機器視覺系統資料介紹
一、概述
機器視覺就是用機器代替人眼來做測量和判斷。機器視覺系統是指通過機器視覺產品(即圖像攝取裝置,分
CMOS
和CCD
兩種)將被攝取目標轉換成圖像信號,傳送給專用的圖像處理系統,根據像素分布和亮度、顏色等信息,轉變成數字化信號;圖像系統對這些信號進行各種運算來抽取目標的特征,進而根據判別的結果來控制現場的設備動作。
機器視覺(Machine
vision)
機器視覺系統的特點是提高生產的柔性和自動化程度。在一些不適合于人工作業的危險工作環境或人工視覺難以滿足要求的場合,常用機器視覺來替代人工視覺;同時在大批量工業生產過程中,用人工視覺檢查產品質量效率低且精度不高,用機器視覺檢測方法可以大大提高生產效率和生產的自動化程度。而且機器視覺易于實現信息集成,是實現計算機集成制造的基礎技術。
正是由于機器視覺系統可以快速獲取大量信息,而且易于自動處理,也易于同設計信息以及加工控制信息集成,因此,在現代自動化生產過程中,人們將機器視覺系統廣泛地用于工況監視、成品檢驗和質量控制等領域。
二、組成結構
一個典型的工業機器視覺系統包括:光源、鏡頭、CCD
照相機、圖像處理單元(或圖像捕獲卡)、圖像處理軟件、監視器、通訊
/
輸入輸出單元等。
系統可分為:
主端電腦(Host
Computer)、影像擷取卡(Frame
Grabber)與影像處理器、影像攝影機、CCT鏡頭、顯微鏡頭、照明設備、Halogen光源、LED光源、高周波螢光燈源、閃光燈源、其他特殊光源、影像顯示器、LCD、機構及控制系統、PLC、PC-Base控制器、精密桌臺、伺服運動機臺
等部分。
三、工作原理
機器視覺檢測系統采用CCD照相機將被檢測的目標轉換成圖像信號,傳送給專用的圖像處理系統,根據像素分布和亮度、顏色等信息,轉變成數字化信號,圖像處理系統對這些信號進行各種運算來抽取目標的特征,如面積、數量、位置、長度,再根據預設的允許度和其他條件輸出結果,包括尺寸、角度、個數、合格
/
不合格、有
/
無等,實現自動識別功能。
四、機器視覺系統的典型結構
機器視覺LED光源
一個典型的機器視覺系統包括以下五大塊:
照明
照明是影響機器視覺系統輸入的重要因素,它直接影響輸入數據的質量和應用效果。由于沒有通用的機器視覺照明設備,所以針對每個特定的應用實例,要選擇相應的照明裝置,以達到最佳效果。光源可分為可見光和不可見光。常用的幾種可見光源是白幟燈、日光燈、水銀燈和鈉光燈。可見光的缺點是光能不能保持穩定。如何使光能在一定的程度上保持穩定,是實用化過程中急需要解決的問題。另一方面,環境光有可能影響圖像的質量,所以可采用加防護屏的方法來減少環境光的影響。照明系統按其照射方法可分為:背向照明、前向照明、結構光和頻閃光照明等。其中,背向照明是被測物放在光源和攝像機之間,它的優點是能獲得高對比度的圖像。前向照明是光源和攝像機位于被測物的同側,這種方式便于安裝。結構光照明是將光柵或線光源等投射到被測物上,根據它們產生的畸變,解調出被測物的三維信息。頻閃光照明是將高頻率的光脈沖照射到物體上,攝像機拍攝要求與光源同步。
鏡頭
工業鏡頭
FOV(Field
Of
Vision)=所需分辨率*亞象素*相機尺寸/PRTM(零件測量公差比)
鏡頭選擇應注意:
①焦距②目標高度
③影像高度
④放大倍數
⑤影像至目標的距離
⑥中心點
/
節點
⑦畸變
相機
按照不同標準可分為:標準分辨率數字相機和模擬相機等。要根據不同的實際應用場合選不同的相機和高分辨率相機:線掃描CCD和面陣CCD;單色相機和彩色相機。
機器視覺工業相機
圖像采集卡
圖像采集卡只是完整的機器視覺系統的一個部件,但是它扮演一個非常重要的角色。圖像采集卡直接決定了攝像頭的接口:黑白、彩色、模擬、數字等等。
比較典型的是PCI或AGP兼容的捕獲卡,可以將圖像迅速地傳送到計算機存儲器進行處理。有些采集卡有內置的多路開關。例如,可以連接8個不同的攝像機,然后告訴采集卡采用那一個相機抓拍到的信息。有些采集卡有內置的數字輸入以觸發采集卡進行捕捉,當采集卡抓拍圖像時數字輸出口就觸發閘門。
視覺處理器
視覺處理器集采集卡與處理器于一體。以往計算機速度較慢時,采用視覺處理器加快視覺處理任務。現在由于采集卡可以快速傳輸圖像到存儲器,而且計算機也快多了,所以現在視覺處理器用的較少了。
五、機器視覺的應用
1.自動光學檢查(如圖像識別、圖像檢測、視覺定位、物品分揀等)
2.人臉偵測
3.無人駕駛汽車
【機器視覺特點】
1.攝像機的拍照速度自動與被測物的速度相匹配,拍攝到理想的圖像;
2.零件的尺寸范圍為2.4mm到12mm,厚度可以不同;
3.系統根據操作者選擇不同尺寸的工件,調用相應視覺程序進行尺寸檢測,并輸出結果;
4.針對不同尺寸的零件,排序裝置和輸送裝置可以精確調整料道的寬度,使零件在固定路徑上運動并進行視覺檢測;
5.機器視覺系統分辨率達到1600×1200,動態檢測精度可以達到0.02mm;
6.廢品漏檢率為0;
7.本系統可通過顯示圖像監視檢測過程,也可通過界面顯示的檢測數據動態查看檢測結果;
8.具有對錯誤工件及時準確發出剔除控制信號、剔除廢品的功能;
9.系統能夠自檢其主要設備的狀態是否正常,配有狀態指示燈;同時能夠設置系統維護人員、使用人員不同的操作權限;
10.實時顯示檢測畫面,中文界面,可以瀏覽最近幾次不合格品的圖像,具有能夠存儲和實時察看錯誤工件圖像的功能;
11.能生成錯誤結果信息文件,包含對應的錯誤圖像,并能打印輸出。
機器視覺在紡織工業上的應用案例
在布匹的生產過程中,像布匹質量檢測這種有高度重復性和智能性的工作只能靠人工檢測來完成,在現代化流水線后面常常可看到很多的檢測工人來執行這道工序,給企業增加巨大的人工成本和管理成本的同時,卻仍然不能保證100
%的檢驗合格率(即“零缺陷”)
。對布匹質量的檢測是重復性勞動,容易出錯且效率低。
流水線進行自動化的改造,使布匹生產流水線變成快速、實時、準確、高效的流水線。在流水線上,所有布匹的顏色、及數量都要進行自動確認(以下簡稱“布匹檢測”)。現在采用機器視覺的自動識別技術完成以前由人工來完成的工作。在大批量的布匹檢測中,用人工檢查產品質量效率低且精度不高,用機器視覺檢測方法可以大大提高生產效率和生產的自動化程度。
特征提取辨識
一般布匹檢測(自動識別)先利用高清晰度、高速攝像鏡頭拍攝標準圖像,在此基礎上設定一定標準;然后拍攝被檢測的圖像,再將兩者進行對比。但是在布匹質量檢測工程中要復雜一些:
1.圖像的內容不是單一的圖像,每塊被測區域存在的雜質的數量、大小、顏色、位置不一定一致;
2.雜質的形狀難以事先確定;
3.由于布匹快速運動對光線產生反射,圖像中可能會存在大量的噪聲;
4.在流水線上,對布匹進行檢測,有實時性的要求;
由于上述原因,圖像識別處理時應采取相應的算法,提取雜質的特征,進行模式識別,實現智能分析。
Color檢測
一般而言,從彩色CCD相機中獲取的圖像都是RGB圖像。也就是說每一個像素都由紅(R)綠(G)籃(B)三個成分組成,來表示RGB色彩空間中的一個點。問題在于這些色差不同于人眼的感覺。即使很小的噪聲也會改變顏色空間中的位置。所以無論我們人眼感覺有多么的近似,在顏色空間中也不盡相同。基于上述原因,我們需要將RGB像素轉換成為另一種顏色空間CIELAB。目的就是使我們人眼的感覺盡可能的與顏色空間中的色差相近。
Blob檢測
根據上面得到的處理圖像,根據需求,在純色背景下檢測雜質色斑,并且要計算出色斑的面積,以確定是否在檢測范圍之內。因此圖像處理軟件要具有分離目標,檢測目標,并且計算出其面積的功能。
Blob分析(Blob
Analysis)是對圖像中相同像素的連通域進行分析,該連通域稱為Blob。經二值化(Binary
Thresholding)處理后的圖像中色斑可認為是blob。Blob分析工具可以從背景中分離出目標,并可計算出目標的數量、位置、形狀、方向和大小,還可以提供相關斑點間的拓撲結構。在處理過程中不是采用單個的像素逐一分析,而是對圖形的行進行操作。圖像的每一行都用游程長度編碼(RLE)來表示相鄰的目標范圍。這種算法與基于象素的算法相比,大大提高處理速度。
結果處理和控制
應用程序把返回的結果存入數據庫或用戶指定的位置,并根據結果控制機械部分做相應的運動。
根據識別的結果,存入數據庫進行信息管理。以后可以隨時對信息進行檢索查詢,管理者可以獲知某段時間內流水線的忙閑,為下一步的工作作出安排;可以獲知近期內布匹的質量情況等等。
機器視覺在國內外的應用現狀
在國外,機器視覺的應用普及主要體現在半導體及電子行業,其中大概40%-50%都集中在半導體行業。具體如PCB印刷電路:各類生產印刷電路板組裝技術、設備;單、雙面、多層線路板,覆銅板及所需的材料及輔料;輔助設施以及耗材、油墨、藥水藥劑、配件;電子封裝技術與設備;絲網印刷設備及絲網周邊材料等。SMT表面貼裝:SMT工藝與設備、焊接設備、測試儀器、返修設備及各種輔助工具及配件、SMT材料、貼片劑、膠粘劑、焊劑、焊料及防氧化油、焊膏、清洗劑等;再流焊機、波峰焊機及自動化生產線設備。電子生產加工設備:電子元件制造設備、半導體及集成電路制造設備、元器件成型設備、電子工模具。機器視覺系統還在質量檢測的各個方面已經得到了廣泛的應用,并且其產品在應用中占據著舉足輕重的地位。除此之外,機器視覺還用于其他各個領域。
而在中國,視覺技術的應用開始于90年代,因為行業本身就屬于新興的領域,再加之機器視覺產品技術的普及不夠,導致以上各行業的應用幾乎空白。到二十一世紀,隨著科學進步,視覺技術開始在自動化行業成熟應用,目前在我國隨著配套基礎建設的完善,技術、資金的積累,各行各業對采用圖像和機器視覺技術的工業自動化、智能化需求開始廣泛出現,國內有關大專院校、研究所和企業近兩年在圖像和機器視覺技術領域進行了積極思索和大膽的嘗試,逐步開始了工業現場的應用。其主要應用于制藥、印刷、礦泉水瓶蓋檢測等領域。這些應用大多集中在如藥品檢測分裝、印刷色彩檢測等。真正高端的應用還很少,因此,以上相關行業的應用空間還比較大。當然、其他領域如指紋檢測等等領域也有著很好的發展空間。