)××3××80
2、今天我們一起來研究“倒數”,看看他們有什么秘密?出示課題:倒數的認識
二、新授
1、課件出示知識目標:
(1)什么叫倒數?怎樣理解“互為”?
(2)怎樣求一個數的倒數?
(3)0、1有倒數嗎?是什么?
2、教學倒數的意義。
(1)學生看書自學,組成研討小組進行研究,然后向全班匯報。
(2)學生匯報研究的結果:乘積是1的兩個數互為倒數。
(3)提示學生說清“互為”是什么意思?(倒數是指兩個數之間的關系,這兩個數相互依存,一個數不能叫倒數)
(3)互為倒數的兩個數有什么特點?(兩個數的分子、分母正好顛倒了位置)
3、教學求倒數的方法。
(1)寫出的倒數:求一個分數的倒數,只要把分子(數字3閃爍后移至所求分數分母位置處)、分母(數字5閃爍后移至所求分數分子位置處)調換位置。
(2)寫出6的倒數:先把整數看成分母是1的分數,再交換分子和分母的位置。
4、教學特例,深入理解
(1)1有沒有倒數?怎么理解?(因為1×1=1,根據“乘積是1的兩個數互為倒數”,所以1的倒數是1。)
(2)0有沒有倒數?為什么?(因為0與任何數相乘都不等于1,所以0沒有倒數)
5、同桌互說倒數,教師巡視。
三、當堂測評
1、練習六第2題:
2、辨析練習:練習六第3題“判斷題”。
3、開放性訓練。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、課堂總結
你已經知道了關于“倒數”的哪些知識?
你聯想到什么?
還想知道什么?
設計意圖
倒數的認識一課,教學內容較為簡單,學生通過預習、自學,完全可以自行理解本課的內容。針對本課的特點,教學中我放手給學生,讓學生通過自學、討論理解“倒數”的意義,而在這其中,有一些概念點猶為關鍵,如“互為”,因此我也適當的加以提問點撥。對于求倒數的方法,我同樣給學生自主的空間,自學例題,按自己的理解、用自己的話概括出求一個數的倒數的方法。但對于“0”“1”的倒數這種特例,我并沒有忽視它,而是充分發揮教師“導”的作用,幫助學生加強認識。
教學后記
第十一、十二課時:整理和復習
倒數的認識教學設計4
教材分析:
教材首先讓學生觀察乘積是1的算式,引出倒數的意義;根據倒數的意義,求一個數的倒數是應該用1除以這個數,但學生尚未學習分數除法,因此,教材接著運用不完全歸納法讓學生尋找求一個數的倒數的方法。
教學目標:
(1)知識目標:使學生理解倒數的意義,掌握求倒數的方法,并能正確熟練的求出倒數。
(2)能力目標:采用自學與小組討論的方法進行教學,進一步培養學生的自主學習的能力,提高學生觀察、比較、抽象、歸納以及合作學習的能力。
(3)情感目標:提高學生學習數學的興趣,發展學生質疑的習慣。
教學重點:知道倒數的意義和會求一個數的倒數
教學難點:1、0的倒數的求法。
教具準備:課件
教學過程:
一、課前談話:
師:今天老師很高興和大家上課,所以上課前老師想和大家互相成為好朋友。
生:好!
師:那你想怎樣表述我們的關系?
生: 我們雙方面互為朋友,也可以說成“老師是你的朋友”,“你是老師的朋友”。 這樣學生對馬上接觸到的“互為倒數”就比較容易理解了。
二、揭示倒數的意義
師:前面我們學習了分數乘法,請同學們計算幾道題。 師:觀察它們有什么共同的特點? 生:乘積都是1!??
師:對,今天我們要研究的就是乘積是1的兩個數。你們還能寫出乘積是1的兩個數嗎?
生:(齊)能!
師:那好,我們就進行一個小小的比賽。請大家準備好課堂練習本,我給大家一定的時間,請你寫出乘積是1的任意兩個數,看誰寫得多,而且能寫出不同的類型。
準備好了嗎?開始??
師:時間到,停!誰愿意把你寫的念出來,和大家共同分享?
(生讀,師有選擇的板書在黑板上。 )
師:這么短的時間內就能寫出這么多乘積是1的兩個數,不錯。
師:如果給你們充足的時間,你們還能寫多少個這樣的乘法算式?
生:無數個
出示例7
師:那請你們來幫幫忙,找出乘積是1的兩個數。
(學生個別回答)
師:你們找的這些與之前寫的所有算式都有怎樣的共同點?
生:乘積都是1。
師:你知道嗎?揭示意義】 教師板書:乘積是1的兩個數叫做互為倒數。生齊讀。
師:黑板上所寫的兩個數的積都是1 ,所以他們互為倒數。比如3/8和8/3的乘積是1 ,我們就說3/8和8/3互為倒數。(師板書3/8和8/3互為倒數) 【示范說】
師:3/8和8/3互為倒數!我們還可以怎么說呢。
生:3/8的倒數是8/3;8/3的倒數是3/8。
師:為什么乘積是1的兩個數不直接說是倒數,而要說“互為”倒數呢?“互為”是什么意思呢?你是怎樣理解這兩個字?
生1:“互為”是指兩個數的關系。
生2:“互為”說明這兩個數的關系是相互依存的。
師:同學們說得很好。倒數是表示兩個數之間的關系,它們是相互依存的,所以必須說清一個數是另一個數的倒數,而不能孤立地說某一個數是倒數。以前我們學過這種兩數間相互依存關系的知識嗎?
師:2/5和5/2的`積是1,我們就說??(生齊說)
師:7/10和10/7的乘積是1,這兩個數的關系可以怎么說?請您告訴你的同桌。
(學生活動)
(小結:剛才我們就認識了倒數的意義,知道乘積是1的兩個數互為倒數,而且倒數不能單獨存在,是相互依存的。)
探索求一個倒數的方法
師:非常好!我們知道了倒數的意義,那么互為倒數的兩個數有什么特點呢?我們一起來觀察一下剛才的這些例子。
生1:互為倒數的兩個數分子和分母調換了位置。
師:同意嗎?
生:同意。
師:根據這一特點你能寫出一個數的倒數嗎?
生:能
師:試一試!
師在黑板上出示3/5 7/2 ,寫出它們的倒數。
師:那5(0.1)的倒數是什么?它可是沒有分子和分母呀? 還有1 又1/8呢?
生:把5看成是分母是1的分數,再把分子分母調換位置。
求小數的倒數的方法:小數 求帶分數的倒數的方法:帶分數
三、分數倒數。 倒數。 假分數
師:那1 的倒數是幾呢?(學生很快就說出來了,并說明了理由)
0的倒數呢?
師:為什么?
生1:因為0和任何數相乘都得0,不可能得1。
師:剛才一個同學提出分子是0的分數,實際上就等于0,0可以看成是0/2、0/3、??把這此分數的分子分母調換位置后。。。。。。(生齊:分母就為0了,而分母不可以為0。) 師:我們求了這么多數的倒數,誰來總結一下求一個數的倒數的方法。
生1:求一個數的倒數,只要把分子分母調換位置。
生2:如果是求一個整數的倒數,可以把這個整數看成是分母是1的分數,然后再調換分子分母的位置。
生3:1 的倒數是1,0沒有倒數。
(生齊讀求一個數倒數的方法。 )
四、鞏固練習
1、打開書,閱讀課本P34,把你認為重要的劃起來。
2、完成練一練。
(1)學生在書上完成,教師巡視,請同學板演。注意學生的書寫格式是否正確。
(2)發現一學生書寫有誤,與該生交流。
(3)用展臺展示該生的錯誤。
師:這樣寫可以嗎?(4/11=11/4)
生:不可以!
師:為什么?
生1:比如4/11的倒數是11/4,4/11是真分數,11/4另一個是假分數,它們是不可能相等的。
(4)師:對,互為倒數的兩個數是不會相等的(1除外)。我們在書寫時要寫清誰是誰的倒數,或誰的倒數是誰,如老師黑板上寫的一樣。
3、小游戲:同桌互相出一題,對方說出答案。
4、先說說下面每組數的倒數,再看看你能發現什么?
(1)3/4的倒數是( ) (2)9/7的倒數是( )
2/5的倒數是( )10/3的倒數是( )
4/7的倒數是( ) 6/5的倒數是( )
(3)1/3的倒數是( ) (4)3的倒數是( )
1/10的倒數是( )9的倒數是( )
1/13的倒數是( )14的倒數是( )
由學生說出各數的倒數。然后
師:請你仔細觀察,看能從中發現什么,發現得越多越好。
師:小組間可以先互相說一說。
匯報:
生1:我從第一組中發現真分數的倒數都是假分數。
生2:我從第二組中發現假分數的倒數是真分數或者假分數。
生3:真分數的倒數都小于1,假分數的倒數大于1。 假分數的倒數也可能等于1。 生4:我發現分子是1的分數。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、課堂小結
1、小結:今天我們學習了什么???
2、學了倒數有什么用呢?
大家課后可去思考一下。
板書設計
倒數的認識
乘積是1的兩個數互為倒數 1的倒數是1。0沒有倒數。
0.1的倒數10 5的倒數是5 1又1/8的倒數是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小數的倒數的方法: 求帶分數的倒數的方法:帶分數
分數假分數 倒數。 倒數。
倒數的認識教學設計5
教學內容:北師大版小學五年級數學下冊第31~32頁
教學目標:
1、能清楚地知道倒數的概念,能求一個數的倒數。
2、培養學生動手動腦能力,以及判斷、推理能力。
3、培養學生愿意交流合作,喜歡數學的情操,感受數學來源于生活。
教學重點:能求一個數的倒數。
教學難點:在小組間交流合作的基礎上,得出倒數的概念,并能求一個數的倒數。
教學準備:多媒體課件
教學過程:
一、用漢字作比喻引入
1、師指出:我國漢字結構優美,有上下、左右……結構,如果把“杏”字上下一顛倒成了什么字?“呆”把“吳”字一顛倒呢?(吞)……一個數也可以倒過來變為另一個數,比如“3/4”倒過來呢?(4/3)“1/7”倒過來呢?(7/1也就是7)這叫做“倒數”,隨即板書課題。
2、提一個開放性的問題:看到這個課題,你們想到了什么?
二、新知探索:
1.研究倒數的意義
。乘積等于1的兩個數叫做互為倒數。
。倒數是對兩個數來說的,它們是互相依存的。必須說,一個數是另一個數的倒數,而不能孤立地說某一個數是倒數。
2.學生自主舉例,推敲方法:
(1)師:下面,請大家各自舉例加以說明。
(2)學生先獨立思考,再交流。
(a.以“真分數”為例;如:5/8的倒數是8/5……真分數的倒數是假分數。)
(b.以“假分數”為例;8/5的倒數是5/8……假分數的倒數是真分數。)
(c.以“帶分數”為例;帶分數的倒數是真分數。)
(d.以“小數”為例;分兩種情況:純小數和帶小數,純小數相當于真分數,帶小數相當于假分數)
(e.以“整數”為例;整數相當于分母是1的假分數)
學生舉例的過程同時將如何尋找倒數的方法也融入其中。
3.討論“0”、“1”的情況:
1的倒數是1。0沒有倒數。要求學生說出想的過程(因為1與1相乘得1,所以1的倒數是1。0和任何數相乘都得0,不可能是1,所以0沒有倒數。)
4.總結方法:
(除了0以外)你認為怎樣可以很快求出一個數的'倒數?
三、反饋鞏固:
多媒體出示:
1.寫出下面各數的倒數:
3/4、9/5、6、1、0、5、1.5這組數中,你最喜歡求哪個數的倒數?最不喜歡求哪個數的倒數?為什么?
2.判斷:
(1)互為倒數的兩個數的乘積一定等于1。
(2)2和它的倒數的和是?()
(3)假分數的倒數是真分數。()
(4)小數的倒數大于1。()
(5)在8-7=1和3÷3=1中,8和7、3和3是互為倒數的。()
(6)a的倒數是?()
(讓學生用手勢判斷,進行辨析,訓練說理能力。)
3.游戲:找朋友
一名學生說出一個數,誰能又對又快地用一句話說出這個數的倒數,誰就和這名同學互為朋友。
四、全課總結,自我評價。
提問:通過這節課,你學到哪些知識?
倒數的認識教學設計6
【教學內容】
教材P28頁中的例1、“做一做”及練習六中的部分練習題。
【教學目標】
1、知識與技能:通過一些實例的探究,讓學生理解和掌握倒數的意義。在合作探究中掌握求倒數的方法,會求一個數的倒數。
2、過程與方法:引導學生通過體驗、研究、類推等實踐活動,理解倒數的意義,讓學生經歷提出問題、自探問題、應用知識的過程,自主總結出求倒數的方法。
3、情感、態度與價值觀:通過學生親身參與探究活動,體驗數學學習的樂趣,激發他們積極的學習情感,養成合作探究問題的習慣。
【教學重點】
理解倒數的意義,學會求倒數的方法。
【教學難點】
小數與整數求倒數的方法以及0、1的倒數。
【教學方法】
創設情境、啟發誘導、合作交流、自學與講授相結合等。
【教具準備】
課件
【教學過程】
一、激趣引入
師:(板書“呆”)呆是一個上下結構的字,“呆”字如果上下顛倒就成了“杏”,語文中的文字有許多這樣的構字規律,比如(杏——呆;吞——吳;音——昱;士——干……)那么在數學中的數也有這種規律嗎?
二、新知探究
(一)探究討論,理解倒數的意義。
1、課件出示算式。
先計算,再觀察,看看有什么規律。
3/8×8/37/15×15/75×1/51/12×12
小組匯報交流
2、出示倒數的意義:乘積是1的兩個數互為倒數。
3、你是怎樣理解“互為倒數”的呢?能舉例嗎?
4、倒數的.表達方式。
(二)深化理解。
1、乘積是1的兩個數存在著怎樣的倒數關系呢?
2、互為倒數的兩個數有什么特點?
3、想一想:1的倒數是多少?0有倒數嗎?為什么?怎么理解?
4、辨析:下面的說法對嗎?為什么?
A:2/3是倒數。()
B:得數為1的兩個數互為倒數。()
C、7/15和15/7乘積是1,所以7/15和15/7互為倒數。()
D、0的倒數還是0。()
(三)運用概念。
1、討論求一個分數的倒數的方法。
出示例1:寫出其中3/5和7/2兩個分數的倒數。
(1)學生試做并討論。
(2)生匯報:
(3)師生共同小結:求一個分數的倒數,只要把這個分數的分子、分母調換位置。
2、怎樣求整數(0除外)的倒數?請求出6的倒數是幾?(出示課件)
3、1的倒數是幾?0的倒數是幾?
(1)學生試做并討論。
(2)生匯報:
(3)師生共同小結:1的倒數是1,0沒有倒數。
4、小結。
求一個數的倒數(0除外),只要把這個數的分子、分母調換位置。
三、鞏固練習
1、寫出下面各數的倒數。
4/1116/97/84/1535
2、判斷。
(1)真分數的倒數都是假分數。()
(2)假分數的倒數都小于1。()
(3)0的倒數是0,1的倒數是1。()
四、課堂小結
今天我們學習了有關倒數的哪些新知識?
倒數的認識教學設計7
教學目標:
1、引導學生通過觀察、研究、類推等數學活動,理解倒數的意義,總結出求倒數的方法。
2、通過互助活動,培養學生與人合作、與人交流的習慣。
3、通過自行設計方案,培養學生自主探索和創新的意識。
教學重點:
理解倒數的含義,掌握求倒數的方法。
教學難點:
掌握求倒數的方法。
教學過程:
一、導入
1、找一找下面文字的構成規律。學生分組交流,找出文字的構成規律。
2、按照上面的規律填數。
3、揭示課題。今天,我們就來研究這樣的數——倒數。
二、教學實施
1、師:關于倒數,你想知道什么?
2、學習倒數的含義。
(1)學生觀察教材第28頁主題圖。
(2)學生根據所舉的例子進行思考,還可以與老師共同探討。
(3)學生反饋,老師板書。
學生可能發現:
每組中的兩個數相乘的積是1。
每組中兩個數的.分子和分母的位置互相顛倒。
每組中兩個數有相互依存的關系。
(4)舉例驗證。
(5)學生辯論:看誰說得對。
(6)歸納:乘積是1的兩個數會為倒數。
3、特殊數:0和1。板書:0沒有倒數,1的倒數是它本身。
4、求倒數的方法。
(1)出示例1、
(2)歸納方法:你是怎樣求一個數的倒數的?板書:分子和分母調換位置。
5、反饋練習。
(1)完成教材第28頁的“做一做”。學生獨立解答,老師巡視。
(2)完成教材第29頁練習六的第1—5題。
三、課堂作業設計
1、找一找下列各數中哪兩個數互為倒數。
2、填空。
(1)三分之四的倒數是,()的倒數是六分之七。
(2)10的倒數是(),()的倒數是1。
(3)二分之一的倒數是(),()沒有倒數。
倒數的認識教學設計8
教學內容:
新人教版六年級數學上冊第28頁的例1。
教學目標:
1、通過學習,使學生知道什么叫做倒數,倒數表示的是兩個數之間的關系,它是不能孤立存在的;掌握求倒數的方法;通過學習,使學生知道“0”沒有倒數,“1”的倒數還是“1”。
2、學生根據自己的理解,發現求倒數的方法,知道不僅可以用乘法求一個數的倒數,還可以用調換分子和分母位置的方法求一個數的倒數。
3、在知識獲取過程中,培養學生觀察、歸納、推理和概括的能力。提高學生學好數學的信心。
教學重點:
理解倒數的意義,學會求倒數的方法。
教學難點:
熟練正確的求小數、帶分數的倒數,發現倒數的一些特征。
教學準備:
多媒體課件。
教學過程:
一、猜字游戲導入,揭示課題。
上課之前,老師來考考同學們的語文學得如何。“吞”這個字讀什么,如果把上下部分顛倒后是什么字?(“吞”——吳),“士”這個字讀什么,如果把上下部分顛倒后是什么字?(“士”——干)。中國漢字有不少字有這樣的關系,在數學中也存在這種關系。
如:(板書:3/8)如果把這個分數的分子和分母的位置調換,是哪個分數?(8 /3)。
師:誰還能說出這樣的數?(課件出示)
象這樣把分數的分子和分母上下顛倒之后就成另一個數,你能給這種特性給這些上下顛倒的數起個名字嗎?(倒數)今天我們就一起來研究倒數(板書:倒數的認識,并讓學生讀一讀。)
二、出示學習目標:
1、理解倒數的意義。
2、掌握求一個數的倒數的方法,能熟練準確地寫出一個數的倒數。
三、自主探究新知
(一)探究討論,理解倒數的意義。
1、(課件出示教材第24頁例1的四個算式。)
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。(通過計算,發現每組算式的乘積都是1。通過觀察發現相乘的兩個分數的分子和分母位置是顛倒的。)
生:我發現了每組算式兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做“倒數”。
2、出示倒數的意義:乘積是1的兩個數互為倒數。(學生齊讀三次)。
3、你是怎樣理解互為倒數的呢?(倒數是指兩個數之間的關系,這兩個數相互依存,一個數不能叫倒數。)能舉例嗎?
(二)深化理解。
1、乘積是1的兩個數存在著怎樣的倒數關系呢?
舉例:3/8×8/3=1,那么我們就說8/3是3/8的倒數,反過來(引導學生說)3/8是8/3的倒數,也就是說3/8和8/3互為倒數。(誰還想舉例說說。)
2、互為倒數的兩個數有什么特點?(兩個數的.分子、分母正好顛倒了位置)
例如:(2/5的倒數是5/2,5/2的倒數是2/5,……不能說5/2是倒數,要說它是誰的倒數。)
3、想一想:1的倒數是多少?0有倒數嗎?為什么?怎么理解?因為1×1=1,根據“乘積是1的兩個數互為倒數”,所以1的倒數是1。
又因為0與任何數相乘都不等于1,所以0沒有倒數。)
(三)運用概念。
1、討論求一個數的倒數的方法。
出示例2:寫出其中3/5 、7/2兩個分數的倒數。學生試做討論后,教師將過程板書如下:3/5的分子分母調換位置---5/3 7/2的分子分母調換位置---2/7
所以3/5的倒數是5/3,7/2的倒數是2/7 。(能不能寫成3/5=5/3,為什么?)
小結:求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。)
2、怎樣求小數和帶分數的倒數呢?(課件演示,學生觀察。)
師強調:帶分數先化成假分再把分子和分母調換位置;小數要先把它化成分數再把分子和分母調換位置。
3、怎樣求整數(除外)的倒數?請求示6的倒數是幾?(出示課件)
四、堂堂清作業
(一)填一填。(出示課件)
1、乘積是()的()個數()倒數。
2、a和b互為倒數,那a的倒數是(),b的倒數是()。
3、只有當假分數為()時,它與它的倒數相等;而()是沒有倒數。
4、一個真分數的倒數一定是()。
(二)判斷題。(演示課件)
1、5/3是倒數。()
2、因為3/4×4/3=,所以4/3是倒數。()
3、真分數的倒數大于1,假分數的倒數小于1。()
4、因為1/4+3/4=1,所以1/4和/4互為倒數。()
(三)說一說。(課本第29頁的第3題)
五、課堂小結:
今天我們學習了有關倒數的哪些新知識?什么叫倒數?怎樣求一個數的倒數?還有什么的問題嗎?板書設計:
倒數的認識
乘積是1的兩個數互為倒數。 0沒有倒數,1的倒數是它本身。例2:寫出其中2/5 、7/2兩個分數的倒數。
2/5的分子分母調換位置---5/2 7/2的分子分母調換位置---2/7 6的倒數是1/6求帶分數的倒數先把帶分數化成與假分數,再把分子和分母調換位置。
求小數的倒數的先把小數化成分數,再把分子和分母調換位置。
倒數的認識教學設計9
學習內容:人教版義務教育教科書數學六年級上冊P28—29
學習目標:
(1)理解倒數的意義及倒數的特點,掌握求倒數的方法,并能正確熟練的求出倒數。
(2)采用自主探究與合作交流的方法,進一步培養學生的自主學習能力,提高學生觀察、比較、歸納、概括以及合作學習的能力。
(3)通過親身參與探究活動,體驗數學學習的樂趣,激發積極的學習情感,培養學生學會與人合作,愿與人交流的習慣。
學習重點:倒數的意義、特點和求倒數的方法。
學習難點:1和0的倒數的求法。
學習過程:
一、創設情境,激趣導學。
1.出示算式,找特征。
先計算,再觀察,看看有什么規律。
×=1×=15×=1×12=1
問:“你發現了什么?”
2.引出倒數的定義。讓學生看書。
3.揭題:今天我們就來學習“倒數的意義”(板書課題)。
二、獨學質疑,合作探究。
1.初步理解
我們知道×=1,那么我們可以說:“因為×=1所以和互為倒數”
這句話還可以怎么說?的倒數是,的倒數是。
你能照樣子,結合黑板上的`例題,說說算式中兩數之間的關系嗎?
2.判斷,加深理解
(1)判斷正誤,并說明理由。
a.和7都是倒數。(關注到了倒數的概念中關鍵的詞語“互為”)
b.+=1,所以和互為倒數。(關注了倒數概念中關鍵的詞語“乘積是1。”)
c.××=1,所以、、互為倒數。(關注了倒數中的關鍵詞“兩個數”)
小結:對于概念的學習,應該充分關注概念中的關鍵詞語。
(2)請任意寫出三個數的倒數,要求,寫完整:誰的倒數是誰?
三、點撥互動,應用提升。
1.出示例2,找一找哪兩個數互為倒數?
2.學生匯報找的結果,并說說怎樣找的?
(1)看兩個數的乘積是不是1。
(2)看兩個數的分子與分母是否交換了位置。
3.根據尋找出的結果,探究倒數的特點。
4.這兩種方法,哪一種比較快?
5.設問:1和0有沒有倒數?如果有,是多少?
(1)分組討論。(2)學生匯報。
四、檢測診斷,總結評價。
1.基本練習:完成教科書P28的做一做,然后集體訂正。
2.加深練習:倒數一定比它本身要小嗎?探究什么數的倒數比它本身要大,什么數的倒數比它本身要小。
倒數的認識教學設計10
教學內容:
教科書第50頁例7及相應的練習
教學目標:
1、使學生理解倒數的意義,掌握求倒數的方法,能正確的求出一個數的倒數。
2、培養學生舉例、觀察、比較、抽象概括能力。
3、通過自主探究、相互合作獲得成功的體驗,提高學習數學的興趣。
一、口算導入
分別出示一四組算式(加減乘除),指名報答案,找這一組算式的共同點(和是1,差是1,積是1,商是1 );
師:今天,我們就一起來研究乘積是1的這一類算式。同學們,你能自己寫一些乘積是1的算式嗎?老師給你30秒時間,看看哪位同學寫得既對又多。
展示個別學生作品,大家寫的算式都有一個共同點:(乘積是1)。(板書)
師:乘積是1的兩個數到底存在什么樣的關系呢?請大家把書翻到第50頁,自學。
指名回答,(乘積是1的兩個數互為倒數。)(板書)相機揭示課題(認識倒數)(板書)
二、教學新課
師:你認為在這一句話中有哪些詞比較關鍵?師劃出,逐一解讀。先強調乘積及1.
(1)問:“互為”是什么意思?(互相)
一個人能說互相嗎?互相肯定是發生在(兩個人之間)。所以,“互為”二字充分說明了倒數應該是(兩個數)之間的關系。
(2)(結合學生的算式:)比如乘()等于1,所以()和()互為倒數,也可以說(A)是(B)的倒數或者(B)是(A)的倒數。
(3)觀察互為倒數的兩個數,看看它們的分子、分母有什么特點?指名回答。
(4)指名學生結合另外的算式說說誰是誰的倒數。問:我們能單獨說()是倒數嗎?對啊,倒數相互依存的,這種存在相互依存關系的數,我們在五年級時就學習過,大家還記得嗎?(倍數、因數)
(5)選擇一個算式,跟你的同桌說說誰是誰的倒數。
三、求一個數的倒數
1、剛才,你們在短時間內寫出了很多乘積是1的算式,在設計這些乘法算式時有什么竅門嗎?指名回答(先寫一個分數,再把這個分數的分子和分母倒一下,就是另一個因數了。)
為什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相約分,使得數是1)
討論到這里,你知道怎樣求一個數的'倒數了嗎?指名回答。大家同意嗎?
好的,接下來,老師要來考考大家了,有信心嗎?我報一個數,你們一起說出這個樹的倒數,5/9的倒數是9/5,7/6,6/10,11/8,3/7
2、師: 同學們已經學會了求真分數、假分數的倒數,想一想,我們還學過哪些數?(整數、小數、帶分數)那么,怎樣求整數、小數、帶分數的倒數呢?列出幾個數:
自主探究
a 四人為一小組,選擇一種情況研究
b 生交流匯報,師板書例子
c 引導概括求倒數的方法
3、同學們真棒,通過自己的探索,學會了求一個數的倒數。那么有沒有同學知道1的倒數呢?為什么?(1可以看成1/1,所以倒數仍是1,或者1×1=1)(板書)
那0的倒數呢?為什么?指名回答(0乘任何數都得0,即0乘任何數都不可能等于1.)(板書)
4、歸納如何求一個數的倒數
求一個數的倒數(0除外),只要把它的分子、分母交換位置。
5、師:學了那么多,下面就讓我們一起來練一練吧(書本50頁,練一練)
展示,核對,強調互為倒數的兩個數之間不能用“=”連接。
倒數的認識教學設計11
教材分析:
這部分內容是在學歷了分數乘法的基礎上教學的,主要為后面學習分數除法做準備,因為一個數除以分數的計算方法,歸結為乘這個數的倒數。這部分內容通過兩個例題,主要教學倒數的意義和求倒數的方法。
設計理念:
本課強調從學生的學習興趣,生活經驗和認知水平出發,通過體驗、實踐、參與、交流和合作方式,讓學生在合作學習的過程中,學會交流,相互評價,親歷知識的建構過程。在求一個數的倒數時,讓學生先學后教,激發學習熱情,并培養學生觀察、歸納、推理和概括的能力。
教學目標:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
能力目標:
培養學生觀察、歸納、猜想、推理和概括的能力。
情感目標:
提供適當的問題情境,激發學生的學習興趣和學習熱情。讓學生體驗探索中成功的快樂,培養學生的創新意識和科學精神。
教學重點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
教學難點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
教學過程:
一、課前談話突破難點
1、談話——蘊含“兩個”,突破“互為”
師:老師也愿和六(1)班的同學成為朋友,你們愿意嗎?(愿意)那老師就是你們的…(朋友),你們是老師的…(朋友)。你們和老師互為朋友。(指板書:互為)
二、導入揭題,引導質疑
師:其實在我們的數學中也有類似的情況。今天這節課就讓我們一起來發現數學中的類似問題。揭題——(板書:倒數的認識)
師:看到“倒數”這個數學新名詞,你的腦子里產生哪些問題。
預設:什么是倒數?怎樣求倒數?……
這節課一起來探究這些問題?
三、創設活動情景,理解概念——“倒數是什么”
師:我們剛剛研究了分數乘法,老師想了解大家掌握的怎么樣?請看計算。
1、在分類中理解“是什么”
①5/8×8/5②0。25×4③3/4+1/4
④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9
計算后你有什么發現?
師:如果請你將這六個算式分成兩類,你準備怎么分?
(學生匯報:乘積是1。)[適當處板書:乘積是1]
歸納總結:分類的標準不同,得到的答案也不同,今天我們就研究這一類的算式。
師:這三個算式有什么共同的特征嗎?
預設:乘積是1。
2、舉例感悟“怎么做”
師:你還能舉出這樣的例子嗎?
還能舉出與這些算式不同的例子嗎?還能舉出不同的算式嗎?
歸納總結:像剛才舉的這些例子,他們都有一個共同的特點!(乘積是1)在數學上“乘積是1的兩個數互為倒數”。如5/8×8/5=1,我們就可以說5/8和8/5互為倒數,還可以怎么說?如我們表述朋友的關系。
5/8倒數是8/5,8/5倒數是5/8。
師:同學們說得很好。倒數是表示兩個數之間的關系,它們是相互依存的,所以必須說清一個數是另一個數的倒數,而不能孤立地說某一個數是倒數。
②0。25×4這兩個數的關系可以怎么說?請您告訴你的同桌。
(學生活動)
⑤13/7×7/13
3、在思辨中深入理解
師:能說3/4和1/4互為倒數嗎?為什么?
師:能說3/2、6/5和5/9互為倒數嗎?為什么?
四、運用概念,探究方法——“怎樣求倒數”
過渡:大家對倒數理解的很不錯,那么我給你一個數你能找出它的倒數嗎?
(投影,出示例2)
1、求下面各數的倒數
3/5267/20。610。250
學生嘗試。
回報交流。
師:這組數中,你最喜歡求哪些數的倒數?為什么?
預設:
生1:我最喜歡求分數的倒數,因為把分數的分子、分母調換位置,它們的乘積就是1。很容易,所以我喜歡求。
生2:我最喜歡求1的倒數,因為1的倒數可以寫成分數,分子、分母調換位置還是,1的倒數就是1。很有趣,所以我喜歡求1的倒數。生:進行計算。
師:這組數中,你最不喜歡哪個數的倒數?
預設:
生1:我最不喜歡求0的倒數,因為0如果寫成分數,要是調換分子、分母的位置就是,0不能作分母(0不能作除數)。0好像沒有倒數。
生2:再說0乘任何數都等于0,也不等于1呀,0肯定沒有倒數。
師:那你是怎樣求26的倒數的呢?
你是怎樣求一個小數的倒數的呢?
歸納總結:我們求了這么多數的`倒數,誰來總結一下求一個數的倒數的方法。
生1:求一個數的倒數,只要把分子分母調換位置。
2、強調書寫格式
師:剛才老師看到有學生是這樣寫的,可以嗎?(3/5=5/3)
歸納總結:互為倒數的兩個數是不會相等的(1除外)。我們在書寫時要寫清誰是誰的倒數,或誰的倒數是誰,如老師黑板上寫的一樣。
先說說下面每組數的倒數,再看看你能發現什么?
(1)3/4的倒數是()(2)9/7的倒數是()
2/5的倒數是()10/3的倒數是()
4/7的倒數是()6/5的倒數是()
(3)1/3的倒數是()(4)3的倒數是()
1/10的倒數是()9的倒數是(
nbsp;1/13的倒數是()14的倒數是()
由學生說出各數的倒數。
師:請你仔細觀察,看能從中發現什么,發現得越多越好。
師:小組間可以先互相說一說。
匯報:
預設:
生1:我從第一組中發現真分數的倒數都是假分數。
生2:我從第二組中發現假分數的倒數是真分數或者假分數。
生3:真分數的倒數都小于1,假分數的倒數大于1。
3、填空:
7×()=15/2×()=()×0。25=0。17×()=1
倒數的認識教學設計12
教學目的:
1.使學生感知倒數的意義,掌握求倒數的方法,學會對倒數的正確表述。
2.培養學生的觀察能力、數學語言表達能力、發現規律的能力等。
教學重點:求一個數的倒數的方法。
教學難點:理解倒數的意義,掌握求一個數的倒數的方法。
教學準備:教學光盤
課前研究:自學課本P50:
(1)什么是倒數?倒數的概念中哪幾個字比較重要?說一說你是怎么理解的。
(2)觀察互為倒數的兩個數,說說他們分子、分母的'位置發生了什么變化?
(3)0有倒數嗎?為什么?
教學過程:
一、作業錯例分析。
二、學習分數的倒數:
1.出示例7
學生在自備本上完成,指名核對。
教師板書: ×=1× =1× =1
2.你能模仿著再舉幾個例子嗎?
學生回答,教師板書。
3.觀察板書,揭示倒數意義:乘積是1的兩個數互為倒數。(板書)
和 互為倒數,也可以說的倒數是 ,的倒數是。
讓學生模仿著說另外兩個算式,誰和誰互為倒數?誰是誰的倒數?
4.你能分別找出和的倒數嗎?
學生同桌討論找法,指名交流。
5.觀察上面互為倒數的兩個數,學生討論怎樣求一個分數的倒數?
指名交流方法:求一個分數的倒數時,只要把它的分子、分母調換位置就可以了。
6.合作練習:同桌兩位同學一位說出一個分數,請另一位同學說這個分數的倒數,并交換練習。
三、學習整數的倒數:
1.電腦出示:5的倒數是多少?1的倒數呢?
學生跟自己的同桌說一說,再指名交流。
方法一:求5的倒數時,可以先把5看作,所以它的倒數是;
方法二:想5×( )=1,再得出結果。
2.那1的倒數是多少?(1)
3.0有倒數嗎?為什么?(沒有一個數與零相乘的積是1,所以0沒有倒數)
4. 分數和整數(0除外)都有它的倒數,小數有沒有倒數?你能發表自己的觀點嗎?
0.25 0.1 的倒數是多少?如何求的?
5.練一練 示范寫 的倒數: 的倒數是 ,明確不能寫成 =。
學生獨立完成,集體核對。
四、鞏固練習:
1.練習十第1題
學生獨立完成后集體訂正,說說思路及倒數的意義和求倒數的方法
2.練習十第2題
學生先獨立找一找,再交流想法,注意說完整話。例:與4互為倒數。
3.練習十第3題
學生獨立填空后集體訂正。
4.練習十第4題
寫出每組數的倒數。說說有什么發現?
第1組中都是真分數,倒數都是大于1的假分數。
第2組中都是大于1的假分數,倒數都是真分數。
第3組中都是一個分數的分數單位,倒數都是整數。
第4組中都是非0的自然數,倒數都是幾分之一。
5.練習十第5題:
學生獨立完成。說說怎樣求正方體的表面積和體積。
6.練習十第6題
學生獨立列式解答后,辨析。
兩題中分數的不同意義:
第一題中的表示兩個數量間的倍比關系,要用乘法計算。
第二題中的表示用去的噸數,求還剩多少噸,要用減法計算。
7.思考題
學生小組討論,指名交流。
按鋼管的長度分三種情況考慮:
(1)如果鋼管的長度都是1米,那么兩根鋼管用去的一樣多;
(2)如果鋼管的長度小于1米,那么第一根用去的長度長一些;
(3)如果鋼管的長度大于1米,那么第二根用去的長度長一些。
五、課堂總結:
今天我們學習了兩個數之間的一種新的關系——倒數關系,誰再來說一說倒數是怎樣定義的?怎樣求一個數的倒數?1的倒數是多少?0有沒有倒數?
倒數的認識教學設計13
教材分析:
這部分內容是在學歷了分數乘法的基礎上教學的,主要為后面學習分數除法做準備,因為一個數除以分數的計算方法,歸結為乘這個數的倒數。這部分內容通過兩個例題,主要教學倒數的意義和求倒數的方法。
設計理念:
本課強調從學生的學習興趣,生活經驗和認知水平出發,通過體驗、實踐、參與、交流和合作方式,讓學生在合作學習的過程中,學會交流,相互評價,親歷知識的建構過程,培養學生的數學應用意識和激發學習熱情,培養學生觀察、歸納、推理和概括的能力。
教學目標:
認知目標:使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
能力目標:培養學生觀察、歸納、猜想、推理和概括的能力。
情感目標:提供適當的問題情境,激發學生的學習興趣和學習熱情。讓學生體驗探索中成功的快樂,培養學生的創新意識和科學精神。
教學重點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
教學難點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
教學過程:
一、創設活動情景,引入概念
師:我們剛剛學習了分數的乘法,老師想考考大家掌握的怎么樣,能不能經受住老師的考驗?
生(眾):能!
師:好!(出示投影)請把下面的幾個題目算一算,同位相互交換一下答案。
題目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:進行計算。(完成后小組進行交流,學生匯報其發現的結論)
(通過計算,學生可能發現每組算式的乘積都是1,通過觀察發現相乘的兩個分數的分子和分母位置是顛倒的)
師:同學們發現了每組算式的兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做倒數。
出示倒數的意義:乘積是1的兩個數互為倒數。
二、探索研究,深入理解
師:同學們能不能說說你對倒數的意義的理解?
提示:“互為”是什么意思?
生:指的是倒數表示兩個數之間的關系,這兩個數缺一不可,互相依存,單獨的一個數不能叫倒數。
師:回答的很好,下面同學們來判斷一下我說的話有沒有錯誤:因為3/4x4/3=1,所以3/4是倒數,4/3也是倒數。
生:(爭先恐后地)不對!
師:那我該怎么說呢?
生:3/4和4/3互為倒數。
師:還有其他的說法嗎?
生:3/4是4/3的倒數,4/3是3/4的倒數。
師:好,大家說的都不錯,那么我給你一個數你能找出它的倒數嗎?
生:能!
師:好!我我來考考大家!
三、運用概念,探討方法
師:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪兩個數互為倒數?
(小組探討交流,并說說是怎樣找的?匯報交流結果。)
生:有兩種方法來找一個數的倒數:
1、看看兩個分數的乘積是不是1;
2、看兩個分數的'分子與分母是否分別顛倒了位置。
師:(征求意見)大家同意他的說法嗎?
生:同意!
師:大家認為哪一種方法更快呢?
生:第二種。
師:好,那咱們就用第二種來求一個數的倒數。(板演方法,強化學生的理解。)
四、出示特例,深入理解
師:同學們再觀察一下剛才我們做的題目,還有沒有沒找到倒數的數據?
生:有!1和0。
師:(提問)那1和0有沒有倒數呢?如果有,是多少?
小組討論、匯報。
1、關于1的倒數。
因為1x1=1,根據“乘積是1的兩個數互為倒數”,所以1的倒數是1。
2、關于0的倒數。
因為0與任何數相乘都不等于1,所以0沒有倒數。
五、鞏固練習
(用多媒體投影出示下列各題,學生先做,再全班交流)
1、寫出下列各數的倒數。
4/11 16/9 35 7/8 4/15
2、下面說法對不對?為什么?
(1)7/12與12/7的乘積為1,所以7/12與12/7互為倒數。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互為倒數。
(3)0的倒數還是0。
(4)一個數的倒數一定比這個數校
六、歸納小結,交流共享
師:本節課你學到了什么,你有什么體會?
生:我認識了什么叫倒數,還學會了怎樣求倒數。
七、布置作業:練習7第7題。
倒數的認識教學設計14
一、創設情境、導入新課。
1、課件出示:吞---吳干---士杏---呆。
2、請同桌互相交流一下,找一找下面文字的構成有什么規律嗎?
3、學生匯報。
4、同學們觀察的非常仔細,這種現象在數學中也有,今天這堂課我們就來研究倒數的知識。(板書課題:倒數的認識)
二、出示學習目標
1、能夠理解和掌握倒數的意義。
2、學習求一個數的倒數的方法,能正確地求出一個數的倒數。
三、探究新知識
1、課件出示例1的算式,開展小組活動:算一算,找一找,這組算式有什么特點?
2、小組匯報交流。(通過計算,發現每組兩個數的乘積都是1,還發現了相乘的兩個分數的分子和分母的位置是顛倒的)
3、同學們發現了每組算式兩個分數的分子與分母正好顛倒了位置,也發現了每組兩個數的乘積都是1,我們現在就可以得出倒數的定義了:乘積是1的兩個數互為倒數。(板書)
4、提問“互為”是什么意思?(倒數是指兩個數之間的關系,這兩個數相互依存,一個數不能叫倒數。
5、強調“兩個數”“乘積是1”
6、出示0.4×2.5=1,讓學生說一說0.4和2.5可不可以說互為倒數。
7、隨堂練習:判斷:
(1)得數是1的兩個數叫做互為倒數。
(2)因為10×1/10=1,所以10是倒數,1/10是倒數。
(3)因為1/4+3/4=1,所以1/4是3/4的'倒數。
8、出示例題2,找一找哪兩個數互為倒數?再說一說你是怎么找的?
9、以小組為單位進行討論交流。
10、分組匯報:
第一種方法:看兩個分數的乘積是不是1。
第二種方法:看兩個分數的分子與分母是否分別顛倒了位置。
哪一種方法比較快?
11、觀察書中的找倒數的方法,強調:3/5的倒數是5/3,不能用等號相連。
我們剛才知道了真分數、假分數和整數找倒數的方法:還有一些數找倒數的方法我們沒有歸納。請同學們想一想下面的數怎么找倒數?
1、真分數、假分數。
2、整數
3、小數
4、帶分數(板書)
12、例2中還有哪些數沒有找到倒數?
13、提問:1和0有沒有倒數?如果有,是多少?(小組討論、匯報。)
四、鞏固練習
我們現在應用今天學習的知識解決一些問題。
五、課堂總結。
板書設計成知識樹。
倒數的認識教學設計15
教學目標
1。通過一些實例的探究,讓學生理解和掌握倒數的意義。在合作探究中掌握求倒數的方法,會求一個數的倒數。
2。使學生經歷倒數意義的概括過程,提高觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3。通過學生親身參與探究活動,體驗數學學習的樂趣,激發他們積極的學習情感,養成合作探究問題的習慣。
教學重難點 :
理解倒數的意義,學會求倒數的方法。
教學難點:
發現倒數的一些特征。
教具準備
課件
設計意圖
通過觀察,使學生發現一個分數的倒數就是把它的分子與分母的位置顛倒,進而使學生體會到“倒數”這一概念中“倒”的含義,很自然的得出求一個分數的倒數的方法。
一、猜字游戲引入新課
找找下面文字的構成規律
呆———杏 土———干 吞———吳
按照上面的規律填數
——( ) ——( ) ——( )
能根據分之和分母的位置關系,給這三組數取個名嗎?揭示課題:倒數
二、新知探究
(一)探究討論,理解倒數的意義。
1.課件出示算式。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。
我發現了每組算式兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做“倒數”。
2.出示倒數的意義:乘積是1的兩個數互為倒數。
3.你是怎樣理解互為倒數的呢? 能舉例嗎?
(二)深化理解。
1.乘積是1的兩個數存在著怎樣的倒數關系呢?
2.互為倒數的兩個數有什么特點?
3.想一想:1的.倒數是多少?0有倒數嗎?為什么?怎么理解?
因為1×1=1,根據“乘積是1的兩個數互為倒數”,所 以1的倒數是1。
又因為0與任何數相乘都不等于1,所以0沒有倒數。)
(三)運用概念。
1.討論求一個數的倒數的方法。
出示例2:寫出其中3/5 、7/2 兩個分數的倒數。
學生試做討論后,教師講過程 。
小結:求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。)
2。怎樣求整數(除外)的倒數?請求示6的倒數是幾?(出示課件)
三、鞏固練習
(一)完成教材第28頁的“做一做”
(二)完成教材第29頁練習六的第1—5題。
四、課堂小結
今天我們學習了有關倒數的哪些新知識?
認識倒數教學設計
龍溪小學 王櫻
【教學內容】
教科書第42頁單元主題圖,第43頁例1。【教學目標】
1.在觀察比較中理解倒數的意義,掌握求倒數的方法。
2.進一步培養學生學習數學的興趣和學習能力。【教學重點】
倒數的意義與求法。【教學難點】
理解“互為倒數”的意義。【教學過程】
一、情境引入
出示教科書第42頁單元主題圖。
1.看圖后,你想說些什么?
2.對提出的數學問題列出解決的算式。針對學生列出的除法算式提問:我們學過解答這些問題嗎?它們屬于什么范圍的問題?
引出單元內容:分數除法。
3.從今天開始我們就一同進入“分數除法”的學習當中,讓它幫助我們解決生活中更多的問題。
4.我們今天的學習就從做一個游戲開始。
游戲內容:寫兩個因數相乘的乘法算式,使兩個因數的乘積是1。(不能重復)
游戲形式:四人小組合作完成。
游戲時間:2分鐘。
評比標準:寫得又對又多的小組為勝。
5.展示學生完成的算式,評選出優勝的小組。
二、認識倒數
1.在學生剛才寫出的算式中選出幾組分數。(若沒有,老師寫出幾組)
請同學們看看剛才你們寫出的這幾組乘積是1的算式,仔細觀察,看看你有什么發現?
小結:兩個因數分子和分母的位置顛倒。
2.是不是將分子和分母顛倒后相乘的兩個數,積都是1呢?試一試,并想想為什么?
3.出示:0.5×2=1,(如果學生游戲的算式中有相應的例子,可直接用)它們的乘積也是1,這樣的算式可不可以看成是分子和分母顛倒的呢?小組議一議。
全班交流后驗證:0.5可以看作是“1”的一半,即為12,整數2可以看作分母是1的分數,12與2即為一對分子和分母顛倒的數。
4.通過剛才的分析,你能說說乘積是1的兩個數有什么特點嗎?
5.在數學上,人們稱乘積是1的兩個數互為倒數。(板書:認識倒數)
6.理解“互為”的意義。
(1)“互為”是什么意思?(互相)
一個人能說互相嗎?互相肯定是發生在(兩個人之間)。所以,“互為”二字充分說明了倒數應該是(兩個數)之間的關系。
(2)(結合學生的算式來說明)比如12乘2等于1,所以12和2互為倒數,也可以說2是12的倒數或者12是2的倒數。
(3)指名學生結合另外的算式,說說誰是誰的倒數。
我們能單獨說某一個數是倒數嗎?
(4)想一想:在我們學過的數的概念中,哪些用一個數也不能單獨表示它的含義?(約數、倍數、互質數)
(5)寫一個兩個因數乘積是1的算式,跟你的同桌說說它們之間的關系。
三、求倒數
1.試著說說下面兩組數的倒數。(課件出示題目)
①47、56、13、18
②32、85、9、1、1313
(1)獨立完成,小組內交流你求倒數的方法。
全班交流后得出:求一個數的倒數,就是將這個數的分子和分母顛倒位置。
(2)觀察比較每組數中每個數與它的倒數,看看你有什么發現。
充分讓學生交流后引導學生小結:
①真分數的倒數都是假分數。
②大于1的假分數的倒數都是真分數。
2.0有沒有倒數?為什么?(小組內討論)
學生充分交流后小結: 互為倒數是要求乘積是1的兩個數。而0和任何數相乘都得0,所以0沒有倒數。
3.若用字母a表示任意一個自然數,那么它的倒數該怎樣表示?有沒有什么特殊的規定?
a的倒數為1a(a不為0)。
4.完成教科書第43頁“填一填”,獨立完成,同桌交換檢查。
四、拓展練習
1.對口令。(同桌中一人任意說一個數,另一人很快的說出相對應的倒數)
2.辯一辯。(課件出示練習)
(1)得數是1的兩個數互為倒數。()
(2)1的倒數是1,0的倒數是0。()
(3)18是倒數。()
(4)因為x×y=1(x≠0,y≠0),所以x和y互為倒數。()
(5)所有假分數的倒數都是真分數。()
3.練習九第2題。
4.開放性練習。(課件出示練習)
23×()=()×4 =52×()= 1×()括號里都可以填哪些數字?你有幾種填法?根據是什么?
填法(1):23×32=14×4=52×25=1×1每個括號都填出所給數的倒數。
填法(2):23×3=12×4=52×45=1×2每個括號都填出所給數的倒數的2倍。
填法(3):只要每個括號都填出所給數的倒數的a倍即可。
五、總結
今天這堂課你學習了什么?最大的收獲是什么? 教學反思:
本課設計從一個游戲引入新課,讓學生在輕松自主的學習中發現問題、解決問題,體會了學習的樂趣。在學習的過程中,教師鼓勵學生獨立思考,尋找解決問題的方法,并通過小組交流等形式讓學生對寫出“乘積是1的兩個數”的方法進行優化,從而找出其中規律,總結出倒數的意義。整個教學過程中,教師從組織到引導,充分給予了學生思考和探究的空間,發展了學生比較、歸納、概括的能力。
比的意義
龍溪小學
彭風
【教學內容】
教科書第65頁例1及相關練習。【教學目標】
1.在具體情境中理解比的意義,知道比的各部分名稱,掌握比的讀、寫方法,會求比值。
2.培養學生的合作意識,讓學生在小組活動中初步理解比與分數,比與除法之間的關系。【教學重點】
理解比的意義及比、分數、除法的聯系。【教學過程】
一、導入新課
1.出示例1圖表:
姓名從家到學校的路程(m)從家到學校的時間(分)
張麗 240 李蘭 200 4
教師引導學生觀察表格后提問:你從表格中了解到什么信息?每兩個數量之間有怎樣的關系?你都會用哪些方法表示它們之間的關系?
學生可能找到每兩個數量之間各種各樣的關系,針對學生所答,及時作出引導評價。
2.小結: 我們會用加法表示兩個量之間的合并關系。會用減法表示兩個量之間的相差關系,也會用分數或除法表示兩個量之間的倍數關系。今天,我們再來學習一種新的表示兩個量間數量關系的方法。
二、學習新知
1.初步認識比及比的讀、寫方法。
(1)找出板書中學生用分數或除法表示兩個量之間倍數關系的實例,用彩色粉筆標注出來,指出:像這樣兩個數相除又叫做兩個數的比。
教師舉例:比如張麗用的時間是李蘭的幾倍? 5÷4=54,我們就說,張麗和李蘭所用時間的比是“5比4”,可以寫成 5:4 或54,讀作:5比4。
(2)學生帶著問題自讀教科書例1內容。
問題:①比的各部分名稱是什么?
②你都知道了關于比的哪些知識?
③5比4是哪個數量與哪個數量的比?那4比5呢?
學生自學后根據問題談自己的收獲。
(3)教學例1“試一試”。
①提問:你能用剛才所學的知識解決“試一試”中的問題嗎? 組織學生獨立思考,解決問題,然后集體訂正,評價。
教師追問:為什么張麗與李蘭所用時間的比中5是比的前項,而在李蘭與張麗所用時間的比中5又是比的后項呢? 學生回答后,教師指出:兩個數的比是有順序的。因此,在用比表示兩個數量的關系時,一定要按照敘述的順序,正確表達是一個數量與另一個數量的比,不能顛倒兩個數的位置。
②教師提問:5分鐘、4分鐘都表示什么?(時間)
教師小結:5分鐘、4分鐘都表示時間,它們是同一種量,我們就說這兩個數量的比是同類量的比。
觀察“試一試”中的最后一個問題。
教師提問:求的是什么?(速度)誰和誰進行比較?(路程和時間)誰除以誰?
教師:我們也可以用比來表示路程和時間的關系。路程除以時間可以說成什么?(可以說成路程和時間的比)路程和時間是同一類量嗎?(不是)不同類量比的結果是什么?(產生一個新的量:速度)
師生共同小結:兩個數量的比可以是同類量的比,也可以是不同類量的比。
2.求比值。
思考:5∶4表示什么?4∶5表示什么?
說明:比的前項除以比的后項得到的商就是比值。你知道怎么求比值嗎?
課堂內完成課堂活動第1題。
3.比與除法、分數之間的關系。
分組討論,議一議:比、分數和除法之間有什么關系?
學生討論后匯報,根據匯報情況師生共同完成下表。
相應部分區別
比前項∶(比號)后項比值一種關系
除法被除數÷(除號)除數商一種運算
分數分子-(分數線)分母分數值一種數
三、鞏固練習
1.想一想,填一填。
(1)比的前項是5,后項是3,比值是()。
(2)比的后項是8,前項是4,比值是()。
(3)比的前項是0,比值也是0,后項是()。
(4)甜甜3分鐘做60道口算題,做口算題的個數與時間的比是()
學生獨立思考、解答,然后指名回答,集體訂正。(提醒學生:比的后項不能是0)
2.拓展練習。(課件出示)
(1)“甲隊在一場球賽中以12∶0的比分大勝乙隊”請問“12∶0”是比嗎?(不是比,它是記錄兩隊得分的多少的一種形式)
(2)我國陸地和世界陸地的比是1∶15。我國人口和世界人口的比是1∶5。
據世界衛生組織統計,全球每年有500萬人因吸煙而死亡,其中中國因吸煙而死亡的人數與全球因吸煙而死亡的人數的比是1∶5。
你從所提供的信息中找到了哪些關于比的信息?看到這些信息,你有何想法?
(3)圖示呈現:兩杯糖水,第一杯中糖與水的比是2∶50;第二杯中糖與水的比是3∶50。哪一杯糖水更甜? 學生思考、討論回答后,教師小結。
四、全課總結
教師:同學們,這一節課你學得愉快嗎?你有什么收獲?(指名說一說)
教師總結。(略)
五、課外作業
收集生活中關于比的信息。
教學反思:
本節課的設計注重對學生原有知識的了解,讓學生在已有認知經驗的基礎上,給學生提供自主探究的時間和空間,同時教師結合具體問題,把握時機,培養學生收集信息的能力,合理的把數學與生活緊密聯系起來。