久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}

時(shí)間:2019-05-13 07:52:03下載本文作者:會(huì)員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}》。

第一篇:化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}

化學(xué)工程與工藝專業(yè)的發(fā)展方向

本專業(yè)培養(yǎng)具有化學(xué)工程與化學(xué)工藝方面的知識(shí),能在化工、能源、信息、材料、環(huán)保、生物工程、輕工、制藥、食品、冶金和軍工等部門從事工程設(shè)計(jì)、技術(shù)開發(fā)、生產(chǎn)技術(shù)管理和科學(xué)研究等方面工作的工程技術(shù)人才。本專業(yè)學(xué)生主要學(xué)習(xí)化學(xué)工程與化學(xué)工藝學(xué)等方面的基本理論和基本知識(shí),受到化學(xué)與化工實(shí)驗(yàn)技能、工程實(shí)踐、計(jì)算機(jī)應(yīng)用、科學(xué)研究與工程設(shè)計(jì)方法的基本訓(xùn)練,具有對現(xiàn)有企業(yè)的生產(chǎn)過程進(jìn)行模擬優(yōu)化、革新改造,對新過程進(jìn)行開發(fā)設(shè)計(jì)和對新產(chǎn)品進(jìn)行研制的基本能力。主要課程有:物理化學(xué)、化工流體流動(dòng)與傳熱、化工傳質(zhì)與分離過程、化工熱力學(xué)、化學(xué)反應(yīng)工程、化工設(shè)計(jì)、化工過程分析與合成和一門必選的專業(yè)方向課程。其發(fā)展方向主要以下幾個(gè)方向發(fā)展:

一、化學(xué)工程方向

本專業(yè)方向旨在培養(yǎng)德智體全面發(fā)展的,具有良好心理素質(zhì)和較高知識(shí)素養(yǎng)的高等化工專業(yè)人才。畢業(yè)生所具備的理論基礎(chǔ)和實(shí)踐能力,使之擁有更廣泛的適應(yīng)性。在掌握了現(xiàn)代化工生產(chǎn)技術(shù)領(lǐng)域的生產(chǎn)過程、設(shè)備設(shè)計(jì)和產(chǎn)品研制開發(fā)的基礎(chǔ)理論、基本技能以及現(xiàn)代化研究方法和手段后,能勝任化工制藥類過程的研究、開發(fā)、設(shè)計(jì)和管理工作。畢業(yè)后,既可到化工、能源、信息、材料、環(huán)保、輕工、制藥、食品、冶金和軍工等企業(yè)進(jìn)行項(xiàng)目開發(fā)、工程設(shè)計(jì)和技術(shù)管理,也可以在科研院所或大專院校繼續(xù)深造并從事科學(xué)研究和教學(xué)工作。

化學(xué)工程是以化學(xué)工業(yè)及相關(guān)生產(chǎn)過程中所進(jìn)行的化學(xué)、物理過程為研究對象,探究其所用設(shè)備的設(shè)計(jì)原理與操作方法以及最終實(shí)現(xiàn)過程優(yōu)化所應(yīng)遵循的共性規(guī)律。本專業(yè)方向?qū)W生主要學(xué)習(xí)化工流體流動(dòng)與傳熱、化工傳質(zhì)與分離過程、化工熱力學(xué)、化學(xué)反應(yīng)工程、化工傳遞過程基礎(chǔ)、化工數(shù)學(xué)、化工分離過程、化工工藝學(xué)、化工過程分析與合成、化工設(shè)計(jì)等課程,為拓寬專業(yè)面,增加適應(yīng)性,還開設(shè)生化基礎(chǔ)、石油煉制工程、環(huán)境化工、化工機(jī)械基礎(chǔ)、ChemCAD等課程。

二、化學(xué)工藝方向

化學(xué)工藝是以產(chǎn)品為目標(biāo)的產(chǎn)品工程學(xué),它利用已有化學(xué)、化學(xué)工程等科學(xué)成就為化學(xué)工業(yè)提供技術(shù)上最先進(jìn),經(jīng)濟(jì)上最合理的方法、原理、設(shè)備與流程。因此它是“化學(xué)工程與技術(shù)”一級學(xué)科中直接面向國民經(jīng)濟(jì)、國防建設(shè)和人民生活的舉足輕重的二級學(xué)科?;瘜W(xué)工藝包括能源化工、材料化工、有機(jī)化工、環(huán)境化工、高分子化工、無機(jī)化工等眾多領(lǐng)域,覆蓋面廣,它不僅涵蓋了傳統(tǒng)的基礎(chǔ)領(lǐng)域,同時(shí)與材料、能源、生物、醫(yī)藥、環(huán)境等學(xué)科滲透融合,不斷地培植出新的生長點(diǎn)。它既是一個(gè)歷史悠久、曾做出重大貢獻(xiàn)的學(xué)科,又是一個(gè)新世紀(jì)不可缺少的充滿了生機(jī)與活力的學(xué)科。

本專業(yè)方向的主要研究方向?yàn)椋?)一碳化工與能源化工;2)功能化學(xué)品及新材料的綠色合成;3)生物質(zhì)能源與生物質(zhì)的化學(xué)加工。這些研究方向的特點(diǎn)是:1)遵循實(shí)現(xiàn)可持續(xù)發(fā)展的基本國策,推動(dòng)傳統(tǒng)的化學(xué)工藝學(xué)科成為綠色的工藝過程,最大限度地節(jié)約能源、資源,積極研究開發(fā)替代能源,走與環(huán)境協(xié)調(diào)友好的發(fā)展道路;2)面向21世紀(jì)迅猛發(fā)展的高新技術(shù)為航空航天技術(shù)、信息技術(shù)、新材料、新能源提供豐富的功能與專用化學(xué)品,為高技術(shù)服務(wù)。3)根據(jù)學(xué)科門類齊全,基礎(chǔ)雄厚的特點(diǎn),積極促進(jìn)學(xué)科間的交叉和融合,積極開展與材料、能源、環(huán)境等學(xué)科的交叉領(lǐng)域研究,培植本學(xué)科新的增長點(diǎn),以豐富和發(fā)展化學(xué)工藝學(xué)科。

三、催化科學(xué)與工程方向

催化科學(xué)與工程是當(dāng)今國際上最活躍的科技領(lǐng)域之一。據(jù)統(tǒng)計(jì)與催化有關(guān)的產(chǎn)值約占國民生產(chǎn)總值的25%;催化劑是目前更新?lián)Q代最快、經(jīng)濟(jì)產(chǎn)出比最大的技術(shù)產(chǎn)品之一。近年來,材料物理、表面科學(xué)、計(jì)算機(jī)模擬技術(shù)、綠色化學(xué)、生物化學(xué)和納米技術(shù)的進(jìn)步給催化科學(xué)與工程的發(fā)展帶來新的活力,使之成為解決資源、環(huán)境、生命和材料等領(lǐng)域中科技問題的支柱科學(xué)技術(shù)。

本專業(yè)方向培養(yǎng)德、智、體全面發(fā)展的具有開拓能力的高級工程技術(shù)人才、業(yè)務(wù)培養(yǎng)目標(biāo)為:培養(yǎng)具有催化科學(xué)技術(shù)基礎(chǔ)和掌握化學(xué)反應(yīng)工程理論,具備扎實(shí)的材料科學(xué)理論和技術(shù)知識(shí),熟悉現(xiàn)代化學(xué)物理研究方法和技能,了解現(xiàn)代科技現(xiàn)狀與發(fā)展前景,能勝任化工、能源、材料、醫(yī)藥、食品、環(huán)保等領(lǐng)域中相關(guān)的新工藝、新材料、新產(chǎn)品的研究、開發(fā)、設(shè)計(jì)和工業(yè)化的復(fù)合高等工程技術(shù)人才。

本專業(yè)方向畢業(yè)生完全適應(yīng)在化工(包括有機(jī)化工、無機(jī)化工、精細(xì)化工)、能源化工、生物化工、環(huán)境保護(hù)、材料、醫(yī)藥、食品等研究和生產(chǎn)部門工作。

本專業(yè)方向的主要課程包括:新材料科學(xué)(結(jié)構(gòu)化學(xué)、結(jié)晶化學(xué)、近現(xiàn)代材料科學(xué)的進(jìn)展等)、化學(xué)工藝學(xué)、化工數(shù)學(xué)、表面化學(xué)、催化作用原理、催化劑制備工程、催化反應(yīng)工程、催化研究方法、工業(yè)催化劑設(shè)計(jì)原理、催化進(jìn)展等。

四、高分子科學(xué)與工程方向

本專業(yè)方向是化學(xué)工程與高分子材料科學(xué)相結(jié)合的一門綜合學(xué)科,主要研究高分子材料的合成、改性、過程與結(jié)構(gòu)控制以及高分子材料的應(yīng)用。隨著高分子材料向著大型化、精細(xì)化、功能化和智能化方向的飛速發(fā)展,高分子新材料層出不窮,高分子科學(xué)與工程在當(dāng)今材料科學(xué)、生物技術(shù)、環(huán)保和電子信息技術(shù)領(lǐng)域起著極其重要的作用,有著廣闊的應(yīng)用前景。高分子科學(xué)與工程專業(yè)方向培養(yǎng)德、智、體全面發(fā)展,具有高分子材料和化學(xué)工程專業(yè)知識(shí)的高級工程技術(shù)人才,培養(yǎng)學(xué)生掌握高分子材料的合成方法、工藝和工程的基本理論以及高分子材料結(jié)構(gòu)與性能之間的關(guān)系,為高分子材料的合成、加工及應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ),學(xué)生畢業(yè)后可從事高分子材料的研究、開發(fā)、設(shè)計(jì)、材料加工和應(yīng)用等方向的工作。

本專業(yè)方向在化學(xué)工程與工藝的基礎(chǔ)理論之上,開設(shè)的主要課程包括:高分子化學(xué)、高分子物理、聚合過程與設(shè)備、高分子合成工藝學(xué)、化工工藝設(shè)計(jì)、生物醫(yī)學(xué)材料、特種聚合物、功能高分子等。

五、精細(xì)化工方向

本專業(yè)方向的主要課程包括:精細(xì)有機(jī)合成化學(xué)及工藝學(xué)、精細(xì)化學(xué)品分析、表面活性劑化學(xué)、助劑化學(xué)、有機(jī)功能材料、精細(xì)化學(xué)品合成與應(yīng)用(雙語)、現(xiàn)代儀器分析、精細(xì)化工反應(yīng)器、化工工藝設(shè)計(jì)等。

本專業(yè)方向主要研究領(lǐng)域涉及國家經(jīng)濟(jì)的多個(gè)領(lǐng)域,研究范圍廣,技術(shù)含量高,成品附加值大,包括:有機(jī)和醫(yī)藥中間體,功能性材料,有機(jī)染(顏)料,表面活性劑及助劑,合成材料和石油產(chǎn)品添加劑等。目前多項(xiàng)研究成果已轉(zhuǎn)化為生產(chǎn)力,隨著精細(xì)化學(xué)品在國民經(jīng)濟(jì)中所占比例的增加,本專業(yè)方向?qū)?huì)有更快的發(fā)展。

六、應(yīng)用化學(xué)方向

本學(xué)科是一門綜合性和交叉性極強(qiáng)的學(xué)科,與能源科學(xué)、材料科學(xué)、生命科學(xué)、信息科學(xué)、電子科學(xué)及光電子科學(xué)等眾多學(xué)科有著密切聯(lián)系,應(yīng)用領(lǐng)域極廣。

本專業(yè)方向旨在培養(yǎng)德、智、體全面發(fā)展的,適應(yīng)21世紀(jì)知識(shí)經(jīng)濟(jì)時(shí)代需要的全方位型高級技術(shù)和管理人才。由于學(xué)科本身所具有的學(xué)科交叉性和綜合性這一特點(diǎn),決定了本專業(yè)方向培養(yǎng)出的學(xué)生既有扎實(shí)的基礎(chǔ)理論知識(shí)又有寬廣的專業(yè)知識(shí),因而畢業(yè)后擇業(yè)范圍寬,在眾多科研院所和公司企業(yè)中有著廣闊的施展才能的空間,多年來畢業(yè)生一直供不應(yīng)求。

本專業(yè)方向的主要課程包括:理論電化學(xué)、應(yīng)用電化學(xué)、電化學(xué)測量技術(shù)、新型化學(xué)電源、電子器件及應(yīng)用、電化學(xué)工程技術(shù)、納米及非晶材料電化學(xué)、材料保護(hù)、有機(jī)電合成、生物電化學(xué)等。

本專業(yè)方向主要研究領(lǐng)域包括:高能化學(xué)電源(燃料電池、鋁電池、鎳氫電池等)及電化學(xué)工程、功能材料及其制備技術(shù)、電催化及電合成、納米材料及制備技術(shù)、生物電化學(xué)、導(dǎo)電聚合物及其制備技術(shù)等。

第二篇:化學(xué)工程與工藝專業(yè)概論

化學(xué)工程與工藝專業(yè)認(rèn)識(shí)及發(fā)展趨向

姓名 郭曉娜

專業(yè) 化學(xué)工程與工藝

班級 工藝(定單)2009

摘要:介紹自己對化學(xué)工程與工藝這一專業(yè)的認(rèn)識(shí),學(xué)習(xí)過程中的體會(huì);在大致了解了本專業(yè)的基礎(chǔ)上,淺談自己對本專業(yè)的發(fā)展情況的看法。

前言:近年來,隨著科技的不斷進(jìn)步,各行各業(yè)都顯示出勃勃生機(jī),而與人們生活息息相關(guān)的化學(xué)工業(yè)更是顯示出支柱產(chǎn)業(yè)的地位。走進(jìn)化工天的,一切都充滿了新奇,原來社會(huì)的絢麗多彩源于此。化學(xué)工程與工藝,將發(fā)揮越來越重要的角色,發(fā)展前景無限廣闊。其中,能源化工和精細(xì)化工更為值得期待。

一、專業(yè)了解

化學(xué)工程與工藝專業(yè),具有兩大特色:一是工程特色顯著,對化學(xué)反應(yīng)、化工單元操作、化工過程與設(shè)備、工藝過程系統(tǒng)模擬優(yōu)化等知識(shí)貫穿結(jié)合,;二是專業(yè)口徑寬、覆蓋面廣,能夠開拓學(xué)生從事科學(xué)研究、產(chǎn)品開發(fā)的能力,在精細(xì)化學(xué)品、涂料及應(yīng)用、高分子化工與工藝等方面更有研發(fā)和應(yīng)用能力。基于以上兩點(diǎn),本專業(yè)學(xué)生能在化工、輕工、醫(yī)藥、環(huán)保、軍工、冶金、汽車、機(jī)電等眾多工業(yè)領(lǐng)域施展才華。主要學(xué)習(xí)化學(xué)基礎(chǔ)、化工單元操作、化學(xué)反應(yīng)工程、化工工藝與過程、化工優(yōu)化與模擬等化工基本原理、研究方法和管理知識(shí),受到化學(xué)與實(shí)驗(yàn)技能、工程制圖能力、工藝設(shè)計(jì)方法、電子與電工技術(shù)、計(jì)算機(jī)應(yīng)用、外語能力、科學(xué)研究方法的基本訓(xùn)練。初步掌握一門外語,能比較順利的閱讀本專業(yè)的外文書刊,具有聽、說、寫的基礎(chǔ)。

化學(xué)工程與工藝又分為以下幾個(gè)研究方向: 1.化工工藝方向

培養(yǎng)目標(biāo):通過學(xué)習(xí)基礎(chǔ)化學(xué)、化工單元操作、化工熱力學(xué)、化學(xué)反應(yīng)工程、化學(xué)分離工程及化工工藝學(xué)等課程的基本理論和工程實(shí)踐知識(shí),初步掌握化工生產(chǎn)的基本原理、生產(chǎn)工藝過程與設(shè)備的基礎(chǔ)理論、基本知識(shí)和設(shè)計(jì)方法。本專業(yè)畢業(yè)生具有對化工新產(chǎn)品、新工藝、新設(shè)備、新拄術(shù)研究和開發(fā)的初步的能力;具有對化工生產(chǎn)技術(shù)經(jīng)濟(jì)分析與生產(chǎn)管理的能力。

主要課程:無機(jī)化學(xué)、有機(jī)化學(xué)、物理化學(xué)、化工工藝學(xué)、工業(yè)催化反應(yīng)工程、化工儀表、分離工程等。

就業(yè)范圍:可從事化工生產(chǎn)過程運(yùn)行、研究、開發(fā)、設(shè)計(jì)和管理工作。適合于化工廠、化肥廠、焦化廠、煤氣廠、制藥廠等化工企業(yè)的技術(shù)和管理工作,也適應(yīng)于化工研究和設(shè)計(jì)單位的開發(fā)設(shè)計(jì)工作。

2、工業(yè)分析方向

培養(yǎng)目標(biāo):掌握化學(xué)分析與現(xiàn)代儀器材分析基本原理的技術(shù),從事各工業(yè)部門開發(fā)與研究的高級工程技術(shù)人才。通過本科四年學(xué)習(xí),使學(xué)生獲得無機(jī)化學(xué)、分析化學(xué)、有機(jī)化,掌握化學(xué)分析與現(xiàn)代分析儀器的理論、操作方法、分析技能與各個(gè)領(lǐng)域的發(fā)展趨向,具有選擇擬定和改進(jìn)分析方案,研究有關(guān)工業(yè)分析方面問題的能力。

主要課程:無機(jī)化學(xué)、化學(xué)分析、有機(jī)化學(xué)、物理化學(xué)、結(jié)構(gòu)化學(xué)、計(jì)算機(jī)語言、電化學(xué)分析、發(fā)射光譜及原子吸收光譜分析、氣液相色譜分析、有機(jī)分析、可見紫外及紅外分光光度分析、核磁的質(zhì)譜分析。

就業(yè)范圍:可以在化工、煤炭能源轉(zhuǎn)化、冶金、垃質(zhì)礦物、環(huán)保、輕工、食品、建材及商檢等部門的大中型實(shí)驗(yàn)室、研究所從事開發(fā)研究及教育管理等工作。

3、精細(xì)化工方向

培養(yǎng)目標(biāo):培養(yǎng)能從事精細(xì)化工產(chǎn)品合成、生產(chǎn)、工藝設(shè)計(jì)及研制開發(fā)的高級工程技術(shù)人才。精細(xì)化工包括:合成洗滌劑、表面活性劑、助劑、染料、顏料、涂料、香精、色素、合成藥物、食品添加劑方面。

主要課程:化學(xué)、波昔分析、精細(xì)有機(jī)合成單元反應(yīng)、精細(xì)化學(xué)晶化學(xué)、表面活性劑化學(xué)及工藝學(xué)等。

業(yè)務(wù)能力:掌握無機(jī)化學(xué)、有機(jī)化學(xué)、物理化學(xué)、化學(xué)單元操作和化學(xué)反應(yīng)工程的基本理論;掌握精細(xì)化工產(chǎn)品生產(chǎn)工藝的基礎(chǔ)知識(shí);具有精細(xì)化工產(chǎn)品的研制和開發(fā)的能力;掌握精細(xì)化工產(chǎn)品的生產(chǎn)過程,具有工藝設(shè)計(jì)、設(shè)備計(jì)點(diǎn)、技術(shù)改造和管理的初步能力。

4、高分子化工方向

培養(yǎng)目標(biāo):主要學(xué)習(xí)從單元合成高聚物的基本理論和生產(chǎn)工藝及設(shè)備。高聚物包括合成橡膠、合成樹J旨、合成纖維、塑料以及油漆、涂料、粘合劑等產(chǎn)品。還學(xué)習(xí)高聚物成型加工課程,以適應(yīng)加工部門的需要。本專業(yè)主要培養(yǎng)從事高分子合成和高分子材料的研究、開發(fā)設(shè)計(jì)和生產(chǎn)的高級工程技術(shù)人才。

主要課程:有機(jī)化學(xué)、物理化學(xué)、化工原理、化工機(jī)械、商分子化學(xué)、高分子物理學(xué)、高聚物合成工藝學(xué)、高囊物成型加工、算法語盲、企業(yè)管理、技術(shù)經(jīng)濟(jì)等。就業(yè)范圍:可從事有關(guān)高聚物合成的生產(chǎn)、設(shè)計(jì)科研部門和高聚物加工部門{塑料、纖維生產(chǎn)工廠及研究部門)以及有關(guān)應(yīng)用單位工作。5.能源化工方向

此方向主要研究以煤、石油氣、天然氣等為原料經(jīng)過化學(xué)化工過程實(shí)現(xiàn)綜合利用的工業(yè)。包括有機(jī)化工、無機(jī)化工產(chǎn)品的分離與合成,生產(chǎn)的基本原理、方法和工藝過程。以及相應(yīng)的潔凈生產(chǎn)技術(shù)。進(jìn)行新工藝、新設(shè)備和新產(chǎn)品的技術(shù)開發(fā)以及能源清潔利用的研究,以維持整個(gè)社會(huì)經(jīng)濟(jì)的可持續(xù)發(fā)展的要求。

畢業(yè)生適用方向: 化工、冶金、煤炭、電力、建材、城建、環(huán)保等所屬公司、工廠、設(shè)計(jì)院和研究院從事工藝及過程開發(fā)、工程設(shè)計(jì)、新產(chǎn)品研制及技術(shù)改造和生產(chǎn)管理等技術(shù)性工作; 高等院校從事化學(xué)工程與工藝的教學(xué)和科研工作; 從事有關(guān)化工經(jīng)貿(mào)與管理工作。

二、精細(xì)化工和能源化工的發(fā)展前景更為廣闊。

最新報(bào)道,2011亞洲石油和化工科技大會(huì)在天津召開。就在這次天津舉行的亞洲石化科技大會(huì)上,中國石油和化學(xué)工業(yè)聯(lián)合會(huì)會(huì)長李勇武表示,中國石油和化學(xué)工業(yè)在“十一五”期間發(fā)展迅速,多種石化產(chǎn)品產(chǎn)量位居世界前列,2010年全行業(yè)實(shí)現(xiàn)總產(chǎn)值8.88萬億元。到“十二五”末時(shí),這一數(shù)字有望增至15萬億元。

據(jù)了解,“十一五”期間,中國石化產(chǎn)業(yè)在面臨國際金融危機(jī)背景下,成績顯著。李勇武說,2010年,全行業(yè)實(shí)現(xiàn)總產(chǎn)值比2005年時(shí)增加了1.6倍。多種石化產(chǎn)品產(chǎn)量位居世界前列,其中原油產(chǎn)量達(dá)到2.03億噸,原油加工量4.2億噸,乙烯產(chǎn)量1419萬噸。

行業(yè)技術(shù)方面,“十一五”期間,全行業(yè)在新型煤化工技術(shù)、石油勘探開發(fā)技術(shù)、催化新技術(shù)、新型環(huán)保與節(jié)能技術(shù)等重大關(guān)鍵技術(shù)方面取得一系列突破性成果。五年來,行業(yè)進(jìn)出口額增加13倍,2010年時(shí)達(dá)到45878億美元,累計(jì)引進(jìn)外資42718億元。

李勇武透露,由中國石化聯(lián)合會(huì)組織編制的我國石化產(chǎn)業(yè)“十二五”規(guī)劃,即將在5月底出臺(tái)。

綜合國內(nèi)外精細(xì)化工發(fā)展現(xiàn)狀,不難發(fā)現(xiàn),我國精細(xì)化工產(chǎn)業(yè),市場廣闊,發(fā)展?jié)摿薮蟆?/p>

據(jù)統(tǒng)計(jì)全球500強(qiáng)中有17家化工企業(yè),其中前幾位是美國杜邦公司、德國巴斯夫公司、赫斯特公司和拜爾公司,美國的道公司以及瑞士的汽巴—嘉基公司等。它們都有百余年的歷史,在20世紀(jì)70年代以前都大力發(fā)展石油化工,后來逐漸轉(zhuǎn)向精細(xì)化工。德國是發(fā)展精細(xì)化工最早的國家。它們從煤化工起家,在20世紀(jì)50年代以前,以煤化工為原料的占80%左右,但由于煤化工的工藝路線和效益不佳,1970年起以石油為原料的化工產(chǎn)品比例猛增到80 % 以上。我們國家自80年代確定精細(xì)化工為重點(diǎn)發(fā)展目標(biāo)以來,在政策上予以傾斜,發(fā)展較為迅速?!鞍宋濉逼陂g已建成精細(xì)化工技術(shù)開發(fā)中心10個(gè),年生產(chǎn)能力超過800萬噸,產(chǎn)品品種約萬種,年產(chǎn)值達(dá)900億元,已打下了一定的基礎(chǔ)。20世紀(jì)末精細(xì)化工率達(dá)到35%。這與國外發(fā)達(dá)國家相比差距較大。他們僅就電子工業(yè)一項(xiàng)就需精細(xì)化學(xué)品1.6萬種,彩電需7000多種,國內(nèi)產(chǎn)品配套率都不到20%,其余靠進(jìn)口。其它在織物整理劑、皮革涂飾劑等方面更為短缺。另外從我國精細(xì)化工產(chǎn)品的質(zhì)量、品種、技術(shù)水平、設(shè)備和經(jīng)驗(yàn)來看,都不能滿足許多行業(yè)的需求。結(jié)論:化學(xué)工程與工藝專業(yè)前途廣闊,我們要繼續(xù)努力,有計(jì)劃有目標(biāo)的培養(yǎng)自己,培養(yǎng)設(shè)計(jì)、優(yōu)化與管理能力,具有從事科學(xué)研究、產(chǎn)品開發(fā)的能力,更有研發(fā)和應(yīng)用能力。精細(xì)化工與能源化工值得期待。

參考文獻(xiàn)

1.《化學(xué)工程與工藝專業(yè)認(rèn)識(shí)的探索與實(shí)踐》 赫文秀 王亞雄

《化工時(shí)刊》 第24卷第3期

2.《國內(nèi)外能源發(fā)展與陜北能源化工基地建設(shè)》 陜北專論 李樹元 3.報(bào)道《2010年全行業(yè)實(shí)現(xiàn)總產(chǎn)值8.88萬億元》 《廣州日報(bào)》 4.《國內(nèi)外精細(xì)化工的發(fā)展現(xiàn)狀》 中國能源信息網(wǎng)

第三篇:化學(xué)工程與工藝專業(yè)英語詞匯

專業(yè)英語

Unit1 Chemical Industry

1.英譯漢

Carbonate碳酸根 ypropylene聚乙烯epoxy環(huán)氧樹脂 vinyl乙烯基 acetate乙酸根 pharmaceutical醫(yī)藥的 spectrum光譜formaldehyde甲醛Silica二氧化硅 ammonium銨根polyester聚酯 the lion’s share大部分

Antiknock防爆的alkylation烷基化 finishing精加工 desalt脫鹽 differentiate區(qū)別區(qū)diesel oil柴油 lubricating oil潤

滑油 precursor 產(chǎn)物母體 Stripper解吸塔carbonium碳正離子radical原子團(tuán)predominate占優(yōu)勢 degradation降解heterocyclic雜環(huán)stationary固定的 In situ就地原地 在現(xiàn)場

Cybernetics控制論encyclopedia百科全書ethics倫理觀accessory附件shortcut近路捷徑coordinate協(xié)調(diào)的expert system 專家系統(tǒng)Artifical intelligence人工智能generalization規(guī)則proprietary專利的interfacial 界面的 off-the-shelf 成品的(be)gongd for對..有作用authenticity可靠性centrifugal離心力的potential勢能shaft軸condenser冷凝器

reboiler再沸器Diminish減少buoyancy浮力agitator攪拌器simultaneously同時(shí)地magnitude數(shù)量級大小Btu=british thermal unit英熱量單位Heretofore迄今為止 validity有效性

Dimensional因次的 維數(shù)的humidifier增濕器nozzle噴嘴 onset開始發(fā)動(dòng) conduit導(dǎo)管輸送管adhere粘附附finite有限的 lateral橫向的水平的Transition過渡段轉(zhuǎn)變shed light on闡明把..弄明白flask燒瓶長頸瓶viscous粘的2.漢譯英

3.鈉sodium鉀potassium 氨ammonia聚合物polymer聚乙烯polyethylene氯化物chloride 粘度viscosity烴hydrocarbon

催化劑catalyst煉油廠 refinery添加劑 additives

管式的tubular加氫裂解hydrocracking異構(gòu)化isomerization組成constiuent熱解pyrolysis 腐蝕corrosion殘余物residue

液化石油氣LPG=iquefied petroleum gas脫氫dehydrogenation芳構(gòu)化aromatization專利patent參數(shù)parameter 降解degradation定性地qualitatively定量地quantitatively選擇性selectivity

熱力學(xué)thermodynamics 動(dòng)力學(xué)dynamics力學(xué)mechanics 水力學(xué)hydraulics 積分integral微分differential化學(xué)計(jì)量stoichiometry動(dòng)量momentum有幫助的helpful膠體 colloid連續(xù)介質(zhì)continuum 定性的 qualitative

焓enthalpy 熵entropy 宏觀的macroscopic微觀的microscopic 通量flux湍流的turbulent自發(fā)的spontaneous

可逆的reversible傳導(dǎo)conduction對流convection擴(kuò)散diffuse 絕熱地adiabatically橫截面cross section 漩渦 eddy 無因次的 dimensionless 回流reflux

矢量vector 標(biāo)量scalar 相似性similarity類似analogy 剪應(yīng)力shear stress界面張力interfacial tension 脈動(dòng)fluctuation臨界速度critical velocity層流laminar flow湍流turbulence 勢流potential flow錯(cuò)流cross-current

第四篇:專業(yè)介紹-化學(xué)工程與工藝專業(yè)

化學(xué)工程與工藝專業(yè)

本專業(yè)培養(yǎng)德、智、體全面發(fā)展,掌握化工生產(chǎn)過程與設(shè)備的基本原理、研究方法和管理知識(shí),具備從事化工生產(chǎn)、研究、設(shè)計(jì)、開發(fā)和管理的工作能力,能在化工、煉油、能源、醫(yī)藥、生化、食品、環(huán)保、軍工等領(lǐng)域,從事工程設(shè)計(jì)、技術(shù)開發(fā)和科學(xué)研究等方面工作,基礎(chǔ)扎實(shí)、實(shí)踐能力強(qiáng)、具有創(chuàng)新精神、綜合素質(zhì)高的應(yīng)用型高級專門人才。

本專業(yè)的培養(yǎng)特色在于專業(yè)方向?yàn)榛瘜W(xué)工程與工藝方向,重點(diǎn)為無機(jī)化工、有機(jī)化工(石油化工)產(chǎn)品的生產(chǎn)原理及工藝技術(shù),面向整個(gè)化工及相關(guān)行業(yè)、面向現(xiàn)代化化工生產(chǎn)。

本專業(yè)的學(xué)生主要學(xué)習(xí)的課程有:無機(jī)化學(xué)、分析化學(xué)、有機(jī)化學(xué)、物理化學(xué)、化工原理、化工設(shè)備機(jī)械基礎(chǔ)、工程制圖、電工技術(shù)基礎(chǔ)、化工儀表及自動(dòng)化。主要的專業(yè)基礎(chǔ)課和專業(yè)課有:化工熱力學(xué)、化學(xué)反應(yīng)工程、化工分離工程、石油加工工藝學(xué)、化工工藝學(xué)、化工工藝設(shè)計(jì)、化工過程開發(fā)、精細(xì)化學(xué)品合成工藝、化工傳遞過程、工業(yè)催化等。另外還進(jìn)行了化學(xué)與化工實(shí)驗(yàn)技能(包括無機(jī)化學(xué)實(shí)驗(yàn)、分析化學(xué)實(shí)驗(yàn)、物理化學(xué)實(shí)驗(yàn)、有機(jī)化學(xué)實(shí)驗(yàn)、化工原理實(shí)驗(yàn)、化工專業(yè)綜合實(shí)驗(yàn)等)、工程實(shí)踐能力(電工技能操作、金工實(shí)習(xí)、生產(chǎn)實(shí)習(xí)等)、計(jì)算機(jī)運(yùn)用能力(化工模擬仿真、化工CAD、化工計(jì)算軟件應(yīng)用等)、科學(xué)研究與工程設(shè)計(jì)技能(畢業(yè)設(shè)計(jì)、論文工作,做科研助手,參加創(chuàng)新杯、挑戰(zhàn)杯大賽等)大量培訓(xùn)。

學(xué)生畢業(yè)后就業(yè)范圍廣、適應(yīng)能力強(qiáng),可服務(wù)于有機(jī)化工、無機(jī)化工、石油化工、高分子化工、天然氣化工、煤化工、生物化工、軍工和醫(yī)藥等企事業(yè)單位、高科技公司、高等院校、設(shè)計(jì)院和研究所等部門。

第五篇:化學(xué)工程與工藝專業(yè)外語翻譯

Unit 1

Chemical Industry 化學(xué)工業(yè)

Before reading the text below, try to answer following question: 1.When did the modern chemical industry start? 2.Can you give a definition for the chemical industry? 3.What are the contribution which the chemical industry has made to meet and satisfy our needs? 4.Is the chemical industry capital-or labor-intensive? Why? 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently.It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries.Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking.It will be noted that these are all inorganic chemicals.The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin?s discovery if the first synthetic dyestuff—mauve.At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals.This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia.The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time.The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds(ammonium salts for fertilizers and nitric acid for explosives manufacture)with the outbreak of world warⅠin 1914.This initiated profound changes which continued during the inter-war years(1918-1939).1. 化學(xué)工業(yè)的起源 盡管化學(xué)品的使用可以追溯到古代文明時(shí)代,我們所謂的現(xiàn)代化學(xué)工業(yè)的發(fā)展卻是非常近代(才開始的)??梢哉J(rèn)為它起源于工業(yè)革命其間,大約在 1800 年,并發(fā)展成為為其它工 業(yè)部門提供化學(xué)原料的產(chǎn)業(yè)。比如制肥皂所用的堿,棉布生產(chǎn)所用的漂白粉,玻璃制造業(yè)所 用的硅及 Na2CO3.我們會(huì)注意到所有這些都是無機(jī)物。有機(jī)化學(xué)工業(yè)的開始是在十九世紀(jì) 六十年代以 William Henry Perkin 發(fā)現(xiàn)第一種合成染料—苯胺紫并加以開發(fā)利用為標(biāo)志的。20 世紀(jì)初,德國花費(fèi)大量資金用于實(shí)用化學(xué)方面的重點(diǎn)研究,到 1914 年,德國的化學(xué)工業(yè) 在世界化學(xué)產(chǎn)品市場上占有 75%的份額。這要?dú)w因于新染料的發(fā)現(xiàn)以及硫酸的接觸法生產(chǎn) 和氨的哈伯生產(chǎn)工藝的發(fā)展。而后者需要較大的技術(shù)突破使得化學(xué)反應(yīng)第一次可以在非常高 的壓力條件下進(jìn)行。這方面所取得的成績對德國很有幫助。特別是由于 1914 年第一次世界 大仗的爆發(fā),對以氮為基礎(chǔ)的化合物的需求飛速增長。這種深刻的改變一直持續(xù)到戰(zhàn)后(1918-1939)。date bake to/from: 回溯到 dated: 過時(shí)的,陳舊的 stand sb.in good stead: 對。很有幫助。

Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years.The lion?s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s.The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.1940 年以來,化學(xué)工業(yè)一直以引人注目的速度飛速發(fā)展。盡管這種發(fā)展的速度近年來 已大大減慢?;瘜W(xué)工業(yè)的發(fā)展由于 1950 年以來石油化學(xué)領(lǐng)域的研究和開發(fā)大部分在有機(jī)化 學(xué)方面取得。石油化工在 60 年代和 70 年代的迅猛發(fā)展主要是由于人們對于合成高聚物如聚 乙烯、聚丙烯、尼龍、聚脂和環(huán)氧樹脂的需求巨大增加。The chemical industry today

is a very diverse sector of manufacturing industry, within which it plays a central role.It makes thousands of different chemicals which the general public only usually encounter as end or consumer products.These products are purchased because they have the required properties which make them suitable for some particular application, e.g.a non-stick coating for pans or a weedkiller.Thus chemicals are ultimately sold for the effects that they produce.今天的化學(xué)工業(yè)已經(jīng)是制造業(yè)中有著許多分支的部門,并且在制造業(yè)中起著核心的作 用。它生產(chǎn)了數(shù)千種不同的化學(xué)產(chǎn)品,而人們通常只接觸到終端產(chǎn)品或消費(fèi)品。這些產(chǎn)品被 購買是因?yàn)樗麄兙哂心承┬再|(zhì)適合(人們)的一些特別的用途,例如,用于盆的不粘涂層或 一種殺蟲劑。這些化學(xué)產(chǎn)品歸根到底是由于它們能產(chǎn)生的作用而被購買的。2.Definition of the Chemical Industry At the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid.At present, however, many intermediates to products produced, from raw materials like crude oil through(in some cases)many intermediates to products which may be used directly as consumer goods, or readily converted into them.The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry?s sphere of activities.To consider a specific example to illustrate this dilemma, emulsion paints may contain poly(vinyl chloride)/ poly(vinyl acetate).Clearly, synthesis of vinyl chloride(or acetate)and its polymerization are chemical activities.However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry? 2. 化學(xué)工業(yè)的定義 在本世紀(jì)初,要定義什么是化學(xué)工業(yè)是不太困難的,因?yàn)槟菚r(shí)所生產(chǎn)的化學(xué)品是很有限 的,而且是非常清楚的化學(xué)品,例如,燒堿,硫酸。然而現(xiàn)在有數(shù)千種化學(xué)產(chǎn)品被生產(chǎn),從 一些原料物質(zhì)像用于制備許多的半成品的石油,到可以直接作為消費(fèi)品或很容易轉(zhuǎn)化為消費(fèi) 品的商品。困難在于如何決定在一些特殊的生產(chǎn)過程中哪一個(gè)環(huán)節(jié)不再屬于化學(xué)工業(yè)的活動(dòng) 范疇。舉一個(gè)特殊的例子來描述一下這種困境。乳劑漆含有聚氯乙烯/聚醋酸乙烯。顯然,氯乙烯(或醋酸乙烯)的合成以及聚合是化學(xué)活動(dòng)。然而,如果這種漆,包括高聚物,它的 配制和混合是由一家制造配料的跨國化學(xué)公司完成的話,那它仍然是屬于化學(xué)工業(yè)呢還是應(yīng) 當(dāng)歸屬于裝飾工業(yè)中去呢?

It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry.Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry.It is important to bear this in mind when comparing statistical information which is derived from several sources.因此,很明顯,由于化學(xué)工業(yè)經(jīng)營的種類很多并在很多領(lǐng)域與其它工業(yè)有密切的聯(lián)系,所以不能對它下一個(gè)簡單的定義。相反的每一個(gè)收集和出版制造工業(yè)統(tǒng)計(jì)數(shù)據(jù)的官方機(jī)構(gòu)都 會(huì)對如何屆定哪一類操作為化學(xué)工業(yè)有自己的定義。當(dāng)比較來自不同途徑的統(tǒng)計(jì)資料時(shí),記 住這點(diǎn)是很重要的。3.The Need for Chemical Industry The chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals.These are then used to produce consumer products, which make our lives more comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself.At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will

be made on the operation.It is the aim of chemical industry to achieve this.3. 對化學(xué)工業(yè)的需要 化學(xué)工業(yè)涉及到原材料的轉(zhuǎn)化,如石油 首先轉(zhuǎn)化為化學(xué)中間體,然后轉(zhuǎn)化為數(shù)量眾多 的其它化學(xué)產(chǎn)品。這些產(chǎn)品再被用來生產(chǎn)消費(fèi)品,這些消費(fèi)品可以使我們的生活更為舒適或 者作藥物維持人類的健康或生命。在生產(chǎn)過程的每一個(gè)階段,都有價(jià)值加到產(chǎn)品上面,只要 這些附加的價(jià)值超過原材料和加工成本之和,這個(gè)加工就產(chǎn)生了利潤。而這正是化學(xué)工業(yè)要 達(dá)到的目的。It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ)an indication of the range of the chemical industry’s activities,(ⅱ)its influence on our lives in everyday terms, and(ⅲ)how great is society’s need for a chemical industry.Our approach in answering the question will be to consider the industry?s contribution to meeting and satisfying our major needs.What are these? Clearly food(and drink)and health are paramount.Other which we shall consider in their turn are clothing and(briefly)shelter, leisure and transport.在這樣的一本教科書中提出: “我們需要化學(xué)工業(yè)嗎?”這樣一個(gè)問題是不是有點(diǎn)奇怪 呢?然而,先回答下面幾個(gè)問題將給我們提供一些信息:(1)化學(xué)工業(yè)的活動(dòng)范圍,(2)化 學(xué)工業(yè)對我們?nèi)粘I畹挠绊懀?)社會(huì)對化學(xué)工業(yè)的需求有多大。在回答這些問題的時(shí)候 我們的思路將要考慮化學(xué)工業(yè)在滿足和改善我們的主要需求方面所做的貢獻(xiàn)。是些什么需求 呢?很顯然,食物和健康是放在第一位的。其它我們要考慮的按順序是衣物、住所、休閑和 旅行。(1)Food.The chemical industry makes a major contribution to food production in at least three ways.Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements(mainly nitrogen, phosphorus and potassium)which are removed as nutrients by the growing crops during modern intensive farming.Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed

by pests.Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(1)食物?;瘜W(xué)工業(yè)對糧食生產(chǎn)所做的巨大貢獻(xiàn)至少有三個(gè)方面。第一,提供大量可以 獲得的肥料以補(bǔ)充由于密集耕作被農(nóng)作物生長時(shí)所帶走的營養(yǎng)成分。(主要是氮、磷和鉀)。第二,生產(chǎn)農(nóng)作物保護(hù)產(chǎn)品,如殺蟲劑,它可以顯著減少害蟲所消耗的糧食數(shù)量。第三,生 產(chǎn)獸藥保護(hù)家禽免遭疾病或其它感染的侵害。(2)Health.We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g.by curing bacterial infections with antibiotics, and even extending life itself, e.g.–blockers to lower blood pressure.(2)健康。我們都很了解化學(xué)工業(yè)中制藥這一塊在維護(hù)我們的身體健康甚至延長壽命 方面所做出的巨大貢獻(xiàn),例如,用抗生素治療細(xì)菌感染,用 β-抗血栓降低血壓。(3)Clothing.The improvement in properties of modern synthetic fibers over the traditional clothing materials(e.g.cotton and wool)has been quite remarkable.Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron.They are also cheaper than natural materials.衣物。在傳統(tǒng)的衣服面料上,現(xiàn)代合成纖維性質(zhì)的改善也是非常顯著的。用聚脂如滌綸 或聚酰胺如尼龍所制作的 T 恤、上衣、襯衫抗皺、可機(jī)洗,曬干自挺或免燙,也比天然面 料便宜。Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” them to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer.Indeed they now span almost every color and hue of the visible spectrum.Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this can readily be carried out, provided there is a satisfactory market for the product.與此同時(shí),現(xiàn)代合成染料開發(fā)和染色技術(shù)的改善使得時(shí)裝設(shè)計(jì)師們有大量的色彩

可以利 用。的確他們幾乎利用了可見光譜中所有的色調(diào)和色素。事實(shí)上如果某種顏色沒有現(xiàn)成的,只要這種產(chǎn)品確有市場,就可以很容易地通過對現(xiàn)有的色彩進(jìn)行結(jié)構(gòu)調(diào)整而獲得。Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.這一領(lǐng)域中另一些重要進(jìn)展是不褪色,即在洗滌衣物時(shí)染料不會(huì)被洗掉。(4)Shelter, leisure and transport.In terms of shelter the contribution of modern synthetic polymers has been substantial.Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free(i.e.they are resistant to weathering and do not need painting).Other polymers, e.g.urea-formaldehyde and polyurethanes, are important insulating materials for reducing heat losses and hence reducing energy usage.(4)住所,休閑和旅游。講到住所方面現(xiàn)代合成高聚物的貢獻(xiàn)是巨大的。塑料正在取 代像木材一類的傳統(tǒng)建筑材料,因?yàn)樗鼈兏p,免維護(hù)(即它們可以抵抗風(fēng)化,不需油漆)。另一些高聚物,比如,脲甲醛和聚脲,是非常重要的絕緣材料可以減少熱量損失因而減少能 量損耗。

Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.塑料和高聚物的應(yīng)用對休閑活動(dòng)有很重要的影響,從體育跑道的全天候人造篷頂,足球 和網(wǎng)球的經(jīng)緯線,到球拍的尼龍線還有高爾夫球的元件,還有制造足球的合成材料。Likewise the chemical industry’s contribution to transport over the years has led to major improvements.Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles.Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids.Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.多年來化學(xué)工業(yè)對旅游方面所作的貢獻(xiàn)也有很大的提高。一些添加劑如抗氧化劑的開發(fā) 和發(fā)動(dòng)機(jī)油粘度指數(shù)改進(jìn)使汽車日產(chǎn)維修期限從 3000 英里延長到 6000 英里再到 12000 英 里。研發(fā)工作還改進(jìn)了潤滑油和油脂的性能,并得到了更好的剎車油。塑料和高聚物對整個(gè) 汽車業(yè)的貢獻(xiàn)的比例是驚人的,源于這些材料—擋板,輪胎,坐墊和涂層等等—超過 40%。So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry.Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry.很顯然簡單地看一下化學(xué)工業(yè)在滿足我們的主要需求方面所做的貢獻(xiàn)就可以知道,沒有 化工產(chǎn)品人類社會(huì)的生活將會(huì)多么困難。事實(shí)上,一個(gè)國家的發(fā)展水平可以通過其化學(xué)工業(yè) 的生產(chǎn)水平和精細(xì)程度來加以判斷。4.Research and Development(R&D)in Chemical Industries One of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development(R&D).A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals.It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e.the total money received, which has to pay for raw materials, overheads, staff salaries, etc.as well.In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market.Examples include synthetic polymers like nylons and polyesters, and drugs and pesticides.Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.4. 化學(xué)工業(yè)的研究和開發(fā)。發(fā)達(dá)國家化學(xué)工業(yè)飛速發(fā)展的一個(gè)重要原因就是它在研究和開發(fā)方面的投入和投資。通 常是銷售收入的 5%,而研究密集型分支如制藥,投入則加倍。要強(qiáng)調(diào)這里我們所提出的百 分?jǐn)?shù)不是指利潤而是指銷售收入,也就是說全部回收的錢,其中包括要付出原材料費(fèi),企業(yè) 管理費(fèi),員工工資等等。過去這筆巨大的投資支付得很好,使得許多有用的和有價(jià)值的產(chǎn)品

被投放市場,包括一些合成高聚物如尼龍和聚脂,藥品和殺蟲劑。盡管近年來進(jìn)入市場的新 產(chǎn)品大為減少,而且在衰退時(shí)期研究部門通常是最先被裁減的部門,在研究和開發(fā)方面的投 資仍然保持在較高的水平。The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering.Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.化學(xué)工業(yè)是高技術(shù)工業(yè),它需要利用電子學(xué)和工程學(xué)的最新成果。計(jì)算機(jī)被廣泛應(yīng)用,從化工廠的自動(dòng)控制,到新化合物結(jié)構(gòu)的分子模擬,再到實(shí)驗(yàn)室分析儀器的控制。Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes.The latter requires enormous capital investment, since a single plant of this size can now cost $520 million!This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.一個(gè)制造廠的生產(chǎn)量很不一樣,精細(xì)化工領(lǐng)域每年只有幾噸,而巨型企業(yè)如化肥廠和石 油化工廠有可能高達(dá) 500,000 噸。后者需要巨大的資金投入,因?yàn)橐粋€(gè)這樣規(guī)模的工廠要花 費(fèi) 2 億 5 千萬美元,再加上自動(dòng)控制設(shè)備的普遍應(yīng)用,就不難解釋為什么化工廠是資金密集 型企業(yè)而不是勞動(dòng)力密集型企業(yè)。The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries.This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.大部分化學(xué)公司是真正的跨國公司,他們在世界上的許多國家進(jìn)行銷售和開發(fā)市場,他 們在許多國家都有制造廠。這種國際間的合作理念,或全球一體化,是化學(xué)工業(yè)中發(fā)展的趨 勢。大公司通過在別的國家建造制造廠或者是收購已有的工廠進(jìn)行擴(kuò)張。

Unit 2

Research and Development 研究和開發(fā)

Research and development, or R&D as it is commonly referred to, is an activity which is carried out by all sectors of manufacturing industry but its extent varies considerably, as we will see shortly.Let us first understand, or at least get a feel for, what the terms mean.Although the distinction between research and development is not always clear-cut, and there is often considerable overlap, we will attempt to separate them.In simple terms research can be thought of as the activity which produces new ideas and knowledge whereas development is putting those ideas into practice as new process and products.To illustrate this with an example, predicting the structure of a new molecule which would have a specific biological activity and synthesizing it

could be seen as research whereas testing it and developing it to the point where it could be marketed as a new drug could be described as the development part.研究和開發(fā),或通常所稱 R&D 是制造業(yè)各個(gè)部門都要進(jìn)行的一項(xiàng)活動(dòng)。我們馬上可 以看到,它的內(nèi)容變化很大。我們首先了解或先感覺一下這個(gè)詞的含義。盡管研究和開發(fā) 的定義總是分得不很清楚,而且有許多重疊的部分,我們還是要試著把它們區(qū)分開來。簡 單說來,研究是產(chǎn)生新思想和新知識(shí)的活動(dòng),而開發(fā)則是把這些思想貫徹到實(shí)踐中得到新 工藝和新產(chǎn)品的行為。可以用一個(gè)例子來描述這一點(diǎn),預(yù)測一個(gè)有特殊生物活性的分子結(jié) 構(gòu)并合成它可以看成是研究而測試它并把它發(fā)展到可以作為一種新藥推向市場這一階段 則看作開發(fā)部分。1.Fundamental Research and Applied Research In industry the primary reason for carting out R&D is economic and is to strengthen and improve the company?s position and profitability.The purpose of R&D is to generate and provide information and knowledge to reduce uncertainty, solve problems and to provide better data on which management can base decisions.Specific projects cover a wide range of activities and time scales, from a few months to 20 years.1. 基礎(chǔ)研究和應(yīng)用研究 在工業(yè)上進(jìn)行研究和開發(fā)最主要的原因是經(jīng)濟(jì)利益方面,是為了加強(qiáng)公司的地位,提 高公司的利潤。R&D 的目的是做出并提供信息和知識(shí)以減低不確定性,解決問題,以及向 管理層提供更好的數(shù)據(jù)以便他們能據(jù)此做出決定。特別的項(xiàng)目涵蓋很大的活動(dòng)范圍和時(shí)間范 圍,從幾個(gè)月到 20 年。We can pick out a number of areas of R&D activity in the following paragraphs but if we were to start with those which were to spring to the mind of the academic, rather than the industrial, chemist then these would be basic, fundamental(background)or exploratory research and the synthesis of new compounds.This is also labeled “blue skies” research.我們可以在后面的段落里舉出大量的 R&D 活動(dòng)。但是如果我們舉出的點(diǎn)子來源于研 究院而不是工業(yè)化學(xué)家的頭腦,這就是基礎(chǔ)的或探索性的研究 Fundamental research is typically associated with university research.It may be carried out for its own intrinsic interest and it will add to the total knowledge base but no immediate applications of it in the “real world” well be apparent.Note that it will provide a valuable

training in defining and solving problems, i.e.research methodology for the research student who carries it out under supervision.However, later “spin offs” from such work can lead to useful applications.Thus physicists claim that but for the study and development of quantum theory we might not have had computers and nuclear power.However, to take a specifically chemical example, general studies on a broad area such as hydrocarbon oxidation might provide information which would be useful in more specific areas such as cyclohexane oxidation for the production of nylon intermediates.基礎(chǔ)研究通常與大學(xué)研究聯(lián)系在一起,它可能是由于對其內(nèi)在的興趣而進(jìn)行研究并 且這種研究能夠拓寬知識(shí)范圍,但在現(xiàn)實(shí)世界中的直接應(yīng)用可能性是很小的。請注意,這種 以內(nèi)就在提出和解決問題方面提供了極有價(jià)值的訓(xùn)練,比如,在指導(dǎo)下完成研究工作的學(xué)生 所接受的研究方法學(xué)(的訓(xùn)練)。而且,從這些工作中產(chǎn)生的“有用的副產(chǎn)品”隨后也能帶 來可觀的使用價(jià)值。因此,物理學(xué)家宣稱要不是量子理論的研究和發(fā)展我們可能仍然沒有計(jì) 算機(jī)和核能量。不管怎樣,舉一個(gè)特殊的化學(xué)方面的例子吧,在各個(gè)領(lǐng)域如烴的氧化方面所 做的廣泛的研究將為一些特殊的領(lǐng)域如環(huán)己烯氧化生成尼龍中間產(chǎn)物提供有用的信息。Aspects of synthesis could involve either developing new, more specific reagents for controlling particular functional group interconversions, i.e.developing synthetic methodology or complete synthesis of an entirely new molecule which is biologically active.Although the former is clearly fundamental the latter encompasses both this and applied aspects.This term ?applied? has traditionally been more associated with research out in industrial

laboratories, since this is more focused or targeted.It is a consequence of the work being business driven.通過合成可以生產(chǎn)出一些新的、更特殊的試劑以控制特殊的官能團(tuán)轉(zhuǎn)換,即發(fā)展合 成方法或完成一些具有生物活性的新分子的合成。盡管前者顯然屬于基礎(chǔ)性研究而后者則包 括基礎(chǔ)研究和實(shí)用性研究兩部分。所謂“實(shí)用性”習(xí)慣上是指與在工業(yè)實(shí)驗(yàn)室完成的研究聯(lián) 系在一起的,因?yàn)樗吣康男裕巧虡I(yè)行為驅(qū)動(dòng)的結(jié)果。Note, however, that there has been a major change in recent years as academic institutions have increasingly turned to industry for research funding, with the result that much more of their research effort is mow devoted to more applied research.Even so, in academia the emphasis generally is very much on the research rather than the development.然而,請注意。近幾年有很大的變化,大學(xué)研究機(jī)構(gòu)正越來越多地轉(zhuǎn)向工業(yè)界尋求研 究經(jīng)費(fèi),其結(jié)果就是他們的研究工作越來越多地是致力于實(shí)用研究。即使這樣,學(xué)院工作的 重點(diǎn)通常還是在于研究而不是開發(fā)。2.Types of Industrial Research and Development The applied or more targeted type of research and development commonly carried out in industry can be of several types and we will briefly consider each.They are:(ⅰ)product development,(ⅱ)process development,(ⅲ)process improvement and(ⅳ)applications development.Even under these headings there are a multitude of aspects so only a typical example can be quoted in each case.The emphasis on each of these will vary considerably within the different sectors of the chemical industry.2.工業(yè)研究和開發(fā)的類型 通常在生產(chǎn)中完成的實(shí)用型的或有目的性的研究和開發(fā)可以分為好幾類,我們對此 加以簡述。它們是:(1)產(chǎn)品開發(fā);(2)工藝開發(fā);(3)工藝改進(jìn);(4)應(yīng)用開發(fā);每一類

下還有許多分支。我們.對每一類舉一個(gè)典型的例子來加以說明。在化學(xué)工業(yè)的不同部門內(nèi) 每類的工作重點(diǎn)有很大的不同。(1)Product development.Product development includes not only the discovery and development of a new drug but also, for example, providing a new longer-active anti-oxidant additive to an automobile engine oil.Development such as this have enabled servicing intervals to increase during the last decade from 3000 to 6000 to 9000 and now to 12000 miles.Note that most purchasers of chemicals acquire them for the effects that they produce i.e.a specific use.Teflon, or polytetrafluoroethylene(PTFE), may be purchased because it imparts a non-stick surface to cooking pots and pans, thereby making them easier to clean.(1)產(chǎn)品開發(fā)。產(chǎn)品開發(fā)不僅包括一種新藥的發(fā)明和生產(chǎn),還包括,比如說,給一種汽 車發(fā)動(dòng)機(jī)提供更長時(shí)效的抗氧化添加劑。這種開發(fā)的產(chǎn)品已經(jīng)使(發(fā)動(dòng)機(jī))的服務(wù)期限在最近的十年中從 3000 英里提高到 6000、9000 現(xiàn)在已提高到 12000 英里。請注意,大部分的買 家所需要的是化工產(chǎn)品能創(chuàng)造出來的效果,亦即某種特殊的用途。Tdflon,或稱聚四氟乙烯(PTFE)被購買是因?yàn)樗苁钩床隋?、盆表面不粘,易于清洗?2)Process development.Process development covers not only developing a manufacturing process for an entirely new product but also a new process or route for an existing product.The push for the latter may originate for one or more of the following reasons: availability of new technology, change in the availability and/or cost of raw materials.Manufacture of vinyl chloride monomer is an example of this.Its manufacturing route has changed several times owing to changing economics, technology and raw materials.Another stimulus is a marked increase in demand and hence sales volume which can have a major effect on the economics of the process.The early days of penicillin manufacture afford a good example of this.(2)工藝開發(fā)。工業(yè)開發(fā)不僅包括為一種全新的產(chǎn)品設(shè)計(jì)一套制造工藝,還包括為現(xiàn)有 的產(chǎn)品設(shè)計(jì)新的工藝或方案。而要進(jìn)行后者時(shí)可能源于下面的一個(gè)或幾個(gè)原因: 新技術(shù)的利 用、原材料的獲得或價(jià)格發(fā)生了變化。氯乙烯單聚物的制造就是這樣的一個(gè)例子。它的制造 方法隨著經(jīng)濟(jì)、技術(shù)和原材料的變化改變了好

幾次。另一個(gè)刺激因素是需求的顯著增加。因 而銷售量對生產(chǎn)流程的經(jīng)濟(jì)效益有很大影響。Penicillin 早期的制造就為此提供了一個(gè)很好 的例子。The ability of penicillin to prevent the onset of septicemia in battle wounds during the Second World War(1939~1945)resulted in an enormous demand for it to be produced in quantity.Up until then it had only been produced in small amounts on the surface of the fermentation broth in milk bottles!An enormous R&D effort jointly in the U.S.and the U.K.resulted in two major improvements to the process.Firstly a different stain of the mould gave much better yields than the original Penicillium notatum.Secondly the major process development was the introduction of the deep submerged fermentation process.Here the fermentation takes place throughout the broth, provided sterile air is constantly, and vigorously, blown through it.This has enabled the process to be scaled up enormously to modern stainless steel fermenters having a capacity in excess of 50000 liters.It is salutary to note that in the first world war(1914~ 1919)more soldiers died from septicemia of their wounds than were actually killed outright on the battlefield!Penicillin 能預(yù)防戰(zhàn)爭中因傷口感染引發(fā)的敗血癥,因而在第二次世界大戰(zhàn)(1939-1945)

中,penicillin 的需求量非常大,需要大量生產(chǎn)。而在那時(shí),penicillin 只能用在瓶裝牛奶表面 發(fā)酵的方法小量的生產(chǎn)。英國和美國投入了巨大的人力物力聯(lián)合進(jìn)行研制和開發(fā),對生產(chǎn)流 程做出了兩個(gè)重大的改進(jìn)。首先用一個(gè)不同的菌株—黃霉菌代替普通的青霉,它的產(chǎn)量要比 后者高得多。第二個(gè)重大的流程開發(fā)是引進(jìn)了深層發(fā)酵過程。只要在培養(yǎng)液中持續(xù)通入大量 純化空氣,發(fā)酵就能在所有部位進(jìn)行。這使生產(chǎn)能力大大地增加,達(dá)到現(xiàn)代容量超過 5000 升的不銹鋼發(fā)酵器。而在第一次世界大戰(zhàn)中,死于傷口感染的士兵比直接死于戰(zhàn)場上的人還 要多。注意到這一點(diǎn)不能不讓我們心存感激。Process development for a new product depends on things such as the scale on which it is to be manufactured, the by-products formed and their removal/recovery, and required purity.Data will be acquired during this development stage using semi-technical plant(up to 100 liters capacity)which will be invaluable in the design of the actual manufacturing plant.If the plant is to be a very large capacity, continuously operating one, e.g.petrochemical or ammonia, then a pilot plant will first be built and operated to test out the process and acquire more data, these semi-technical or pilot plants will be required for testing, e.g., a pesticide, or customer evaluation, e.g., a new polymer.對一個(gè)新產(chǎn)品進(jìn)行開發(fā)要考慮產(chǎn)品生產(chǎn)的規(guī)模、產(chǎn)生的副產(chǎn)品以及分離/回收,產(chǎn)品所 要求的純度。在開發(fā)階段利用中試車間(最大容量可達(dá) 100 升)獲得的數(shù)據(jù)設(shè)計(jì)實(shí)際的制造 廠是非常寶貴的,例如石油化工或氨的生產(chǎn)。要先建立一個(gè)中試車間,運(yùn)轉(zhuǎn)并測試流程以獲 得更多的數(shù)據(jù)。他們需要測試產(chǎn)品的性質(zhì),如殺蟲劑,或進(jìn)行消費(fèi)評估,如一種新的聚合物。Note that by-products can has a major influence on the economics of a chemical process.Phenol manufacture provides a striking example of this.The original route, the benzenesulphonic acid route, has become obsolete because demand for its by-produce sodium sulfite(2.2 tons/l ton phenol)has dried up.Its recovery and disposal will therefore be an additional charge on the process, thus increasing the cost of the phenol.In contrast the cumene route owes its economic advantage over all the other routes to the strong demand for the by-product acetone(0.6 tons/l ton phenol).The sale of this therefore reduces the net cost of the phenol.注意,副產(chǎn)品對于化學(xué)過程的經(jīng)濟(jì)效益也有很大的影響。酚的生產(chǎn)就是一個(gè)有代表性的 例子。早期的方法,苯磺酸方法,由于它的副產(chǎn)品亞硫酸鈉需求枯竭而變的過時(shí)。亞硫酸鈉 需回收和廢置成為生產(chǎn)過程附加的費(fèi)用,增加了生產(chǎn)酚的成本。相反,異丙基苯方法,在經(jīng) 濟(jì)效益方面優(yōu)于所有其他方法就在于市場對于它的副產(chǎn)品丙酮的迫切需求。丙酮的銷售所得 降低了酚的生產(chǎn)成

本。A major part of the process development activity for a mew plant is to minimize, or ideally prevent by designing out, waste production and hence possible pollution.The economic and environmental advantages of this are obvious.對一個(gè)新產(chǎn)品進(jìn)行工藝開發(fā)的一個(gè)重要部分是通過設(shè)計(jì)把廢品減到最低,或盡可能地防 止可能的污染,這樣做帶來的經(jīng)濟(jì)利益和對環(huán)境的益處是顯而易見的。Finally it should be noted that process development requires a big team effort between chemists, chemical engineers, and electrical and mechanical engineers to be successful.最后要注意,工業(yè)開發(fā)需要包括化學(xué)家、化學(xué)工程師、電子和機(jī)械工程師這樣一支龐大 隊(duì)伍的協(xié)同合作才能取得成功。

(3)Process improvement.Process improvement relates to processes which are already operating.It may be a problem that has arisen and stopped production.In this situation there is a lot of pressure to find a solution as soon as possible so that production can restart, since ‘down time’ costs money.(3)工藝改進(jìn)。工藝改進(jìn)與正在進(jìn)行的工藝有關(guān)。它可能出現(xiàn)了某個(gè)問題使生產(chǎn)停止。在這種情形下,就面臨著很大的壓力要盡快地解決問題以便生產(chǎn)重新開始,因?yàn)楣收掀诤馁M(fèi) 資財(cái)。down time: 故障期 More commonly, however, process improvement will be directed at improving the profitability of the process.This might be achieved in a number of ways.For example, improving the yield by optimizing the process, increasing the capacity by introducing a new catalyst, or lowering the energy requirements of the process.An example of the latter was the introduction of turbo compressors in the production of ammonia by the Haber process.This reduced utility costs(mainly electricity)from $6.66 to %0.56 per ton of ammonia produced.Improving the quality of the product, by process modification, may lead to new markets for the product.然而,更為常見的,工藝改進(jìn)是為了提高生產(chǎn)過程的利潤。這可以通過很多途徑實(shí)現(xiàn)。例如通過優(yōu)化流程提高產(chǎn)量,引進(jìn)新的催化劑提高效能,或降低生產(chǎn)過程所需要的能量???說明后者的一個(gè)例子是在生產(chǎn)氨的過程中渦輪壓縮機(jī)的引進(jìn)。這使生產(chǎn)氨的成本(主要是電)從每噸 6.66 美元下降到 0.56 美元。通過工藝的改善提高產(chǎn)品質(zhì)量也會(huì)為產(chǎn)品打開新的市場。In recent years, however, the most important process improvement activity has been to reduce the environmental impact of the process, i.e., to prevent the process causing any pollution.Clearly there have been two interlinked driving forces for this.Firstly, the public?s concern about the safety of chemicals and their effect on the environment, and the legislation which has followed as a result of this.Secondly the cost to the manufacturer of having to treat waste(i.e., material which cannot be recovered and used r sold)so that it can be safely disposed of, say by pumping into a river.This obviously represents a charge on the process which will increase the cost of the chemical being made.The potential for improvement by reducing the amount of waste is self-evident.然而,近年來,最重要的工藝改進(jìn)行為主要是減少生產(chǎn)過程對環(huán)境的影響,亦即防止生 產(chǎn)過程所引起的污染。很明顯,有兩個(gè)相關(guān)連的因素推動(dòng)這樣做。第一,公眾對化學(xué)產(chǎn)品的 安全性及其對環(huán)境所產(chǎn)生影響的關(guān)注以及由此而制訂出來的法律; 第二,生產(chǎn)者必須花錢對 廢物進(jìn)行處理以便它能安全地清除,比如說,排放到河水中。顯然這是生產(chǎn)過程的又一筆費(fèi) 用,它將增加所生產(chǎn)化學(xué)產(chǎn)品的成本。通過減少廢物數(shù)量提高效益其潛能是不言而喻的。Note, however, with a plant which has already been built and is operating there are usually only very limited physical changes which can be made to the plant to achieve the above aims.Hence the importance, already mentioned, of eliminating waste production at the design stage of a new plant.Conserving energy and thus reducing energy cost has been another major preoccupation in recent years.然而,請注意,對于一個(gè)已經(jīng)建好并正在運(yùn)行的工廠來說,只能做一些有限的改變來達(dá) 到上述目的。因此,上

面所提到的減少廢品的重要性應(yīng)在新公廠的設(shè)計(jì)階段加以考慮。近年 來另一個(gè)當(dāng)務(wù)之急是保護(hù)能源及降低能源消耗。

(4)Applications development.Clearly the discovery of new applications or uses for a product can increase or prolong its profitability.Not only does this generate more income but the resulting increased scale of production can lead to lower unit costs and increased profit.An example is PVC whose early uses included records and plastic raincoats.Applications which came later included plastic bags and particularly engineering uses in pipes and guttering.(4)應(yīng)用開發(fā)。顯然發(fā)掘一個(gè)產(chǎn)品新的用處或新的用途能拓寬它的獲利渠道。這不僅 能創(chuàng)造更多的收入,而且由于產(chǎn)量的增加使單元生產(chǎn)成本降低,從而使利潤提高。舉例來說,PVC 早期是用來制造唱片和塑料雨衣的,后來的用途擴(kuò)展到塑料薄膜,特別是工程上所使 用的管子和排水槽。Emphasis has already been placed on the fact that chemicals are usually purchased for the effect, or particular use, or application which they have.This often means that there will be close liaison between the chemical companies? technical sales representatives and the customer, and the level of technical support for the customer can be a major factor in winning sales.Research and development chemists provide the support for these applications developments.An example is CF3CH3F.This is the first of the CFC replacements and has been developed as a extracting natural products from plant materials.In no way was this envisaged when the compound was first being made for use as a refrigerant gas, but it clearly is an example of applications development.我們已經(jīng)強(qiáng)調(diào)了化學(xué)產(chǎn)品是由于它們的效果,或特殊的用途、用處而得以售出這個(gè)事實(shí)。這就意味著化工產(chǎn)品公司的技術(shù)銷售代表與顧客之間應(yīng)有密切的聯(lián)系。對顧客的技術(shù)支持水平往往是贏得銷售的一個(gè)重要的因素。進(jìn)行研究和開發(fā)的化學(xué)家們?yōu)檫@些應(yīng)用開發(fā)提供了幫 助。CH3CH3F 的制造就是一個(gè)例子。它最開始是用來做含氟氯烴的替代物作冷凍劑的。然 而近來發(fā)現(xiàn)它還可以用作從植物中萃取出來的天然物質(zhì)的溶解劑。當(dāng)它作為制冷劑被制造 時(shí),固然沒有預(yù)計(jì)到這一點(diǎn),但它顯然也是應(yīng)用開發(fā)的一個(gè)例子。3.Variations in R&D Activities across the Chemical Industry Both the nature and amount of R&D carried out varies significantly across the various sectors of the chemical industry.In sectors which involve largescale production of basic chemicals and where the chemistry, products and technology change only slowly because the process are mature, R&D expenditure is at the lower end of the range for the chemical industry.Most of this will be devoted to process improvement and effluent treatment.Examples include ammonia, fertilizers and chloralkali production from the inorganic side, and basic petrochemical intermediates such a ethylene from the organic side.3.化工行業(yè)中研究與開發(fā)活動(dòng)的變化 化學(xué)工業(yè)的不同部門所進(jìn)行的 R&D 的性質(zhì)與數(shù)量都有很大的變化。與大規(guī)模生產(chǎn)的基 礎(chǔ)化工產(chǎn)品有關(guān)的部門中,化學(xué)產(chǎn)品和技術(shù)變化都很慢,因?yàn)榱鞒桃押艹墒?。R&D 經(jīng)費(fèi)支 出屬于化工行業(yè)中低的一端,而且大部分的費(fèi)用是用于過程改進(jìn)和廢水處理。無機(jī)方面的例 子有氨、肥料和氯堿的生產(chǎn),有機(jī)方面的如乙烯等一些基礎(chǔ)石油化學(xué)的中間產(chǎn)物。At the other end of the scale lie pharmaceuticals and pesticides(or plant protection products).Here there are immense and continuous efforts to synthesize new molecules which exert the desired, specific biological effect.A single company may generate 10,000 new compounds for screening each year.Little wonder that some individual pharmaceutical company?s annual R&D

expenditure is now approaching $1000 million!Expressing this in a different way they spend in excess of 14% of sales income(note not profits)on R&D.不一樣規(guī)模生產(chǎn)的是藥品和除草

劑。人們付出了巨大而持續(xù)的努力以合成能產(chǎn)生所希望 的、特殊的生物作用的新分子。一家公司每年可能要合成 10,000 新化合物以供篩選??梢?想象一些醫(yī)藥公司其每年的 R&D 經(jīng)費(fèi)支出高達(dá) 100 億美元。換句話說,他們把超過 14%的 銷售收入投入在 R&D 上。

Unit 3 Typical Activities of Chemical Engineers 化學(xué)工程師的例行工作

The classical role of the chemical engineer is to take the discoveries made by the chemist in the laboratory and develop them into money--making, commercial-scale chemical processes.The chemist works in test tubes and Parr bombs with very small quantities of reactants and products(e.g., 100 ml), usually running “batch”, constant-temperature experiments.Reactants are placed in a small container in a constant temperature bath.A catalyst is added and the reactions proceed with time.Samples are taken at appropriate intervals to follow the consumption of the reactants and the production of products as time progresses.化學(xué)工程師經(jīng)典的角色是把化學(xué)家在實(shí)驗(yàn)室里的發(fā)現(xiàn)拿來并發(fā)展成為能賺錢的、商業(yè)規(guī) 模的化學(xué)過程。化學(xué)家用少量的反應(yīng)物在試管和派式氧彈中反應(yīng)相應(yīng)得到少量的生成物,所 進(jìn)行的通常是間歇性的恒溫下的實(shí)驗(yàn),反應(yīng)物放在很小的置于恒溫水槽的容器中,加點(diǎn)催化 劑,反應(yīng)繼續(xù)進(jìn)行,隨時(shí)間推移,反應(yīng)物被消耗,并有生成物產(chǎn)生,產(chǎn)物在合適的間歇時(shí)間 獲得。By contrast, the chemical engineer typically works with much larger quantities of material and with very large(and expensive)equipment.Reactors can hold 1,000 gallons to 10,000 gallons or more.Distillation columns can be over 100 feet high and 10 to 30 feet in diameter.The capital investment for one process unit in a chemical plant may exceed $100 million!與之相比,化學(xué)工程師通常面對的是數(shù)量多得多的物質(zhì)和龐大的(昂貴的)設(shè)備。反應(yīng) 器可以容納 1000 到 10,000 加侖甚至更多。蒸餾塔有 100 英尺多高,直徑 10 到 30 英尺?;?工廠一個(gè)單元流程的投資可能超過 1 億美元。The chemical engineer is often involved in “scaling up” a chemist-developed small-scale reactor and separation system to a very large commercial plant.The chemical engineer must work closely with the chemist in order to understand thoroughly the chemistry involved in the process and to make sure that the chemist gets the reaction kinetic data and the physical property data needed to design, operate, and optimize the process.This is why the chemical engineering curriculum contains so many chemistry courses.在把化學(xué)家研制的小型反應(yīng)器及分離系統(tǒng)“放大”到很大的商業(yè)化車間時(shí),通常需要化 學(xué)工程師的參與。為了徹底了解過程中的化學(xué)反應(yīng),化學(xué)工程師必須與化學(xué)家密切合作以確 保能得到所需要的反應(yīng)的動(dòng)力學(xué)性質(zhì)和物理性質(zhì)參數(shù)以進(jìn)行設(shè)計(jì)、運(yùn)轉(zhuǎn)和優(yōu)選流程。這就是 為什么化工課程要包括那么多的化學(xué)類課程的原因。The chemical engineer must also work closely with mechanical, electrical, civil, and metallurgical engineers in order to design and operate the physical equipment in a plant--the reactors, tanks, distillation columns, heat exchangers, pumps, compressors, Control and instrumentation devices, and so on.One big item that is always on such an equipment list is piping.One of the most impressive features f a typical chemical plant is the tremendous number of pipes running all over the site, literally hundreds of miles in many plants.These pipes transfer process materials(gases and liquids)into and out of the plant.They also carry utilities(steam, cooling water, air, nitrogen, and refrigerant)to the process units.化學(xué)工程師還必須與機(jī)械、電子、土木建筑和冶金工程師密切協(xié)作以設(shè)計(jì)和操作工廠的 機(jī)械設(shè)備—反應(yīng)器、槽、蒸餾塔、熱交換器、泵、壓縮機(jī)、控制器和儀器設(shè)備等等。在這張 設(shè)備單上還有一大類是管子。化工廠最典型的特征之一就是數(shù)目龐大的管道貫穿所有生產(chǎn) 間。可以毫不夸張地說,在許多車間都有幾百英里長的管道。這些管道輸入和輸出車

間的反 應(yīng)物質(zhì)進(jìn)行傳遞,同時(shí)還可攜帶有用的東西(水蒸氣、冷卻水、空氣、氧、冷卻劑)進(jìn)入操 作單元。To commercialize the laboratory chemistry, the chemical engineer is involved in development, design, construction, operation, sales, and research.The terminology used to label these functions is by no means uniform from company to company, but a rose by any other name is still a rose.Let us describe each of these functions briefly.It should be emphasized that the jobs we shall discuss are “typical” and “classical”, but are by no means the only things that chemical engineers do.The chemical engineer has a broad background in mathematics, chemistry, and physics.Therefore, he or she can, and does, fill a rich variety of jobs in industry, government, and academia.要把實(shí)驗(yàn)室研究商業(yè)化,化學(xué)工程師要參與進(jìn)行開發(fā)、設(shè)計(jì)、建筑、操作、銷售和研究 工作。各個(gè)公司用來表示這些工作的名詞不完全一樣,但萬變不離其宗。讓我們簡單地把每 個(gè)工作描述一下。應(yīng)該強(qiáng)調(diào)的是,我們所討論的工作是“典型的”和“經(jīng)典的”,但并不意 味著化學(xué)工程師只能做這些事。化學(xué)工程師在數(shù)學(xué)、化學(xué)和物理學(xué)方面都有很好的知識(shí)基礎(chǔ),因此,他或她能夠而且確實(shí)適應(yīng)工業(yè)、政府部門、大專院校等非常廣泛的職業(yè)要求。1.Development Development is the intermediate step required in passing from a laboratory-size process to a commercial-size process.The “pilot-plant” process involved in development might involve reactors that are five gallons in capacity and distillation columns that are three inches in diameter.Development is usually part of the commercialization of a chemical process because the scale-up problem is a very difficult one.Jumping directly from test tubes to 10,000-gallon reactors can be a tricky and sometimes dangerous endeavor.Some of the subtle problems involved which are not at all obvious to the uninitiated include mixing imperfections, increasing radial temperature gradients, and decreasing ratios of heat transfer areas to heat generation rates.1.開發(fā) 開發(fā)工作是從實(shí)驗(yàn)室規(guī)模向商業(yè)化規(guī)模轉(zhuǎn)化所必需的中間階段。開發(fā)階段所涉及的 “中 試”流程所使用的反應(yīng)器容量為 5 加侖,蒸餾塔直徑為 3 英寸。開發(fā)通常是化學(xué)流程商業(yè)化 的一部分。因?yàn)椤胺糯蟆币?guī)模是一個(gè)非常困難的問題。直接從試管研制跳到在 10.000 加侖 反應(yīng)器里生產(chǎn)是非常棘手的有時(shí)甚至是危險(xiǎn)的工作。一些(在實(shí)驗(yàn)室研究階段)根本不明顯 的未加以考慮的細(xì)微問題,如混合不均勻,溫度梯度輻射狀升高,熱交換面積逐漸降低以及 熱交換速度下降等(在后一階段變得影響很大)。The chemical engineer works with the chemist and a team of other engineers to design, construct, and operate the pilot plant.The design aspect involves specifying equipment sizes, configuration, and materials of construction.Usually pilot plants are designed to be quite flexible, so that a wide variety of conditions and configurations can be evaluated.化學(xué)工程師與化學(xué)家和其他一些工程師協(xié)作對中師車間進(jìn)行設(shè)計(jì)、安裝和運(yùn)行,設(shè)計(jì)方 面包括確定設(shè)備的尺寸、結(jié)構(gòu)、制造所用的材料。通常中師車間的設(shè)計(jì)是有很大的變通性的,以便能對各種情況和構(gòu)造進(jìn)行評估。Once the pilot plant is operational, performance and optimization data can be obtained in order to evaluate the process from an economic point of view.The profitability is assessed at each stage of the development of the process.If it appears that not enough money will be made to justify the capital investment, the project will be stopped.中試車間一旦開始運(yùn)轉(zhuǎn),就能獲得性能數(shù)據(jù)和選定最佳數(shù)值以便從經(jīng)濟(jì)學(xué)角度對流程進(jìn) 行評價(jià)。對生產(chǎn)過程的每一個(gè)階段可能獲得的利潤進(jìn)行評定。如果結(jié)果顯示投入的資金不能 有足夠的回報(bào),這項(xiàng)計(jì)劃將被停止。The pilot plant offers the opportunity to evaluate materials of construction, measurement techniques, and process control strategies.The experimental findings in the pilot plant can be used to improve the design of the full-scale plant.中師車間還提供了評價(jià)設(shè)備制造材料、測量方法、流程控制技術(shù)的機(jī)會(huì)。中試車間的這 些實(shí)驗(yàn)數(shù)據(jù)對于工業(yè)裝

置設(shè)計(jì)的改善能提供有用的幫助。2.Design Based on the experience and data obtained in the laboratory and the pilot plant, a team of engineers is assembled to design the commercial plant.The chemical engineer?s job is to specify all process flow rates and conditions, equipment types and sizes, materials of construction, process configurations, control systems, safety systems, environmental protection systems, and other relevant specifications.It is an enormous responsibility.2. 設(shè)計(jì) 根據(jù)在實(shí)驗(yàn)室和中試車間獲得的經(jīng)驗(yàn)和數(shù)據(jù),一組工程師集中起來設(shè)計(jì)工業(yè)化的車間?;瘜W(xué)工程師的職責(zé)就是詳細(xì)說明所有過程中的流速和條件,設(shè)備類型和尺寸,制造材料,流 程構(gòu)造,控制系統(tǒng),環(huán)境保護(hù)系統(tǒng)以及其它相關(guān)技術(shù)參數(shù)。這是一個(gè)責(zé)任重大的工作。The design stage is really where the big bucks are spent.One typical chemical process might require a capital investment of $50 to $100 million.That’s a lot of bread!And the chemical engineer is the one who has to make many of the decisions.When you find yourself in that position, you will be glad that you studied as hard as you did(we hope)so that you can bring the best possible tools and minds to bear on the problems.設(shè)計(jì)階段是大把金錢花進(jìn)去的時(shí)候。一個(gè)常規(guī)的化工流程可能需要五千萬到一億美元的 資金投入,有許多的事情要做?;瘜W(xué)工程師是做出很多決定的人之一。當(dāng)你身處其位時(shí),你 會(huì)對自己曾經(jīng)努力學(xué)習(xí)而能運(yùn)用自己的方法和智慧處理這些問題感到欣慰。The product of the design stage is a lot of paper:(1)Flow sheets are diagrams showing all the equipment schematically, with all streams labeled and their conditions specified(flow rate, temperature, pressure, composition, viscosity, density, etc.)設(shè)計(jì)階段的產(chǎn)物是很多圖紙:(1)工藝流程圖。是顯示所有設(shè)備的圖紙。要標(biāo)出所有的流線和規(guī)定的條件(流速、溫度、壓力、構(gòu)造、粘度、密度等)。

(2)P and I(Piping and Instrumentation)Drawings are drawings showing all pieces of equipment(including sizes, nozzle locations, and materials), all piping(including sizes, materials, and valves), all instrumentation(including locations and types of sensors, control valves, and controllers), and all safety systems(including safety valve and rupture disk locations and sizes, flare lines, and safe operating conditions).(2)管道及設(shè)備圖。標(biāo)明所有設(shè)備(包括尺寸、噴嘴位置和材料)、所有管道(包括大 小、控制閥、控制器)以及所有安全系統(tǒng)(包括安全閥、安全膜位置和大小、火舌管、安全 操作規(guī)則)。(3)Equipment specification Sheets are sheets of detailed information on all the equipment precise dimensions, performance criteria, materials of construction, corrosion allowances, operating temperatures, and pressures, maximum and minimum flow rates, and the like.These “spec sheets” are sent to the equipment manufacturers for price bids and then for building the equipment.(3)儀器設(shè)備說明書。詳細(xì)說明所有設(shè)備準(zhǔn)確的空間尺度、操作參數(shù)、構(gòu)造材料、耐 腐蝕性、操作溫度和壓力、最大和最小流速以及諸如此類等等。這些規(guī)格說明書應(yīng)交給中標(biāo) 的設(shè)備制造廠以進(jìn)行設(shè)備生產(chǎn)。3.Construction After the equipment manufacturers(vendors)have built the individual pieces of equipment, the pieces are shipped to the plant site(sometimes a challenging job of logistics, particularly for large vessels like distillation columns).The construction phase is the assembling of all the components into a complete plant.It starts with digging holes in the ground and pouring concrete for foundations for large equipment and buildings(e.g., the control room, process analytical laboratory, and maintenance shops).3. 建造 當(dāng)設(shè)備制造把設(shè)備的所有部分都做好了以后,這些東西要運(yùn)到工廠所在地(有時(shí)這是后 勤部門頗具挑戰(zhàn)性的任務(wù),尤其對象運(yùn)輸分餾塔這樣大型的船只來說)。建造階段要把所有 的部件裝配成完整的工廠,首先要做的就是在地面打洞并傾入混凝土,為大型設(shè)備及建筑物 打下基礎(chǔ)(比如控制室、流程分析實(shí)驗(yàn)室、維修車間)。After these initial activities, the major pieces of equipment and the

steel superstructure are erected.Heat exchangers, pumps, compressors, piping, instrument sensors, and automatic control valves are installed.Control system wiring and tubing are run between the control room and the plant.Electrical wiring, switches, and transformers are installed for motors to drive pumps and compressors.As the process equipment is being installed, it is the chemical engineer’s job to check that it is all hooked together properly and that each piece works correctly.完成了第一步,就開始安裝設(shè)備的主要部分以及鋼鐵上層建筑。要裝配熱交換器、泵、壓縮機(jī)、管道、測量元件、自動(dòng)控制閥??刂葡到y(tǒng)的線路和管道連接在控制室和操作間之間。電線、開關(guān)、變換器需裝備在馬達(dá)上以驅(qū)動(dòng)泵和壓縮機(jī)。生產(chǎn)設(shè)備安裝完畢后,化學(xué)工程師 的職責(zé)就是檢查它們是否連接完好,每部分是否正常工作。This is usually a very exciting and rewarding time for most engineers.You are seeing your ideas being translated from paper into reality.Steel and concrete replace sketches and diagrams.Construction is the culmination of years of work by many people.You are finally on the launch pad, and the plant is going to fly or fizzle!The moment of truth is at hand.對大部分工程師來說這通常是一個(gè)令人激動(dòng)、享受成功的時(shí)候。你將看到自己的創(chuàng)意由 圖紙變?yōu)楝F(xiàn)實(shí)。鋼鐵和混凝土代替了示意圖和表格。建筑是許多人多年辛勞的結(jié)果。你終于 站到了發(fā)射臺(tái)上,工廠將要起飛還是最后失敗。揭曉的那一刻即將到來。Once the check-out phase is complete, “startup” begins.Startup is the initial commissioning of the plant.It is a time of great excitement and round-the-clock activity.It is one of the best learning grounds for the chemical engineer.Now you find out how good your ideas and calculations really are.The engineers who have worked on the pilot plant and on the design are usually part of the startup team.測試階段一旦完成,“運(yùn)轉(zhuǎn)階段”就開始了。啟動(dòng)是工廠的首項(xiàng)任務(wù),是令人興奮的時(shí) 刻和日夜不停的工作。這是化學(xué)工程師最好的學(xué)習(xí)機(jī)會(huì)之一?,F(xiàn)在你可以了解你的構(gòu)思和計(jì) 算究竟有些什么好。參與中試車間和設(shè)計(jì)工作的工程師通常也是啟動(dòng)隊(duì)伍中的人員。The startup period can require a few days or a few moths, depending on the newness of the technology, the complexity of the process, and quality of the engineering that has gone into the design.Problems are frequently encountered that require equipment modifications.This is time consuming and expensive: just the lost production from a plant can amount to thousands of dollars per day.Indeed, there have been some plants that have never operated, because of unexpected problems with control, corrosion, or impurities, or because of economic problem.啟動(dòng)階段需要幾天或幾個(gè)月,根據(jù)設(shè)計(jì)所涉及工藝技術(shù)的新穎、流程的復(fù)雜程度以及工 程的質(zhì)量而定。中間經(jīng)常會(huì)遇到要求設(shè)備完善的問題。這是耗時(shí)耗財(cái)?shù)碾A段:僅僅每天從車 間出來的廢品會(huì)高達(dá)數(shù)千美金。確實(shí),曾經(jīng)有些車間因?yàn)闆]有預(yù)計(jì)到的問題如控制、腐蝕、雜質(zhì)或因?yàn)榻?jīng)濟(jì)方面的問題而從來沒有運(yùn)轉(zhuǎn)過。The engineers are usually on shift work during the startup period.There is a lot to learn in a short time period.Once the plant has been successfully operated at its rated performance, it is turned over to the operating or manufacturing department for routine production of products.在啟動(dòng)階段,工程師們通常需輪流值班。在很短的時(shí)間里有很多的東西需要學(xué)習(xí)。一旦 車間按照設(shè)定程序成功運(yùn)轉(zhuǎn),它就轉(zhuǎn)變?yōu)楫a(chǎn)品的常規(guī)生產(chǎn)或制造部門。4.Manufacturing Chemical engineers occupy a central position in manufacturing.(or “operations” or “production,” as it is called in some companies).Plant technical service group are responsible for the technical aspects of running an efficient and safe plant.They run capacity and performance tests on the plant to determine where the bottlenecks are in the equipment, and then design modifications and additions to remove these bottlenecks.4. 制造 化學(xué)工程師在制造階段占據(jù)中心的位置。車間技術(shù)服務(wù)部門負(fù)責(zé)車間有效而安全地運(yùn)轉(zhuǎn) 的技術(shù)方面。他們進(jìn)行生產(chǎn)

量和性能測試以找出設(shè)備的瓶頸在哪,然后設(shè)計(jì)一些修正或附加 的東西以解決這些瓶頸。Chemical engineers study ways to reduce operating costs by saving energy, cutting raw

material consumption, and reducing production of off-specification products that require reprocessing.They study ways to improve product quality and reduce environmental pollution of both air and water.化學(xué)工程師研究一些方法節(jié)省能源,降低原材料消耗、減少不合要求的需進(jìn)行處理的產(chǎn) 品的生產(chǎn),以降低生產(chǎn)成本。他們還研究一些提高產(chǎn)品質(zhì)量、減少空氣和水中環(huán)境污染的措 施。In addition to serving in plant technical service, many engineers have jobs as operating supervisors.These supervisors are responsible for all aspects of the day-to-day operation of the plant, including supervising the plant operators who run the plant round the clock on a three-shift basis, meeting quality specifications, delivering products at agreed-upon times and in agreed-upon quantities, developing and maintaining inventories of equipment spare parts, keeping the plant well maintained, making sure safe practices are followed, avoiding excessive emissions into the local environment, and serving as spokespersons for the plant to the local community.除了提供技術(shù)服務(wù)外,許多工程師還負(fù)責(zé)生產(chǎn)監(jiān)督。這些監(jiān)督保證工廠日常生產(chǎn)的各個(gè) 方面正常進(jìn)行。包括管理換班工作的操作工,滿足質(zhì)量要求,按期按量發(fā)出產(chǎn)品,生產(chǎn)并保 持設(shè)備備件的存儲(chǔ)量,為車間設(shè)備維修,保證安全規(guī)則被遵守,避免過多排出廢物污染環(huán)境,并且做工廠對當(dāng)?shù)厣鐣?huì)的代言人。5.Technical sales Many chemical engineers find stimulating and profitable careers in technical sales.As with other sales positions, the work involves calling on customers, making recommendations on particular products to fill customer?s needs, and being sure that orders are handled smoothly.The sales engineer is the company?s representative and must know the company?s product line well.The sales engineer?s ability to sell can greatly affect the progress and profitability of the company.5. 技術(shù)銷售 許多化學(xué)工程師發(fā)現(xiàn)在技術(shù)銷售中充滿了刺激性的、有利可圖的機(jī)會(huì)。與其它的銷售業(yè) 務(wù)一樣,這項(xiàng)業(yè)務(wù)包括拜訪客戶,推薦一些特別的商品以滿足客戶的需要,并確保訂單能順 利完成。銷售工程師是公司的代表,必須十分清楚公司的產(chǎn)品生產(chǎn)情況。銷售工程師的銷售 能力極大地影響公司的發(fā)展和利潤。The marketing of many chemicals requires a considerable amount of interaction between engineers in the company producing the chemical and engineers in the company using the chemical.This interaction can take the form of advising on how to use a chemical or developing a new chemical in order to solve a specific problem of a customer.許多化工產(chǎn)品的市場開發(fā)需要制造化工產(chǎn)品公司的工程師與使用化工產(chǎn)品公司的工程 師密切合作。這種合作所采取的方式可以是對如何使用一種化學(xué)產(chǎn)品提出建議,或者是生產(chǎn) 出一種新的化學(xué)產(chǎn)品以解決客戶的某個(gè)特殊的困難。When the sales engineer discovers problems that cannot be handled with confidence, he or she must be able to call on the expertise of specialists.The sales engineer may sometimes have to manage a joint effort among researchers from several companies who are working together to solve a problem.當(dāng)銷售工程師碰到他自己沒有把握解決的問題時(shí),他或她必須要請教專家。有時(shí)銷售工

程師還需組織來自不同公司的研究人員共同努力來解決某個(gè)問題。6.Research Chemical engineers are engaged in many types of research.They work with the chemist in developing new or improved products.They develop new and improved engineering methods(e.g., better computer programs to simulate chemical processes, better laboratory analysis methods for characterizing chemicals, and new types of reactors ad separation systems).They work on improved sensors for on-line physical property measurements.They study alternative process

configurations and equipment.6. 研究 化學(xué)工程師能從事多種類型的研究工作。他們與化學(xué)家聯(lián)合開發(fā)新的或革新的產(chǎn)品。他 們探索新的和改良的工程技術(shù)(比如更好的計(jì)算機(jī)程序以模擬化工工藝,更好的實(shí)驗(yàn)室分析 方法分析有代表性的化學(xué)產(chǎn)品,新型的反應(yīng)和分離系統(tǒng)。)他們研究改進(jìn)的傳感器以進(jìn)行物 理性質(zhì)的在線檢測,他們還研究單個(gè)流程結(jié)構(gòu)和設(shè)備。Research engineers are likely to be found in laboratories or at desks working on problems.They usually work as members of a team of scientists and engineers.Knowledge of the process and common types of process equipment helps the chemical engineer make special contributions to the research effort.The chemical engineer?s daily activities may sometimes closely resemble those of the chemist or physicist working on the same team.研究工程師可能是在實(shí)驗(yàn)室或辦公桌前鉆研難題。他們通常是一組科學(xué)家或工程師中的 一員。了解生產(chǎn)流程以及通常流程所使用的設(shè)備使化學(xué)工程師能在研究工作中做出突出的貢 獻(xiàn)。化學(xué)工程師的日常工作有時(shí)頗似那些化學(xué)家和物理學(xué)家。

Unit 10

What Is Chemical Engineering? 什么是化學(xué)工程學(xué)

In a wider sense, engineering may be defined as a scientific presentation of the techniques and facilities used in a particular industry.For example, mechanical engineering refers to the techniques and facilities employed to make machines.It is predominantly based on mechanical forces which are used to change the appearance and/or physical properties of the materials being worked, while their chemical properties are left unchanged.Chemical engineering encompasses the chemical processing of raw materials, based on chemical and physico-chemical phenomena of high complexity.廣義來講,工程學(xué)可以定義為對某種工業(yè)所用技術(shù)和設(shè)備的科學(xué)表達(dá)。例如,機(jī)械工程 學(xué)涉及的是制造機(jī)器的工業(yè)所用技術(shù)和設(shè)備。它優(yōu)先討論的是機(jī)械力,這種作用力可以改變 所加工對象的外表或物理性質(zhì)而不改變其化學(xué)性質(zhì)。化學(xué)工程學(xué)包括原材料的化學(xué)過程,以 更為復(fù)雜的化學(xué)和物理化學(xué)現(xiàn)象為基礎(chǔ)。Thus, chemical engineering is that branch of engineering which is concerned with the study of the design, manufacture, and operation of plant and machinery in industrial chemical processes.因此,化學(xué)工程學(xué)是工程學(xué)的一個(gè)分支,它涉及工業(yè)化化學(xué)過程中工廠和機(jī)器的設(shè)計(jì)、制造、和操作的研究。Chemical engineering is above all based on the chemical sciences, such as physical chemistry, chemical thermodynamics, and chemical kinetics.In doing so, however, it does not simply copy their findings, but adapts them to bulk chemical processing.The principal objectives that set chemical engineering apart from chemistry as a pure science, is “to find the most economical route of operation and to design commercial equipment and accessories that suit it best of all”.Therefore, chemical engineering is inconceivable without close ties with economics, physics, mathematics, cybernetics, applied mechanics, and other technical sciences.前述化學(xué)工程學(xué)都是以化學(xué)科學(xué)為基礎(chǔ)的,如物理化學(xué),化學(xué)熱力學(xué)和化學(xué)動(dòng)力學(xué)。然 而這樣做的時(shí)候,它并不是僅僅簡單地照搬結(jié)論,而是要把這些知識(shí)運(yùn)用于大批量生產(chǎn)的化 學(xué)加工過程。把化學(xué)工程學(xué)與純化學(xué)區(qū)分開來的首要目的是 “找到最經(jīng)濟(jì)的生產(chǎn)路線并設(shè)計(jì) 商業(yè)化的設(shè)備和輔助設(shè)備盡可能地適應(yīng)它。”因此如果沒有與經(jīng)濟(jì)學(xué),物理學(xué),數(shù)學(xué),控制 論,應(yīng)用機(jī)械以及其它技術(shù)的聯(lián)系就不能想象化學(xué)工程會(huì)是什么樣的。In its early days, chemical engineering was largely a descriptive science.Many of the early textbooks and manuals on chemical engineering were encyclopedias of the commercial production processes known at the time.Progress in science and industry has bought with it an impressive increase in the number of chemical manufactures.Today, petroleum for example serves as the source material for the production of

about 80 thousand chemicals.The expansion of the chemical process industries on the one hand and advances in the chemical and technical sciences on the other have made it possible to lay theoretical foundations for chemical processing.早期的化學(xué)工程學(xué)以描述性為主。許多早期的有關(guān)化學(xué)工程的教科書和手冊都是那個(gè)時(shí) 候已知的商品生產(chǎn)過程的百科全書。科學(xué)和工業(yè)的發(fā)展使化學(xué)品的制造數(shù)量迅速增加。舉例

來說,今天石油已經(jīng)成為八萬多種化學(xué)產(chǎn)品生產(chǎn)的原材料。一方面是化學(xué)加工工業(yè)擴(kuò)張的要 求,另一方面是化學(xué)和技術(shù)水平的發(fā)展為化學(xué)工藝建立理論基礎(chǔ)提供了可能。As the chemical process industries forged ahead, new data, new relationships and new generalizations were added to the subject-matter of chemical engineering.Many branches in their own right have separated from the main stream of chemical engineering, such as process and plant design, automation, chemical process simulation and modeling, etc.隨著化學(xué)加工工業(yè)的發(fā)展,新的數(shù)據(jù),新的關(guān)系和新的綜論不斷添加到化學(xué)工程學(xué)的目 錄中。然后又從主干上分出許多的分支,如工藝和工廠設(shè)計(jì),自動(dòng)化,化工工藝模擬和模型,等等。1.A Brief Historical Outline Historically, chemical engineering is inseparable from the chemical process industries.In its early days chemical engineering which came into being with the advent of early chemical trades was a purely descriptive division of applied chemistry.1. 簡要的歷史輪廓 從歷史上來說,化學(xué)工程學(xué)與化學(xué)加工工業(yè)密不可分。在早期,化學(xué)工程學(xué)隨著早期化學(xué)產(chǎn) 品交易的發(fā)展而出現(xiàn),是應(yīng)用化學(xué)的純描述性的分支。The manufacture of basic chemical products on Europe appears to have begun in the 15th century when small, specialized businesses were first set up to turn out acids, alkalis, salts, pharmaceutical preparations, and some organic compounds.在歐洲,基礎(chǔ)化學(xué)產(chǎn)品的制造出現(xiàn)在 15 世紀(jì)。一些小的、專門的企業(yè)開始創(chuàng)立,生產(chǎn)酸、堿、鹽、藥物中間體和一些有機(jī)化合物。For all the rhetoric of nineteenth-century academic chemists in Britain urging the priority of the study of pure chemistry over applied, their students who became works chemists were little more than qualitative and quantitative analysts.Before the 1880s this was equally true of German chemical firms, who remained content to retain academic consultants who pursued research within the university and who would occasionally provide the material for manufacturing innovation.By the 1880s, however, industrialists were beginning to recognize that the scaling up of consultants? laboratory preparations, and syntheses was a distinctly different activity from laboratory investigation.They began to refer to this scaling problem and its solution as “chemical engineering”—possibly because the mechanical engineers who had already been introduced into works to who seemed best able to understand the process involved.The academic dichotomy of head and hand died slowly.由于十九世紀(jì)英國的學(xué)院化學(xué)家強(qiáng)調(diào)純化學(xué)的研究高于應(yīng)用化學(xué),他們的要成為工業(yè)化學(xué) 家的學(xué)生也只是定性和定量分析者。在 19 世紀(jì) 80 年代以前,德國的化學(xué)公司也是這樣。他 們愿意聘請那些在大學(xué)里進(jìn)行研究的人作顧問,這些人偶爾為制造的革新提供一些意見。然 而到了 80 年代,工業(yè)家們開始認(rèn)識(shí)到要把顧問們在實(shí)驗(yàn)室的準(zhǔn)備和合成工作進(jìn)行放大是一 個(gè)與實(shí)驗(yàn)室研究截然不同的活動(dòng)。他們開始把這個(gè)放大的問題以及解決的方法交給 “化學(xué)工 程師” —這可能是受到已經(jīng)進(jìn)入工廠的機(jī)械工程師的表現(xiàn)的啟發(fā)。由于機(jī)械工程師熟悉所涉 及的加工工藝,是維修日益復(fù)雜化的工業(yè)生產(chǎn)中的蒸氣機(jī)和高壓泵的最合適的人選。學(xué)院研 究中頭和手兩分的現(xiàn)象逐漸消亡。

Unit operation.In Britain when in 1881 there was an attempt to name the new Society of Chemical industry as the “Society of Chemical engineers”, the suggestion was turned down.On

the other hand, as a result of growing pressure from the industrial sector the curricula of technical institutions began to reflect, at last, the need for chemical engineers rather than competent analysts.No longer was mere description of existing industrial processes to suffice.Instead the expectation was that the processes generic to various specific industries would be analyzed, thus making room for the introduction of thermodynamic perspectives, as well as those being opened up buy the new physical chemistry of kinetics, solutions and phases.單元操作。1881 年英國曾經(jīng)準(zhǔn)備把化學(xué)工業(yè)的一個(gè)新的協(xié)會(huì)命名為 “化學(xué)工程師協(xié)會(huì)”,這個(gè)建議遭到了拒絕。另一方面,由于受到來自工業(yè)界日益加重的壓力,大學(xué)的課程開始體 現(xiàn)出除了培養(yǎng)分析工作者還要培養(yǎng)化學(xué)工程師的要求。現(xiàn)在僅僅對現(xiàn)有工業(yè)過程進(jìn)行描述已 經(jīng)不夠了,需要對各種特殊工業(yè)進(jìn)行工藝屬性的分析。這就為引入熱力學(xué)及動(dòng)力學(xué)、溶液和 相等物理化學(xué)新思想提供了空間。A key figure in this transformation was the chemical consultant, George Davis(1850-1907), the first secretary of the Society of Chemical Industry.In 1887 Davis, then a lecture at the Manchester Technical School, gave a series of lectures on chemical engineering, which he defined as the study of “the application of machinery and plant to the utilization of chemical action on the large scale”.The course, which revolved around the type of plant involved in large-scale industrial operations such as drying, crashing, distillation, fermentation, evaporation and crystallization, slowly became recognized as a model for courses elsewhere, not only in Britain, but overseas.The first fully fledged course in chemical engineering in Britain was not introduced until 1909;though in America, Lewis Norton(1855-1893)of MIT pioneered a Davis-type course as early as 1888.在這個(gè)轉(zhuǎn)變期,一位關(guān)鍵的人物是化學(xué)顧問 George Davis,化學(xué)工業(yè)協(xié)會(huì)的首任秘書。1887 年 Davis 那時(shí)是 Manchester ??茖W(xué)校的一名講師,做了一系列有關(guān)化學(xué)工程學(xué)的講座。他把化學(xué)工程學(xué)定義為對“大規(guī)模化學(xué)生產(chǎn)中所應(yīng)用的機(jī)器和工廠”的研究。這們課程包括 了大規(guī)模工業(yè)化操作的工廠的各種類型,如干燥、破碎、蒸餾、發(fā)酵、蒸發(fā)和結(jié)晶。后來逐 漸在別的地方而不僅僅在英國,而是國外,成為許多課程的雛形。英國直到 1909 年化學(xué)工 程學(xué)才成為一門較為完善的課程,而在美國,MIT 的 Lewis Norton 早在 1888 年就已率先開 出了 Davis 型課程。In 1915, Arthur D.Little, in a report on MIT’s programme, referred to it as the study of “unit operations” and this neatly encapsulated the distinctive feature of chemical engineering in the twentieth century.The reasons for the success of the Davis movement are clear: it avoided revealing the secrets of specific chemical processes protected by patents or by an owner?s reticence—factors that had always seriously inhibited manufacturers from supporting academic programmes of training in the past.Davis overcame this difficulty by converting chemical industries “into separate phenomena which could be studied independently” and, indeed, experimented with in pilot plants within a university or technical college workshop.1915 年,Arthur D.little 在一份 MIT 的計(jì)劃書中,提出了“單元操作”這個(gè)概念,這幾 乎為二十世紀(jì)化學(xué)工程學(xué)的突出特點(diǎn)做了定性。Davis 這一倡議的成功原因是很明顯的:它 避免了泄露特殊化學(xué)過程中受專利權(quán)或某個(gè)擁有者的保留權(quán)所保護(hù)的秘密。過去這種泄露已 經(jīng)嚴(yán)重限制了制造者對學(xué)院研究機(jī)構(gòu)訓(xùn)練計(jì)劃的支持。Davis 把化學(xué)工業(yè)分解為“能獨(dú)立進(jìn) 行研究的單個(gè)的工序” 從而克服了這個(gè)困難。并且在大學(xué)或?qū)?茖W(xué)校的工廠里用中試車間進(jìn)

行了試驗(yàn)。In effect he applied the ethics of industrial consultancy by which experience was transmitted “from plant to plant and from process to process in such a way which did not compromise the private or specific knowledge which contributed to a given plant?s profitability”.The concept of unit operations held that any chemical manufacturing process could be resolved into a coordinated series of operations such as pulverizing, drying, roasting, electrolyzing, and so

on.Thus, for example, the academic study of the specific aspects of turpentine manufacture could be replaced by the generic study of distillation, a process common to many other industries.A quantitative form of the unit operations concept emerged around 1920s, just in time for the nation?s first gasoline crisis.The ability of chemical engineers to quantitatively characterize unit operations such as distillation allowed for the rational design of the first modern oil refineries.The first boom of employment of chemical engineers in the oil industry was on.他采用了工業(yè)顧問公司的理念,經(jīng)驗(yàn)傳遞從一個(gè)車間到另一個(gè)車間,從一個(gè)過程到另一 個(gè)過程。這種方式不包含限于某個(gè)給定工廠的利潤的私人的或特殊的知識(shí)。單元操作的概念 使每一個(gè)化學(xué)制造過程都能分解為一系列的操作步驟,如研末、干燥、烤干、電解等等。例 如,學(xué)校對松節(jié)油制造的特殊性質(zhì)的研究可以用蒸餾屬性研究來代替。這是一個(gè)對許多其它 工業(yè)制造也很普通的工藝過程。單元操作概念的定量形式大概出現(xiàn)在 1920 年,剛好是在第 一次全球石油危機(jī)出現(xiàn)的時(shí)候?;瘜W(xué)工程師能賦予單元操作定量特性的能力使得他們合理地 設(shè)計(jì)了第一座現(xiàn)代煉油廠。石油工業(yè)第一次大量聘請化學(xué)工程師的繁榮時(shí)代開始了。During this period of intensive development of unit operations, other classical tools of chemical engineering analysis were introduced or were extensively developed.These included studies of the material and energy balance of processes and fundamental thermodynamic studies of multicomponent systems.在單元操作密集繁殖的時(shí)代,化學(xué)工程學(xué)另一些經(jīng)典的分析手段也開始被引入或廣泛發(fā) 展。這包括過程中材料和能量平衡的研究以及多組分體系中基礎(chǔ)熱力學(xué)的研究。Chemical engineers played a key role in helping the United States and its allies win World War Ⅱ.Theydeveloped routes to synthetic rubber to replace the sources of natural rubber that were lost to the Japanese early in the war.They provided the uranium-235 needed to build the atomic bomb, scaling up the manufacturing process in one step from the laboratory to the largest industrial plant that had ever been built.And they were instrumental in perfecting the manufacture of penicillin, which saved the lives of potentially hundreds of thousands of wounded soldiers.化學(xué)工程師在幫助美國及其盟國贏得第二次世界大戰(zhàn)的勝利中起了關(guān)鍵的作用。他們發(fā) 展了合成橡膠的方法以代替在戰(zhàn)爭初期因日本的封鎖而失去來源的天然橡膠。他們提供了制 造原子彈所需要的鈾-235,把制造過程從實(shí)驗(yàn)室研究一步放大到當(dāng)時(shí)最大規(guī)模的工業(yè)化工 廠,而他們在完善 penicillin 的生產(chǎn)工藝中也是功不可沒,它挽救了幾十萬受傷士兵的生命。The Engineering Science Movement.Dissatisfied with empirical descriptions of process equipment performance, chemical engineers began to reexamine unit operations from a more fundamental point of view.The phenomena that take place in unit operations were resolved into sets of molecular events.Quantitative mechanistic models for these events were developed and used to analyze existing equipment.Mathematical models of processes and reactors were

developed and applied to capital-intensive U.S.industries such as commodity petrochemicals.工程學(xué)運(yùn)動(dòng)。由于不滿意對工藝設(shè)備運(yùn)行的經(jīng)驗(yàn)描述,化學(xué)工程師開始從更基礎(chǔ)的角度 再審視單元操作。發(fā)生在單元操作中的現(xiàn)象可以分解到分子運(yùn)動(dòng)水平。這些運(yùn)動(dòng)的定量機(jī)械 模型被建立并用于分析已有的儀器設(shè)備。過程和放應(yīng)器的數(shù)學(xué)模型也被建立并被應(yīng)用于資金 密集型的美國工業(yè)如石油化學(xué)工業(yè)。Parallel to the growth of the engineering science movement was the evolution of the core chemical engineering curriculum in its present form.Perhaps more than any other development, the core curriculum is responsible for the confidence with which chemical engineers integrate knowledge from many disciplines in the solution of complex problems.與工程學(xué)同時(shí)發(fā)展的是現(xiàn)在的化學(xué)工程課程設(shè)置的變化。也許與其它發(fā)展相比較,核心 課程為化學(xué)工程師運(yùn)用綜合技能解決復(fù)雜問題更加提供了信心。The core

curriculum provides a background in some of the basic sciences, including mathematics, physics, and chemistry.This background is needed to undertake a rigorous study of the topics central to chemical engineering, including: 核心課程固定了一些基礎(chǔ)科學(xué)為背景,包括數(shù)學(xué),物理,和化學(xué)。這些背景對于從事以 化學(xué)工程為中心的課題的艱苦研究是必須的,包括: Multicomponent thermodynamics and kinetics, Transport phenomena, Unit operations, Reaction engineering, Process design and control, and Plant design and systems engineering.多組分體系熱力學(xué)及動(dòng)力學(xué) 傳輸現(xiàn)象 單元操作 反應(yīng)工程 過程設(shè)計(jì)和控制 工廠設(shè)計(jì)和系統(tǒng)工程 This training has enabled chemical engineers to become leading contributors to a number of interdisciplinary areas, including catalysis, colloid science and technology, combustion, electro-chemical engineering, and polymer science and technology.這種訓(xùn)練使化學(xué)工程師們成為了在許多學(xué)科領(lǐng)域做出了突出貢獻(xiàn)的人,包括在催化學(xué)、膠體科學(xué)和技術(shù)、燃燒、電化學(xué)工程、以及聚合物科學(xué)和技術(shù)方面。2.Basic Trends In Chemical Engineering Over the next few years, a confluence of intellectual advances, technologic challenges, and economic driving forces will shape a new model of what chemical engineering is and what chemical engineering do.2.化學(xué)工程學(xué)的基本發(fā)展趨勢 未來幾年里,科學(xué)的進(jìn)步,技術(shù)的競爭以及經(jīng)濟(jì)的驅(qū)動(dòng)力將為化學(xué)工程是什么以及化學(xué)

工程能做什么打造一個(gè)新的模型。The focus of chemical engineering has always been industrial processes that change the physical state or chemical composition of materials.Chemical engineers engage in the synthesis, design, testing scale-up, operation, control and optimization of these processes.The traditional level of size and complexity at which they have worked on these problems might be termed the mesoscale.Examples of this scale include reactors and equipment for single processes(unit operations)and combinations of unit operations in manufacturing plants.Future research at the mesoscale will be increasingly supplemented by dimensions—the microscale and the dimensions of extremely complex systems—the macroscale.化學(xué)工程學(xué)的焦點(diǎn)一直是改變物體的物理狀態(tài)或化學(xué)性質(zhì)的工業(yè)過程?;瘜W(xué)工程師致力 于這些過程的合成、設(shè)計(jì)、測試放大、操作、控制和優(yōu)選。他們從事于解決的這些問題,傳 統(tǒng)的規(guī)模水平和復(fù)雜程度可稱之為中等的,這種規(guī)模的例子包括有單個(gè)過程(單元操作)所 使用的反應(yīng)器和設(shè)備以及制造廠里單元操作的組合,未來的研究將在規(guī)模上逐漸進(jìn)行補(bǔ)充。除了中等規(guī)模,還有微型的以及更為復(fù)雜的系統(tǒng)巨型的規(guī)模。Chemical engineers of the future will be integrating a wider range of scales than any other branch of engineering.For example, some may work to relate the macroscale of the environment to the mesoscale of combustion systems and the microscale of molecular reactions and transport.Other may work to relate the macroscale performance of a composite aircraft to the mesoscale chemical reactor in which the wing was formed, the design of the reactor perhaps having been influenced by studies of the microscale dynamics of complex liquids.未來的化學(xué)工程師將比任何其他分支的工程師在更為寬廣的規(guī)模范圍緊密協(xié)作。例如,有些人可能從事于了解大范圍的環(huán)境與中等規(guī)模的燃燒系統(tǒng)以及微型的分子水平的反應(yīng)和 傳遞之間的關(guān)系。另一些人則從事了解合成的飛機(jī)的的性能與機(jī)翼所用化學(xué)反應(yīng)器及反應(yīng)器 的設(shè)計(jì)和對此有影響的復(fù)雜流體動(dòng)力學(xué)的研究工作。Thus, future chemical and engineers will conceive and rigorously solve problems on a continuum of scales ranging from microscale.They will bring new tools and insights to research and practice from other disciplines: molecular biology, chemistry, solid-state physics, materials science, and electrical engineering.And they will make increasing use of computers, artificial intelligence, and expert system in problem solving, in product and process design, and in manufacturing.因此,未

來的化學(xué)工程師們要準(zhǔn)備好解決從微型的到巨型的規(guī)模范圍內(nèi)出現(xiàn)的問題。他 們要用來自其它學(xué)科的新的工具和理念來研究和實(shí)踐:分子生物學(xué),化學(xué),固體物理學(xué),材 料學(xué)和電子工程學(xué)。他們還將越來越多地使用計(jì)算機(jī)、人工智能以及專家系統(tǒng)來解決問題,進(jìn)行產(chǎn)品和過程設(shè)計(jì),生產(chǎn)制造。Two important development will be part of this unfolding picture of the discipline.Chemical engineers will become more heavily involved in product design as a complement to process design.As the properties of a product in performance become increasingly linked to the way in which it is processed, the traditional distinction between product and process design will become blurred.There will be a special design challenge in established and emerging industries that produce proprietary, differentiated products tailored to exacting performance specifications.These products are characterized by the need for rapid innovatory ad they are quickly superseded in the marketplace by newer products.在這個(gè)學(xué)科中還有兩個(gè)重要的發(fā)展是我們前面沒有提到的: 化學(xué)工程師將越來越多地涉及到對過程設(shè)計(jì)進(jìn)行補(bǔ)充的產(chǎn)品設(shè)計(jì)中。因?yàn)楫a(chǎn)品所表現(xiàn)出 來的性能將逐漸與它被加工的途徑掛鉤。傳統(tǒng)概念上產(chǎn)品設(shè)計(jì)與過程設(shè)計(jì)之間的區(qū)別將變得 模糊,不再那么明顯。在已有的和新興的工業(yè)中將出現(xiàn)一個(gè)特殊的設(shè)計(jì)競爭,那就是生產(chǎn)有 專利權(quán)的、有特點(diǎn)的產(chǎn)品以適應(yīng)嚴(yán)格的性能指標(biāo)。這些產(chǎn)品的特征是服從快速革新的需要,因而他們將在市場上很快地被更新的產(chǎn)品所取代。Chemical engineers will be frequent participants in multidisciplinary research efforts.Chemical engineering has a long history of fruitful interdisciplinary research with the chemical sciences, particularly industry.The position of chemical engineering as the engineering discipline with the strongest tie to the molecular sciences is an asset, since such sciences as chemistry, molecular biology, biomedicine, and solid-state physics are providing the seeds for tomorrow?s technologies.Chemical engineering has a bright future as the “interfacial discipline”, that will bridge science and engineering in the multidisciplinary environments where these new technologies will be brought into being.化學(xué)工程師將經(jīng)常性地介入到多學(xué)科領(lǐng)域的研究工程?;瘜W(xué)工程師參與跨學(xué)科研究與化 學(xué)科學(xué)、特種工業(yè)進(jìn)行合作具有悠久的歷史。隨著工程學(xué)與分子科學(xué)最緊密地聯(lián)系在一起,化學(xué)工程學(xué)的地位也越來越崇高。因?yàn)槿缁瘜W(xué)、分子生物學(xué)、生物醫(yī)學(xué)以及固體物理這樣的 科學(xué)都是為明天的科學(xué)技術(shù)提供種子,作為“界面科學(xué)”,化學(xué)工程學(xué)具有光明的未來,它 將在多學(xué)科領(lǐng)域中搭建科學(xué)和工程學(xué)之間的橋梁,而在這里將出現(xiàn)新的工業(yè)技術(shù)。

Unit 20 Material Science and Chemical Engineering 材料科學(xué)和化學(xué)工程

A few years ago, who would have dreamed that an aircraft could circumnavigate the earth without landing or refueling? Yet in 1986 the novel aircraft Voyager did just that.The secret of Voyager?s long flight lies in advanced materials that did not exist a few years ago.Much of the airframe was constructed from strong, lightweight polymer-fiber composite sections assembled with durable, high-strength adhesive;the engine was lubricated with a synthetic multicomponent liquid designed to maintain lubricity for a long time under continuous operation.These special materials typify the advances being made by scientists and engineers to meet the demands of modern society.幾年以前,誰會(huì)想到一架飛機(jī)可以繞地球航行而中途不需要著陸或添加燃料?而在 1986 年新型的飛機(jī)航海者就做到了這一點(diǎn)。航海者具備長途飛行能力的秘密就在于幾年前 還沒有出現(xiàn)的先進(jìn)的材料。其機(jī)身大部分是由強(qiáng)度大、質(zhì)量輕的聚合纖維用耐久的、高強(qiáng)度 的粘合劑組裝而成的。而發(fā)動(dòng)機(jī)潤滑油是合成的多組分液體,可維持很長時(shí)間連續(xù)運(yùn)轉(zhuǎn)的潤 滑性。這些特殊材料具有科學(xué)家和工程師們?yōu)闈M足現(xiàn)代社會(huì)的需求所發(fā)明 的先進(jìn)技術(shù)。The future of industries such as transportation, communications, electronics, and energy conversion hinges on new and improved materials and the processing technologies required to produce them.Recent years have seen rapid advances in our understanding of how to combine substances into materials with special, high-performance properties and how to best use these materials in sophisticated designs.如運(yùn)輸、通訊、電子、能量轉(zhuǎn)換這些工業(yè)的未來多依賴新的、先進(jìn)的材料以及生產(chǎn)中所 需要的加工技術(shù)。近年來,在我們了解了如何把一些特殊的具有高性能的物質(zhì)融入原材料并 且怎樣最好地在復(fù)雜設(shè)計(jì)中使用這些材料后,這方面已有了很大的發(fā)展。The revolution in materials science and engineering presents both opportunities and challenges to chemical engineers.With their basic background in chemistry, physics, and mathematics and their understanding of transport phenomena, thermodynamics, reaction engineering, and process design, chemical engineers can bring innovative solutions to the problems of modern materials technologies.But it is imperative that they depart from the traditional “think big” philosophy of the profession;to participate effectively in modern materials science and engineering they must learn to “think small” the crucial phenomena in making modern advanced materials occur at the molecular and microscale levels, and chemical engineers must understand and learn to control such phenomena if they are to engineer the new products and processes for making them.This crucial challenge is illustrated in the selected materials areas described in the following sections.材料科學(xué)和工程的革命為化學(xué)工程師帶來了機(jī)會(huì),也帶來了挑戰(zhàn)。化學(xué)工程師憑借他們 在化學(xué)、物理和數(shù)學(xué)方面的知識(shí)基礎(chǔ)以及他們對傳輸現(xiàn)象、動(dòng)力學(xué)、反應(yīng)工程和過程設(shè)計(jì)的 了解,能夠創(chuàng)造性地解決現(xiàn)代材料技術(shù)中的問題。但是他們一定要擯棄掉傳統(tǒng)職業(yè)理念中 “考 慮大的”這個(gè)習(xí)慣,要有效地投入現(xiàn)代材料科學(xué)和工程中必須要學(xué)會(huì)“從小處思考”。在制

造現(xiàn)代先進(jìn)材料時(shí)的關(guān)鍵現(xiàn)象是發(fā)生在分子級和微觀的水平。如果化學(xué)工程師要為這些新材 料設(shè)計(jì)新產(chǎn)品和工藝就必須了解并且學(xué)會(huì)控制這些現(xiàn)象。在下面選擇介紹的幾種材料領(lǐng)域里 我們將敘述這種困難的挑戰(zhàn)。1.Polymers The modern era of polymer science belongs to the chemical engineer.Over the years, polymer chemists have invented a wealth of novel macromolecules and polymers.Yet understanding how these molecules can be synthesized and processed to exhibit their maximum theoretical properties is still a frontier for research.Only recently has modern instrumentation been developed to help us understand the fundamental interactions of macromolecules with themselves, with particulate solids, with organic and inorganic fibers, and with other surfaces.Chemical engineers are using these tools to probe the microscale dynamics of macromolecules.Using the insight gained from these techniques, they are manipulating macromolecular interactions both to develop improved processes and to create new materials.1.聚合物 現(xiàn)代聚合物科學(xué)的時(shí)代屬于化學(xué)工程師。這些年來,聚合物化學(xué)家創(chuàng)造了大量的高分子 和聚合物。然而了解這些高分子是怎樣被合成并加工以最大限度地具備理論性質(zhì)仍然是研究 的前沿領(lǐng)域。一直到最近才開發(fā)了現(xiàn)代儀器幫助我們了解高分子之間、高分子與固體粒子、有機(jī)和無機(jī)纖維與其它界面之間的相互作用?;瘜W(xué)工程師正使用這些工具探索高分子的微型 動(dòng)力學(xué)現(xiàn)象,他們利用從這些技術(shù)中獲得的知識(shí),正在處理高分子間的反應(yīng)以開發(fā)先進(jìn)的工 藝并制造新的材料。The power of chemical processing for controlling materials structure on the microscale is illustrated by the current generation of high-strength polymer fibers, some of which have strength-to weigh ratios an order of magnitude greater than steel.This spontaneous orientation is the result of both the processing conditions chosen and the highly rigid linear molecular structure of the aramid polymer.During spinning, the

oriented regions in the liquid phases align with the fiber axis to give the resulting fiber high strength and rigidity.The concept of spinning fibers from anisotropic phases has been extended to both solutions and melts of newer polymers, such as polybenzothiazole, as well as traditional polymers such as polyethylene.Ultrahigh-strength fibers of polyethylene have been prepared by gel spinning.The same concept, controlling the molecular orientation of polymers to produce high strength, is also being achieved through other processes, such as fiber-stretching carried out under precise conditions.通過化學(xué)加工控制材料微型結(jié)構(gòu)的能力可用現(xiàn)代高強(qiáng)度聚合纖維進(jìn)行描述。一些聚合纖維 的強(qiáng)度-質(zhì)量比比鋼鐵高一個(gè)數(shù)量級。它的自由取向是由所選擇的加工條件以及芳香族聚酰 胺的高度剛性的線性分子結(jié)構(gòu)所決定的。在紡絲時(shí),液相中的定向部分是圍繞纖維軸方向排 列而使得纖維具有高強(qiáng)度和高硬度,各向異性的紡絲纖維的概念則在新聚合物如聚苯并噻 唑、聚乙烯的溶解和熔融方面都有了延伸。超高強(qiáng)度的聚乙烯纖維是通過凍膠紡絲的方法制 備的。同樣的,控制聚合物的分子取向以生產(chǎn)高強(qiáng)度產(chǎn)品也可以通過其它的工藝途徑,如在 極其精確的條件下進(jìn)行纖維拉伸而完成。In addition to processes that result in materials with specific high-performance properties, chemical engineers continue to design new processes for the low-cost manufacture of polymers.除了這些可以得到具有特別高性能的材料的加工過程,化學(xué)工程師們還設(shè)計(jì)一些新的工藝

過程以生產(chǎn)低成本的聚合物。2.Polymer Composites Polymer composites consist of high-modulus fibers embedded in and bonded to a continuous polymer matrix.These gibers may be shut, long, or continuous.They may be randomly oriented so that they impart greater strength or stiffness in all directions to the composite(isotropic composites), or they may be oriented in a specific direction so that the high-performance characteristics of the composite are exhibited preferentially along one axis of the material(anisotropic composites).These latter fiber composites are based on the principle of one-dimensional microstructural reinforcement by disconnected, tension-bearing “cables” or “rods”.2.聚合復(fù)合材料 復(fù)合材料包括在一個(gè)聚合物母體上嵌入或粘合上高強(qiáng)度或高模數(shù)纖維。這些纖維可能是短 的、長的或連續(xù)的。它們可能是隨意取向的而使復(fù)合材料在所有方向上都具有較大的強(qiáng)度或 硬度,也可能沿某個(gè)特殊方向取向而使復(fù)合材料的高性能優(yōu)先沿著某個(gè)軸線表現(xiàn)出來。后者 是根據(jù)一向微結(jié)構(gòu)加固的原理,通過不連貫的、拉伸支撐電纜線或電纜條達(dá)到目的。To achieve a material with improved properties(e.g., strength, stiffness, or toughness)in more than one dimension, composite laminates can be formed by bonding individual sheets of anisotropic composite in alternating orientations.Alternatively, two-dimensional reinforcement can be achieved in a single sheet by using fabrics of high-performance fibers that have been woven with enough bonding in the crossovers that the reinforcing structure acts as a connected net or trusswork.One can imagine that an interdisciplinary collaboration between chemical engineers and textile engineers might lead to ways of selecting the warp, woof, and weave in fabrics of high-strength fibers to end up with trussworks for composites with highly tailored dimensional distributions of properties.要得到在多個(gè)方向上具有優(yōu)良性能的材料,可以通過改變角度粘結(jié)各向異性的復(fù)合片得到 合成板。另一方面,兩向強(qiáng)化的材料可以通過把高性能的纖維編織成一個(gè)平面,面上有足夠 的粘結(jié)力而使加固結(jié)構(gòu)表現(xiàn)得就像聯(lián)結(jié)起來的網(wǎng)或桁架。你可以想象,化學(xué)工程師和紡織工 程師之間的學(xué)術(shù)合作將有利于選擇經(jīng)線、緯線和高強(qiáng)度纖維的編織方法,以得到高選擇性能 分布的桁架型的復(fù)合材料。First-generation polymer composites(e.g., fiberglass)used thermosetting epoxy polymers reinforced with randomly oriented short glass fibers.The filled epoxy resin could be cured into a permanent shape in a mold to give lightweight, moderately

strong shapes.第一代聚合合成材料(如玻璃纖維)使用熱固性環(huán)氧樹脂聚合物。它是用任意取向的短玻 璃纖維進(jìn)行強(qiáng)化的。環(huán)氧樹脂填充在一個(gè)模型中被塑化成永久的形狀而得到輕質(zhì)的、強(qiáng)度適 當(dāng)?shù)哪V扑苣z。The current generation of composites is being made by hand laying woven glass fabric onto a mold or perform, impregnating it with resin, and curing to shape.Use of these composites was pioneered for certain types of military aircraft because the lighter airframes provided greater cruising range.Today, major components for aircraft and spacecraft are manufactured in this manner as are an increasing number of automobile components.The current generation of composites are being used in automotive and truck parts such as body panels, hoods, trunk lids,ducts, drive shafts, and fuel tanks.In such applications, they exhibit a better strength-to-weight ratio than metals, as well as improved corrosion resistance.For example, a polymer composite automobile hood is slightly lighter than one of aluminum and more than twice as light as one of steel.The level of energy required to manufacture this hood is slightly lower than that required for steel and about 20 percent of that for aluminum;molding and tooling costs are lower and permit more rapid model changeover to accommodate new designs.現(xiàn)代復(fù)合材料是用手工把編織好的玻璃纖維放到模具或預(yù)型件中,然后用樹脂灌注,固化 成型后制得的。這些復(fù)合材料最先是使用在某些型號的軍用飛機(jī)上。因?yàn)楸容^輕的機(jī)身使飛 行巡航范圍增大。今天,飛機(jī)和航空飛船的大部分部件都是這樣制造的,而且汽車也正在加 入到這個(gè)行列?,F(xiàn)代復(fù)合材料正被應(yīng)用于小汽車和載重卡車的車身面板、車棚、后行李箱蓋、管道、驅(qū)動(dòng)軸和燃料罐。在這些應(yīng)用中,復(fù)合材料表現(xiàn)出比金屬更好的強(qiáng)度-質(zhì)量比和更優(yōu) 良的抗腐蝕性。例如,一種聚合復(fù)合材料制成的汽車車棚比用鋁質(zhì)的輕一點(diǎn),比鋼鐵的輕兩 倍,但這種方法所需能量比鋼鐵的低一點(diǎn),比鋁的低 20%。模塑和刀具加工的成本也比較 低,使模型的改變可以更快而適應(yīng)新設(shè)計(jì)的要求。The mechanical strength exhibited by these composites is essentially that of the reinforcing glass fibers, although this is often compromised by structural defects.Engineering studies are yielding important information about how the properties of these structures are influenced by the nature of the glass-resin interface and by structural voids and similar defects and how microdefects can propagate into structural failure.These composites and the information gained from studying them have set the stage for the next generation of polymer composites, based on high-strength fibers such as the aramids.這些復(fù)合材料表現(xiàn)出來的機(jī)械強(qiáng)度主要是由強(qiáng)化玻璃纖維決定的,盡管結(jié)構(gòu)缺陷會(huì)使強(qiáng)度 減弱。工程學(xué)研究正提供重要的信息說明材料結(jié)構(gòu)是如何受到玻璃樹脂的界面性質(zhì)、構(gòu)造空 隙和類似缺陷的影響以及這些微缺陷是如何擴(kuò)散產(chǎn)生構(gòu)造裂縫的。這些復(fù)合材料以及從對它 們的研究中獲得的信息使人類進(jìn)入到生產(chǎn)第二代聚合復(fù)合材料的階段,即以高強(qiáng)度纖維如芳 香族聚酰胺為基礎(chǔ)的復(fù)合材料。3.Advanced Ceramics For most people, the word “ceramics” conjures up the notion of things like china, pottery, tiles, and bricks.Advanced ceramics differ from these conventional ceramics by their composition, processing, and microstructure.For example: 3.現(xiàn)代陶瓷 對大多數(shù)人來說,“陶瓷”這個(gè)詞會(huì)讓人聯(lián)想到瓷器、陶器、磚、瓦這些東西?,F(xiàn)代陶 瓷以它們的組成、加工過程和微細(xì)結(jié)構(gòu)區(qū)別于這些傳統(tǒng)的陶瓷。例如: Conventional ceramics are made from natural raw materials such as clay or silica;advanced ceramics require extremely pure man-made starting materials such as silicon carbide, silicon nitride, zirconium oxide, or aluminum oxide and may also incorporate sophisticated additives to produce specific microstructures.傳統(tǒng)的陶瓷是用天然的原料如粘土或硅石制成的?,F(xiàn)代陶瓷則要求非常純的人造原料如 碳化硅、氮化硅、氧化鋯或氧化鋁,可能還要滲入一些復(fù)雜的添加劑來產(chǎn)生

特殊的微結(jié)構(gòu)。Conventional ceramics initially take shape on a potter’s wheel or by slip casting and are fired

(sintered)in kilns;advanced ceramics are formed and sintered in more complex processes such as hot isostatic pressing.傳統(tǒng)陶瓷是先在陶工輪上或粉漿澆注成型,然后在窯里燒結(jié)定型。現(xiàn)代陶瓷是用更為復(fù) 雜的工藝過程如高溫靜壓成型法來定型的。The microstructure of conventional ceramics contains flaws readily visible under optical microscopes;the microstructure of advanced ceramics is far more uniform and typically is examined for defects under electron microscopes capable of magnifications of 50,000 times or more.傳統(tǒng)陶瓷的微結(jié)構(gòu)容易形成在光學(xué)顯微鏡下就可以看見的裂痕。而現(xiàn)代陶瓷的微結(jié)構(gòu)則 要均勻得多,一般要在 5 萬倍或更大倍數(shù)的電子顯微鏡下才能檢查出瑕疵來。Advanced ceramics have a wide range of application.In many cases, they do not constitute a final product in themselves, but are assembled into components critical to the successful performance of some other complex system.Commercial applications of advanced ceramics can be seen in cutting tools, engine nozzles, components of turbines and turbochargers, tiles for space vehicles, cylinders to store atomic and chemical waste, gas and oil drilling valves, motor plates and shields, and electrodes for corrosive liquids.現(xiàn)代陶瓷的應(yīng)用范圍更為廣泛。在很多情況下,現(xiàn)代陶瓷并未直接成為最終產(chǎn)品,而是組 合在一些復(fù)雜的系統(tǒng)中成為優(yōu)良性能的關(guān)鍵部分。現(xiàn)代陶瓷的商業(yè)應(yīng)用可以在切削工具、發(fā) 動(dòng)機(jī)噴嘴、渦輪和渦輪增壓器的元件、太空艙的瓦面、儲(chǔ)藏原子和化學(xué)廢物的圓柱體、氣體 和石油鉆探閥、電動(dòng)極板和防護(hù)罩以及腐蝕性液體中的電極等等方面看見。4.Ceramic Composites Like polymer composites, ceramic composites consist of high-strength of high-modulus fibers embedded in a continuous matrix.Fibers may be in the form of “whiskers” of substances such as silicon carbide or aluminum oxide that are grown as single crystals and that therefore have fewer defects than the same substances in a bulk ceramic.Fibers in a ceramic composite serve to block crack propagation;a growing crack may be deflected to a fiber or might pull the fiber from the matrix.Both processes absorb energy, slowing the propagation of the crack.The strength, stiffness, and toughness of a ceramic composite is principally a function of the reinforcing fibers, but the matrix makes its own contribution to these properties.The ability of the composite material to conduct heat and current is strongly influenced by the inductivity of the matrix.The interaction between the fiber and the matrix is also important to the mechanical properties of the composite material and is mediated by the chemical compatibility between fiber and matrix at the fiber surface.A prerequisite for adhesion between these two materials is that the matrix, in its fluid form, be capable of wetting the fibers.Chemical bonding between the two components can then take place.4.陶瓷合成材料 像聚合復(fù)合材料一樣,陶瓷復(fù)合材料也包括在連續(xù)的基質(zhì)上嵌入高強(qiáng)度或高模數(shù)的纖 維。纖維可以是碳化硅或氧化鋁以“晶須”的形式出現(xiàn),然后生長為單個(gè)晶體。這與同樣的 物質(zhì)直接嵌入在大塊陶瓷上相比較所產(chǎn)生裂紋較少。陶瓷復(fù)合體上的纖維可以阻礙裂紋的擴(kuò) 散。正在生長的裂紋會(huì)向纖維處偏移或使纖維脫離基質(zhì)。這兩個(gè)過程都要吸收能量,從而減

慢了裂紋的擴(kuò)散。陶瓷復(fù)合材料的強(qiáng)度、硬度和韌性主要取決于強(qiáng)化纖維,但是基質(zhì)也會(huì)對 這些性質(zhì)產(chǎn)生影響。復(fù)合材料的導(dǎo)熱和導(dǎo)電性能受基質(zhì)傳導(dǎo)系數(shù)的影響很大。纖維和基質(zhì)之 間的相互作用對復(fù)合材料機(jī)械性能的影響也很大,并可通過纖維表面纖維和基質(zhì)間的化學(xué)兼 容性進(jìn)行調(diào)整,這兩種物質(zhì)粘合在一起的前提就是基質(zhì)以流體形態(tài)存在時(shí)能潤濕纖維。兩種 組分間形成了化學(xué)鍵。As with advanced ceramics, chemical reactions play a

crucial role in the fabrication of ceramic composites.Both defect-free ceramic fibers and optimal chemical bonds between fiber and matrix are required for these composites to exhibit the desired mechanical properties in use.Engineering these chemical reactions in reliable manufacturing processes requires the expertise of chemical engineers.與現(xiàn)代陶瓷的產(chǎn)生一樣,化學(xué)反應(yīng)在陶瓷復(fù)合材料的加工制造中也充當(dāng)了關(guān)鍵的角色。這些復(fù)合材料要求無瑕疵的陶瓷纖維、纖維和母體間有最適當(dāng)?shù)淖饔昧?,這才能在使用中展 現(xiàn)所預(yù)想的機(jī)械性能。在實(shí)際的制造過程中設(shè)計(jì)這樣的化學(xué)反應(yīng)要求化學(xué)工程師具備專業(yè)的 知識(shí)。5.Composite Liquids A final important class of composite materials is the composite liquids.Composite liquids are highly structured fluids based either on particles or droplets in suspension, surfactants, liquid crystalline phases, or other macromolecules.A number of composite liquids are essential to the needs of modern industry and society because they exhibit properties important to special end uses.Examples include lubricants, hydraulic traction fluids, cutting fluids, and oil-drilling muds.Paints, coatings, and adhesives may also be composite liquids.Indeed, composite liquids are valuable in any case where a well-designed liquid state is absolutely essential for proper delivery and action.5.復(fù)合液體 最后一類重要的復(fù)合材料是復(fù)合液體。復(fù)合液體是高結(jié)構(gòu)液體,以懸浮液、表面活性劑、液晶相或其它大分子與固體微?;蛞旱谓M成。許多復(fù)合液體對現(xiàn)代工業(yè)和社會(huì)都是必不可少 的,因?yàn)樗鼈儽憩F(xiàn)出來的性質(zhì)對一些特殊用途是非常重要的。這些用途包括潤滑劑、水力牽 引液體以及油田鉆井泥漿,油漆、涂料和粘合劑也可能是合成液體。確實(shí),在任何情況下,如果好的液體狀態(tài)對某種傳遞和反應(yīng)是重要的,那么合成液體就是有價(jià)值的。Chemical engineers have long been involved with materials science and engineering.This involvement will increase as new materials are developed whose properties depend strongly on their microstructure and processing history.Chemical engineers will probe the nature of microstructure—how it is formed in materials and what factors are involved in controlling it.They will provide a new fusion between the traditionally separate areas of materials synthesis and materials processing.And they will bring new approaches to the problems of fabricating and repairing complex materials systems.化學(xué)工程師長期涉足材料科學(xué)和工程學(xué)研究工作。隨著新材料的開發(fā),其性質(zhì)越來越依 賴微結(jié)構(gòu)和加工過程,研究程度也將深入。化學(xué)工程師將探索微結(jié)構(gòu)的本質(zhì)—它是如何在材 料中形成的,哪些因素可以用來控制它。他們將采用新的方式把傳統(tǒng)的分離開來的材料合 成和材料加工融合起來。他們還將用新方法解決構(gòu)造的問題,修復(fù)復(fù)雜的材料系統(tǒng)。

Unit 21 Chemical Industry and Environment 化學(xué)工業(yè)與環(huán)境

How can we reduce the amount of waste that is produced? And how we close the loop by redirecting spent materials and products into programs of recycling? All of these questions must be answered through careful research in the coming years as we strive to keep civilization in balance with nature.我們怎樣才能減少產(chǎn)生廢物的數(shù)量?我們怎樣才能使廢棄物質(zhì)和商品納入循環(huán)使用的 程序?所有這些問題必須要在未來的幾年里通過仔細(xì)的研究得到解決,這樣我們才能保持文 明與自然的平衡。1.Atmospheric Chemistry Coal-burning power plants, as well as some natural processes, deliver sulfur compounds to the stratosphere, where oxidation produces sulfuric acid particles that reflect away some of the incoming visible solar radiation.In the troposphere, nitrogen oxides produced by the combustion of fossil fuels combine with many organic molecules under the influence of sunlight to produce urban smog.The volatile hydrocarbon isoprene, well known as a building block of synthetic rubber, is also produced naturally in forests.And the chlorofluorocarbons, better known as CFCs, are inert in automobile

air conditioners and home refrigerators but come apart under ultraviolet bombardment in the mid-stratosphere with devastating effect on the earth?s stratospheric ozone layer.The globally averaged atmospheric concentration of stratospheric ozone itself is only 3 parts in 10 million, but it has played a crucial protective role in the development of all biological life through its absorption of potentially harmful shout-wavelength solar ultraviolet radiation.1.大氣化學(xué) 燃煤發(fā)電廠像一些自然過程一樣,也會(huì)釋放硫化合物到大氣層中,在那里氧化作用產(chǎn) 生硫酸顆粒能反射入射進(jìn)來的可見太陽輻射。在對流層,化石燃料燃燒所產(chǎn)生的氮氧化物在 陽光的影響下與許多有機(jī)物分子結(jié)合產(chǎn)生都市煙霧。揮發(fā)的碳?xì)浠衔锂愇於?,也就是?所周知的合成橡膠的結(jié)構(gòu)單元,可以在森林中天然產(chǎn)生含氯氟烴。我們所熟悉的 CFCs,在 汽車空調(diào)和家用冰箱里是惰性的,但在中平流層內(nèi)在紫外線的照射下回發(fā)生分解從而對地球 大氣臭氧層造成破壞,全球大氣層中臭氧的平均濃度只有 3ppm,但它對所有生命體的生長 發(fā)育都起了關(guān)鍵的保護(hù)作用,因?yàn)槭撬樟颂柟饩€中有害的短波紫外輻射。During the past 20 years, public attention has been focused on ways that mankind has caused changes in the atmosphere: acid rain, stratospheric zone depletion, greenhouse warming, and the increased oxidizing capacity of the atmosphere.We have known for generations that human activity has affected the nearby surroundings, but only gradually have we noticed such effects as acid rain on a regional then on an intercontinental scale.With the problem of ozone depletion and concerns about global warming, we have now truly entered an era of global change, but the underlying scientific facts have not yet been fully established.在過去的二十年中,公眾的注意力集中在人類對大氣層的改變: 酸雨、平流層臭氧空洞、溫室現(xiàn)象,以及大氣的氧化能力增強(qiáng),前幾代人已經(jīng)知道,人類的活動(dòng)會(huì)對鄰近的環(huán)境造成 影響,但意識(shí)到像酸雨這樣的效應(yīng)將由局部擴(kuò)展到洲際范圍則是慢慢發(fā)現(xiàn)的。隨著臭氧空洞 問題的出現(xiàn),考慮到對全球的威脅,我們已真正進(jìn)入到全球話改變的時(shí)代,但是基本的科學(xué)

論據(jù)還沒有完全建立。2.Life Cycle Analysis Every stage of a product’s life cycle has an environmental impact, starting with extraction of raw materials, continuing through processing, manufacturing, and transportation, and concluding with consumption and disposal or recovery.Technology and chemical science are challenged at every stage.Redesigning products and processes to minimize environmental impact requires a new philosophy of production and a different level of understanding of chemical transformations.Environmentally friendly products require novel materials that are reusable, recyclable, or biodegradable;properties of the materials are determined by the chemical composition and structure.To minimize waste and polluting by-products, new kinds of chemical process schemes will have to be developed.Improved chemical separation techniques are needed to enhance efficiency and to remove residual pollutants, which in turn will require new chemical treatment methods in order to render them harmless.Pollutants such as radioactive elements and toxic heavy metals that cannot be readily converted into harmless materials will need to be immobilized in inert materials so that they can be safely stored.Finally, the leftover pollution of an earlier, less environmentally aware era demands improved chemical and biological remediation techniques.2.生命周期分析 產(chǎn)品生命循環(huán)周期的每一個(gè)階段都會(huì)對環(huán)境造成影響。從原材料的提取,到加工、制造 和運(yùn)輸?shù)倪^程,最后到被消耗和丟棄或回收,每一個(gè)階段都對工藝學(xué)和化學(xué)提出了挑戰(zhàn)。重 新設(shè)計(jì)產(chǎn)品和過程以減少對環(huán)境的影響需要新的生產(chǎn)原理和在不同的水平層面上理解化學(xué) 變化,對環(huán)境友善的產(chǎn)品要求有新的原料,它們應(yīng)是可再使用的,可循環(huán)的,或者可生物降 解的。物質(zhì)的性質(zhì)是由其化學(xué)組成和結(jié)構(gòu)決定的,要減少廢品和有污染的副產(chǎn)品,就要開發(fā) 新的化學(xué)工藝

線路,已開發(fā)的化學(xué)分離技術(shù)需要有效地提高以分離出剩余的污染物,這反過 來又要求新的化學(xué)處理方法使它們變得無害。而諸如放射性元素和那些不容易轉(zhuǎn)化為無害物 質(zhì)的重金屬污染物則需要把它們固定為惰性物質(zhì)以便能安全地儲(chǔ)放。還有最后一點(diǎn),早期的 污染殘留物,對環(huán)境污染程度尚未很意識(shí)到的一些物質(zhì)要求進(jìn)一步用化學(xué)和生物的修復(fù)技術(shù) 進(jìn)行處理。Knowledge of chemical transformations can also help in the discovery of previously unknown environmental problems.The threat to the ozone layer posed by CFCs was correctly anticipated through fundamental studies of atmospheric chemistry, eventually leading to international agreements for phasing out the production of these otherwise useful chemicals in favor of equally functional but environmentally more compatible alternatives.On the other hand, the appearance of the ozone hole over the Antarctic came as a surprise to scientists and only subsequently was traced to previously unknown chlorine reactions occurring at the surface of nitric acid crystals in the frigid Antarctic stratosphere.Thus it is critically important to improve our understanding of the chemical processes in nature, whether they occur in fresh water, saltwater, soil, subterranean environments, or the atmosphere.了解化學(xué)反應(yīng)的機(jī)理可以幫助我們發(fā)現(xiàn)以前不知道的環(huán)境問題,CFCs 對臭氧層造成的 威脅能夠正確地預(yù)防要得益于大氣化學(xué)的基礎(chǔ)研究。由此導(dǎo)致了國際上一致同意逐步取消這 些產(chǎn)品的生產(chǎn)。而代之以作用相同但對環(huán)境更為友善的其它產(chǎn)品。另一方面,南極上空臭氧 空洞的出現(xiàn)使科學(xué)家們大為震驚,隨后才發(fā)現(xiàn)了以前所不了解的南極寒冷的平流層內(nèi)硝酸晶 體表面所發(fā)生的氯原子的反應(yīng)。這對我們進(jìn)一步了解自然界中所發(fā)生的化學(xué)反應(yīng)過程是非常

重要的。不管這些反應(yīng)是發(fā)生在淡水中,海水中,土壤里,地下環(huán)境或是大氣中。3.Manufacturing with Minimal Environmental Impact Discharge of waste chemicals to the air, water, or ground not only has a direct environmental impact, but also constitutes a potential waste of natural resources.Early efforts to lessen the environmental impact of chemical processes tended to focus on the removal of harmful materials from a plant?s waste stream before it was discharged into the environment.But this approach addresses only half of the problem;for an ideal chemical process, no harmful by-products would be formed in the first place.Any discharges would be at least as clean as the air and water that were originally taken into the plant, and such a process would be “environmentally benign”.3.對環(huán)境影響最小的生產(chǎn) 把廢物排放到空氣、水或土壤中不僅對環(huán)境造成了直接的影響,還是對自然資源的一個(gè) 潛在的浪費(fèi)。早期減少化學(xué)過程對環(huán)境本文由LebronJame6貢獻(xiàn)

doc文檔可能在WAP端瀏覽體驗(yàn)不佳。建議您優(yōu)先選擇TXT,或下載源文件到本機(jī)查看。

Unit 1

Chemical Industry 化學(xué)工業(yè)

Before reading the text below, try to answer following question: 1.When did the modern chemical industry start? 2.Can you give a definition for the chemical industry? 3.What are the contribution which the chemical industry has made to meet and satisfy our needs? 4.Is the chemical industry capital-or labor-intensive? Why? 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently.It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries.Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking.It will be noted that these are all inorganic chemicals.The

organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin?s discovery if the first synthetic dyestuff—mauve.At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals.This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia.The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time.The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds(ammonium salts for fertilizers and nitric acid for explosives manufacture)with the outbreak of world warⅠin 1914.This initiated profound changes which continued during the inter-war years(1918-1939).1. 化學(xué)工業(yè)的起源 盡管化學(xué)品的使用可以追溯到古代文明時(shí)代,我們所謂的現(xiàn)代化學(xué)工業(yè)的發(fā)展卻是非常近代(才開始的)??梢哉J(rèn)為它起源于工業(yè)革命其間,大約在 1800 年,并發(fā)展成為為其它工 業(yè)部門提供化學(xué)原料的產(chǎn)業(yè)。比如制肥皂所用的堿,棉布生產(chǎn)所用的漂白粉,玻璃制造業(yè)所 用的硅及 Na2CO3.我們會(huì)注意到所有這些都是無機(jī)物。有機(jī)化學(xué)工業(yè)的開始是在十九世紀(jì) 六十年代以 William Henry Perkin 發(fā)現(xiàn)第一種合成染料—苯胺紫并加以開發(fā)利用為標(biāo)志的。20 世紀(jì)初,德國花費(fèi)大量資金用于實(shí)用化學(xué)方面的重點(diǎn)研究,到 1914 年,德國的化學(xué)工業(yè) 在世界化學(xué)產(chǎn)品市場上占有 75%的份額。這要?dú)w因于新染料的發(fā)現(xiàn)以及硫酸的接觸法生產(chǎn) 和氨的哈伯生產(chǎn)工藝的發(fā)展。而后者需要較大的技術(shù)突破使得化學(xué)反應(yīng)第一次可以在非常高 的壓力條件下進(jìn)行。這方面所取得的成績對德國很有幫助。特別是由于 1914 年第一次世界 大仗的爆發(fā),對以氮為基礎(chǔ)的化合物的需求飛速增長。這種深刻的改變一直持續(xù)到戰(zhàn)后(1918-1939)。date bake to/from: 回溯到 dated: 過時(shí)的,陳舊的 stand sb.in good stead: 對。很有幫助。

Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years.The lion?s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s.The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.1940 年以來,化學(xué)工業(yè)一直以引人注目的速度飛速發(fā)展。盡管這種發(fā)展的速度近年來 已大大減慢?;瘜W(xué)工業(yè)的發(fā)展由于 1950 年以來石油化學(xué)領(lǐng)域的研究和開發(fā)大部分在有機(jī)化 學(xué)方面取得。石油化工在 60 年代和 70 年代的迅猛發(fā)展主要是由于人們對于合成高聚物如聚 乙烯、聚丙烯、尼龍、聚脂和環(huán)氧樹脂的需求巨大增加。The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role.It makes thousands of different chemicals which the general public only usually encounter as end or consumer products.These products are purchased because they have the required properties which make them suitable for some particular application, e.g.a non-stick coating for pans or a weedkiller.Thus chemicals are ultimately sold for the effects that they produce.今天的化學(xué)工業(yè)已經(jīng)是制造業(yè)中有著許多分支的部門,并且在制造業(yè)中起著核心的作 用。它生產(chǎn)了數(shù)千種不同的化學(xué)產(chǎn)品,而人們通常只接觸到終端產(chǎn)品或消費(fèi)品。這些產(chǎn)品被 購買是因?yàn)樗麄兙哂心承┬再|(zhì)適合(人們)的一些特別的用途,例如,用于盆的不粘涂層或 一種殺蟲劑。這些化學(xué)產(chǎn)品歸根到底是由于它們能產(chǎn)生的作用而被購買的。2.Definition of the Chemical Industry At the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured

and these were clearly chemicals, e.g., alkali, sulphuric acid.At present, however, many intermediates to products produced, from raw materials like crude oil through(in some cases)many intermediates to products which may be used directly as consumer goods, or readily converted into them.The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry?s sphere of activities.To consider a specific example to illustrate this dilemma, emulsion paints may contain poly(vinyl chloride)/ poly(vinyl acetate).Clearly, synthesis of vinyl chloride(or acetate)and its polymerization are chemical activities.However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry? 2. 化學(xué)工業(yè)的定義 在本世紀(jì)初,要定義什么是化學(xué)工業(yè)是不太困難的,因?yàn)槟菚r(shí)所生產(chǎn)的化學(xué)品是很有限 的,而且是非常清楚的化學(xué)品,例如,燒堿,硫酸。然而現(xiàn)在有數(shù)千種化學(xué)產(chǎn)品被生產(chǎn),從 一些原料物質(zhì)像用于制備許多的半成品的石油,到可以直接作為消費(fèi)品或很容易轉(zhuǎn)化為消費(fèi) 品的商品。困難在于如何決定在一些特殊的生產(chǎn)過程中哪一個(gè)環(huán)節(jié)不再屬于化學(xué)工業(yè)的活動(dòng) 范疇。舉一個(gè)特殊的例子來描述一下這種困境。乳劑漆含有聚氯乙烯/聚醋酸乙烯。顯然,氯乙烯(或醋酸乙烯)的合成以及聚合是化學(xué)活動(dòng)。然而,如果這種漆,包括高聚物,它的 配制和混合是由一家制造配料的跨國化學(xué)公司完成的話,那它仍然是屬于化學(xué)工業(yè)呢還是應(yīng) 當(dāng)歸屬于裝飾工業(yè)中去呢?

It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry.Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry.It is important to bear this in mind when comparing statistical information which is derived from several sources.因此,很明顯,由于化學(xué)工業(yè)經(jīng)營的種類很多并在很多領(lǐng)域與其它工業(yè)有密切的聯(lián)系,所以不能對它下一個(gè)簡單的定義。相反的每一個(gè)收集和出版制造工業(yè)統(tǒng)計(jì)數(shù)據(jù)的官方機(jī)構(gòu)都 會(huì)對如何屆定哪一類操作為化學(xué)工業(yè)有自己的定義。當(dāng)比較來自不同途徑的統(tǒng)計(jì)資料時(shí),記 住這點(diǎn)是很重要的。3.The Need for Chemical Industry The chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals.These are then used to produce consumer products, which make our lives more comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself.At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation.It is the aim of chemical industry to achieve this.3. 對化學(xué)工業(yè)的需要 化學(xué)工業(yè)涉及到原材料的轉(zhuǎn)化,如石油 首先轉(zhuǎn)化為化學(xué)中間體,然后轉(zhuǎn)化為數(shù)量眾多 的其它化學(xué)產(chǎn)品。這些產(chǎn)品再被用來生產(chǎn)消費(fèi)品,這些消費(fèi)品可以使我們的生活更為舒適或 者作藥物維持人類的健康或生命。在生產(chǎn)過程的每一個(gè)階段,都有價(jià)值加到產(chǎn)品上面,只要 這些附加的價(jià)值超過原材料和加工成本之和,這個(gè)加工就產(chǎn)生了利潤。而這正是化學(xué)工業(yè)要 達(dá)到的目的。It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ)an indication of the range of the chemical industry’s activities,(ⅱ)its influence on our lives in everyday terms, and(ⅲ)how great is society’s need for a chemical industry.Our approach in answering the question will be to consider the industry?s contribution to meeting and satisfying our major needs.What are these? Clearly food(and drink)and health are paramount.Other which we shall consider in their

turn are clothing and(briefly)shelter, leisure and transport.在這樣的一本教科書中提出: “我們需要化學(xué)工業(yè)嗎?”這樣一個(gè)問題是不是有點(diǎn)奇怪 呢?然而,先回答下面幾個(gè)問題將給我們提供一些信息:(1)化學(xué)工業(yè)的活動(dòng)范圍,(2)化 學(xué)工業(yè)對我們?nèi)粘I畹挠绊?,?)社會(huì)對化學(xué)工業(yè)的需求有多大。在回答這些問題的時(shí)候 我們的思路將要考慮化學(xué)工業(yè)在滿足和改善我們的主要需求方面所做的貢獻(xiàn)。是些什么需求 呢?很顯然,食物和健康是放在第一位的。其它我們要考慮的按順序是衣物、住所、休閑和 旅行。(1)Food.The chemical industry makes a major contribution to food production in at least three ways.Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements(mainly nitrogen, phosphorus and potassium)which are removed as nutrients by the growing crops during modern intensive farming.Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed

by pests.Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(1)食物。化學(xué)工業(yè)對糧食生產(chǎn)所做的巨大貢獻(xiàn)至少有三個(gè)方面。第一,提供大量可以 獲得的肥料以補(bǔ)充由于密集耕作被農(nóng)作物生長時(shí)所帶走的營養(yǎng)成分。(主要是氮、磷和鉀)。第二,生產(chǎn)農(nóng)作物保護(hù)產(chǎn)品,如殺蟲劑,它可以顯著減少害蟲所消耗的糧食數(shù)量。第三,生 產(chǎn)獸藥保護(hù)家禽免遭疾病或其它感染的侵害。(2)Health.We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g.by curing bacterial infections with antibiotics, and even extending life itself, e.g.?–blockers to lower blood pressure.(2)健康。我們都很了解化學(xué)工業(yè)中制藥這一塊在維護(hù)我們的身體健康甚至延長壽命 方面所做出的巨大貢獻(xiàn),例如,用抗生素治療細(xì)菌感染,用 β-抗血栓降低血壓。(3)Clothing.The improvement in properties of modern synthetic fibers over the traditional clothing materials(e.g.cotton and wool)has been quite remarkable.Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron.They are also cheaper than natural materials.衣物。在傳統(tǒng)的衣服面料上,現(xiàn)代合成纖維性質(zhì)的改善也是非常顯著的。用聚脂如滌綸 或聚酰胺如尼龍所制作的 T 恤、上衣、襯衫抗皺、可機(jī)洗,曬干自挺或免燙,也比天然面 料便宜。Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” them to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer.Indeed they now span almost every color and hue of the visible spectrum.Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this can readily be carried out, provided there is a satisfactory market for the product.與此同時(shí),現(xiàn)代合成染料開發(fā)和染色技術(shù)的改善使得時(shí)裝設(shè)計(jì)師們有大量的色彩可以利 用。的確他們幾乎利用了可見光譜中所有的色調(diào)和色素。事實(shí)上如果某種顏色沒有現(xiàn)成的,只要這種產(chǎn)品確有市場,就可以很容易地通過對現(xiàn)有的色彩進(jìn)行結(jié)構(gòu)調(diào)整而獲得。Other major advances in this sphere have been in color-fastness, i.e., resi影響的工作主要集中在工廠廢氣排放如環(huán)境之前有害 物質(zhì)的分離,但這種思路只考慮了問題的一半。因?yàn)橐粋€(gè)理想的化學(xué)過程,也就是沒有有害 的副產(chǎn)品產(chǎn)生的過程應(yīng)在一開始就建立好,任何排放物至少應(yīng)像進(jìn)入到工廠內(nèi)的空氣和水一 樣干凈。這樣的過程才可以稱是“與環(huán)境友善的”。Increasing concern over adverse health effects has put a high priority on eliminating or reducing the amounts of potentially hazardous chemicals used in industrial processes.The best course of action is to find replacement chemicals that work as well but are less hazardous.If a substitute cannot be found for a hazardous chemical, then a promising alternative strategy is to develop a process for generating it on-site and only in the amount needed at the time.對健康有害影響的關(guān)

注逐漸升級,人們首先考慮到如何消除或減少工業(yè)過程中所用有害 化學(xué)物質(zhì)的數(shù)量。最好的方法是尋找替代的化學(xué)產(chǎn)品,它們能起到一樣的作用但毒害性較小。如果不能尋找到一種有毒化學(xué)物質(zhì)的替代品,那么比較好的戰(zhàn)略思想是開發(fā)一種就地生產(chǎn)的 工藝,而且只生產(chǎn)當(dāng)時(shí)所需要的那么多的數(shù)量。Innovative new chemistry has begun delivering environmentally sound processes, that use energy and raw materials more efficiently.Recent advances in catalysis, for example, permit chemical reactions to e run at lower temperatures and pressures.This change, in turn, reduces the energy demands of the processes and simplifies the selection of construction materials for the processing facility.Novel catalysts are also being uses to avoid the production of unwanted by-products.革新的化學(xué)方法已開始設(shè)計(jì)對環(huán)境合理的工藝過程,以便更為有效的使用能量和原材 料。例如,催化劑方面的近期進(jìn)展使化學(xué)反應(yīng)可以在較低的溫度和壓力下進(jìn)行。反過來,這 種改變又減少了這些過程的能量需求,簡化了制造加工設(shè)備對構(gòu)成材料的選擇,新的催化劑 還用于避免生產(chǎn)不希望的副產(chǎn)品。4.Control of Power Plant Emissions Coal-, oil-, and natural-gas-fired power generation facilities contribute to the emissions of carbon monoxide, hydrocarbons, nitrogen oxides, and a variety of other undesired by-products such as dust and traces of mercury.A rapidly increasing array of technologies are now available to reduce the emissions of unwanted species to meet national or local standards.Chemists and chemical engineers have made major contributions to the state of the art, and catalytic science is

playing a critical role in defining the leading edge.4.發(fā)電廠排放物的控制 通過燃煤、燃油和燃燒天然氣產(chǎn)生能量的設(shè)備都會(huì)排放出一氧化碳、碳?xì)浠衔铩⒌趸镆约霸S多其它不受歡迎的副產(chǎn)物如灰塵和痕量的汞?,F(xiàn)在可以采用一系列不斷 發(fā)展的技術(shù)來減少不希望有的物質(zhì)的排放以適應(yīng)國家和地區(qū)標(biāo)準(zhǔn)的要求?;瘜W(xué)家和化學(xué) 工程師對工業(yè)水平的進(jìn)步做出了巨大的貢獻(xiàn)。而催化科學(xué)為開辟這些前沿領(lǐng)域正在扮演 重要的角色。The simultaneous control of more than one pollutant is the aim of some recently developed catalyst or sorbent technologies.For example, catalytic methods allow carbon monoxide to be oxidized at the same time that nitrogen oxides are being chemically reduced in gas turbine exhaust.Other research efforts are aimed at pilot-plant evaluation of the simultaneous removal of sulfur and nitrogen oxides from flue gas by the action of a single sorbent and without the generation of massive volumes of waste products.同時(shí)控制多種污染物是近年來開發(fā)先進(jìn)的催化劑或吸附劑技術(shù)的目的。例如,催化方法 可以使汽車尾氣中 CO 氧化的同時(shí),還原氮的氧化物。另一些研究工作則定位于在中試階段 通過一種吸附劑的作用同時(shí)去除煙道氣中的硫和氮氧化物,而不會(huì)產(chǎn)生大量的廢物。5.Environmentally Friendly Products Increased understanding of the fate of products in the environment had led scientists to design “greener” products.A significant early example comes from the detergent industry in the 1940s and 1950s, new products were introduced that were based on synthetic surfactants called branched alkylbenzene sulfonates.These detergents had higher cleaning efficiency, but it was subsequently discovered that their presence in waste water caused foaming in streams and rivers.The problem was traced to the branched alkylbenzene sulfonates;unlike the soaps used previously, these were not sufficiently biodegraded by the microbes in conventional sewage treatment plants.An extensive research effort to understand the appropriate biochemical processes permitted chemists to design and synthesize another new class of surfactants, linear alkylbenzene sulfonateas,.The similarity in molecular structure between these new compounds and the natural fatty acids of traditional soaps allowed the microorganisms to degrade the new formulations, and the similarity to the branched

alkybenzene sulfonates afforded outstanding detergent performance.5. 對環(huán)境友善的產(chǎn)品 對產(chǎn)品在環(huán)境中的變化越來越了解使得科學(xué)家們開始設(shè)計(jì)“綠色”產(chǎn)品。一個(gè)重要的例子 來自 1940-1950s 的洗滌劑工業(yè)。當(dāng)時(shí)以支鏈烷基苯磺酸鹽為表面活性劑的新產(chǎn)品被引入。這些洗滌劑洗滌效率更高。但其后發(fā)現(xiàn)這些物質(zhì)殘留在廢水中在河面上形成泡沫。問題追溯 到這些支鏈的烷基苯磺酸鹽: 它不像以前人們所使用的肥皂。它不能被傳統(tǒng)污水處理廠的細(xì) 菌所有效地生物降解。經(jīng)過深入的研究工作了解了生物化學(xué)過程使化學(xué)家們設(shè)計(jì)和合成了另 一類新型的表面活性劑,為直鏈烷基苯磺酸鹽。這些新的化合物與傳統(tǒng)肥皂中的脂肪酸有相 似的分子結(jié)構(gòu),因而微生物可以降解這些組分,而它與支鏈烷基苯磺酸鹽的相似性又使其具 有卓越的洗滌性能。Novel biochemistry is also helping farmers reduce the use of insecticides.Cotton plants, for example, are being genetically modified to make them resistant to the cotton bollworm.A single gene from a naturally occurring bacterium, when transferred into cotton plants, prompts the plant

to produce a protein that is ordinarily produced by the bacterium.When the bollworm begins to eat the plant, the protein kills the ins4ct by interrupting its digestive processes.新的生物化學(xué)也正在幫助農(nóng)民減少使用殺蟲劑.例如,棉作物可以通過改變基因而具備對 棉螟蛉的抵抗力.天然存在的細(xì)菌中一個(gè)基因當(dāng)被轉(zhuǎn)移到棉作物中時(shí),能夠祖師作物產(chǎn)生一種 原來有細(xì)菌產(chǎn)生的蛋白質(zhì).當(dāng)螟蛉蟲開始吃作物時(shí),這種蛋白質(zhì)通過切斷螟蛉的消化過程從而 殺死害蟲.6.Recycling Increasing problems associated with waste disposal have combined with the recognition that some raw material exist in limited supply to dramatically increase interest in recycling.Recycling of metals and most paper is technically straightforward, and these materials are now commonly recycled in many areas around the world.Recycling of plastics presents greater technical challenges.Even after they are separated from other types of waste, different plastic materials must be separated from each other.Even then, the different chemical properties of the various types of plastic will require the development of a variety of recycling processes.6.處理 越來越多的環(huán)境問題與廢物的排放有關(guān),而一些原材料又存在供給有限的問題.這二者的 聯(lián)系引起了人們對處理這一課題越來越大的興趣.金屬和大多數(shù)紙張的處理從技術(shù)上來說是 簡單的,這些物質(zhì)在世界很多地方都已普遍進(jìn)行了處理.塑料的處理則面臨著較大的技術(shù)方面 的挑戰(zhàn).即使把它們與其它類型的廢品分離開來以后,不同種類的塑料還需要再彼此分離。即使如此,不同類型的塑料具有不同的化學(xué)性質(zhì),因而也需要開發(fā)不同的處理工藝.Some plastics can be recycled by simply melting and molding them or by dissolving them in an appropriate solvent and then reformulating them into a new plastic material.Other materials require more complex treatment, such as breaking down large polymer molecules into smaller subunits that can subsequently be used as building blocks for new polymers.Indeed, a major program to recycle plastic soft drink bottles by this route is now in use.一些塑料可以通過簡單地熔化注塑或用合適的溶劑進(jìn)行分解再重新塑造成新塑料的方 法進(jìn)行處理。比如,把大的聚合物分子裂解成較小的亞單元,再以此作為新聚合物的結(jié)構(gòu)單 元。確實(shí),用這種方法處理軟塑料瓶的計(jì)劃正在進(jìn)行中。A great deal of research by chemists and chemical engineers will be needed to successfully develop the needed recycling technologies.In some cases, it will be necessary to develop entirely new polymers with molecular structures that are more amenable to the recycling process.化學(xué)家和化學(xué)工程師們所做的大量的研究工作需要被成功地開發(fā)為所需要的處理技術(shù)。有時(shí),也需要開發(fā)一些全新的聚合材料.它們具有更容易進(jìn)行處理的分子結(jié)構(gòu).7.Separation and Conversion for Waste Reduction New processes are needed to separate waste components requiring special disposal from those that can be recycled or disposed of by

normal means.Development of these processes will require extensive research to obtain a fundamental understanding of the chemical phenomena involved.7.通過分離和轉(zhuǎn)換減少廢物量 把一些需要進(jìn)行特殊處理的成分從那些可用常規(guī)方法處理或處置的廢物中分離出來需

要新的工藝過程。而開發(fā)這些過程則需要深入研究以從根本上了解所涉及的化學(xué)現(xiàn)象.Metal-bearing spent acid waste.Several industrial processes produce acidic waste solutions in large quantities.Could this waste be separated into clean water, reusable acid, and a sludge from which the metals could be recovered? Such processes would preserve the environment, and their costs could be competitive with disposal costs and penalties.含金屬離子的酸性廢水.一些工業(yè)過程產(chǎn)生了大量的酸性廢水.這些廢水可以分離成干凈 的水、可再利用的酸、以及可從中提取出可回收金屬的淤渣嗎?這樣的處理過程既可以保護(hù) 環(huán)境,所需費(fèi)用又與處置廢水所需成本及罰款相差無幾。Industrial waste treatment.The hazardous organic components in industrial wastewater could be destroyed with thermocatalytic or photocatalytic processes.A promising line of research employs “supercritical” water at high temperatures and pressures.Under these conditions, water exhibits very different chemical and physical properties.It dissolves reactions of many materials that are nearly inert under normal conditions.工業(yè)廢水處理。工業(yè)廢水中的有害有機(jī)物能被熱催化或光催化的過程破壞。一項(xiàng)前景很 好的研究工作是利用高溫高壓下的超臨界水。在這種條件下,水表現(xiàn)出截然不同的物理和化 學(xué)性質(zhì),它可以溶解并有助于那些在常態(tài)下的水中幾乎是惰性的物質(zhì)發(fā)生反應(yīng)。High-level nuclear waste.Substantial savings would be achieved if the volume and complexity of nuclear waste requiring storage could be significantly reduced;this reduction would require economic separation of the radioactive components from the large volumes of other materials that accompany the nuclear waste.The hazardous chemical waste mighty then be disposed of separately.The dispose of nuclear waste will require major research and development efforts over many years.高輻射的核廢料。如果需要儲(chǔ)藏的核廢料其數(shù)量和組成能夠顯著地減少,就可以節(jié)省一 大筆的費(fèi)用。這種減少需要用經(jīng)濟(jì)的方法把放射性成分與大量其它與核廢料共存的物質(zhì)分離 開來,這樣有害的化學(xué)廢料就可以分別地進(jìn)行處置,核廢料的處置仍將需要今后許多年進(jìn)行 大量的研究和開發(fā)工作。Membrane technology.Separations involving semi permeable membranes offer considerable promise.These membranes, usually sheets of polymers, are impervious to some kinds of chemicals but not to others.Such membranes are used to purify water, leaving behind dissolved salts and providing clean drinking water.Membrane separations are also applicable to gases and are being used for the recovery of minor components in natural gas, to enhance the heating value of natural gas by removal of carbon dioxide, and for the recovery of nitrogen from air.Research challenges include the development of membranes that are chemically and physically more resilient, that are less expensive to manufacture, and that provide better separation efficiencies to reduce processing costs.膜技術(shù)。應(yīng)用半滲透性薄膜進(jìn)行分離大有希望獲得成功。這些膜通常是片狀聚合物。能 夠讓一些化學(xué)物質(zhì)通過而不讓另一些物質(zhì)通過。這些膜常用來純化水,阻擋住一些溶解的鹽 類提供干凈的飲用水。膜分離技術(shù)stance to the dye being washed out when the garment is cleaned.這一領(lǐng)域中另一些重要進(jìn)展是不褪色,即在洗滌衣物時(shí)染料不會(huì)被洗掉。(4)Shelter, leisure and transport.In terms of shelter the contribution of modern synthetic polymers has been substantial.Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free(i.e.they are resistant to weathering and do not need painting).Other polymers, e.g.urea-formaldehyde and polyurethanes, are important insulating materials for reducing heat losses and hence reducing energy usage.(4)

住所,休閑和旅游。講到住所方面現(xiàn)代合成高聚物的貢獻(xiàn)是巨大的。塑料正在取 代像木材一類的傳統(tǒng)建筑材料,因?yàn)樗鼈兏p,免維護(hù)(即它們可以抵抗風(fēng)化,不需油漆)。另一些高聚物,比如,脲甲醛和聚脲,是非常重要的絕緣材料可以減少熱量損失因而減少能 量損耗。

Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.塑料和高聚物的應(yīng)用對休閑活動(dòng)有很重要的影響,從體育跑道的全天候人造篷頂,足球 和網(wǎng)球的經(jīng)緯線,到球拍的尼龍線還有高爾夫球的元件,還有制造足球的合成材料。Likewise the chemical industry’s contribution to transport over the years has led to major improvements.Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles.Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids.Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.多年來化學(xué)工業(yè)對旅游方面所作的貢獻(xiàn)也有很大的提高。一些添加劑如抗氧化劑的開發(fā) 和發(fā)動(dòng)機(jī)油粘度指數(shù)改進(jìn)使汽車日產(chǎn)維修期限從 3000 英里延長到 6000 英里再到 12000 英 里。研發(fā)工作還改進(jìn)了潤滑油和油脂的性能,并得到了更好的剎車油。塑料和高聚物對整個(gè) 汽車業(yè)的貢獻(xiàn)的比例是驚人的,源于這些材料—擋板,輪胎,坐墊和涂層等等—超過 40%。So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry.Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry.很顯然簡單地看一下化學(xué)工業(yè)在滿足我們的主要需求方面所做的貢獻(xiàn)就可以知道,沒有 化工產(chǎn)品人類社會(huì)的生活將會(huì)多么困難。事實(shí)上,一個(gè)國家的發(fā)展水平可以通過其化學(xué)工業(yè) 的生產(chǎn)水平和精細(xì)程度來加以判斷。4.Research and Development(R&D)in Chemical Industries One of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development(R&D).A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals.It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e.the total money received, which has to pay for raw materials, overheads, staff salaries, etc.as well.In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market.Examples include synthetic polymers like nylons and polyesters, and drugs and pesticides.Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.4. 化學(xué)工業(yè)的研究和開發(fā)。發(fā)達(dá)國家化學(xué)工業(yè)飛速發(fā)展的一個(gè)重要原因就是它在研究和開發(fā)方面的投入和投資。通 常是銷售收入的 5%,而研究密集型分支如制藥,投入則加倍。要強(qiáng)調(diào)這里我們所提出的百 分?jǐn)?shù)不是指利潤而是指銷售收入,也就是說全部回收的錢,其中包括要付出原材料費(fèi),企業(yè) 管理費(fèi),員工工資等等。過去這筆巨大的投資支付得很好,使得許多有用的和有價(jià)值的產(chǎn)品

被投放市場,包括一些合成高聚物如尼龍和聚脂,藥品和殺蟲劑。盡管近年來進(jìn)入市場 的新 產(chǎn)品大為減少,而且在衰退時(shí)期研究部門通常是最先被裁減的部門,在研究和開發(fā)方面的投 資仍然保持在較高的水平。The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering.Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.化學(xué)工業(yè)是高技術(shù)工業(yè),它需要利用電子學(xué)和工程學(xué)的最新成果。計(jì)算機(jī)被廣泛應(yīng)用,從化工廠的自動(dòng)控制,到新化合物結(jié)構(gòu)的分子模擬,再到實(shí)驗(yàn)室分析儀器的控制。Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes.The latter requires enormous capital investment, since a single plant of this size can now cost $520 million!This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.一個(gè)制造廠的生產(chǎn)量很不一樣,精細(xì)化工領(lǐng)域每年只有幾噸,而巨型企業(yè)如化肥廠和石 油化工廠有可能高達(dá) 500,000 噸。后者需要巨大的資金投入,因?yàn)橐粋€(gè)這樣規(guī)模的工廠要花 費(fèi) 2 億 5 千萬美元,再加上自動(dòng)控制設(shè)備的普遍應(yīng)用,就不難解釋為什么化工廠是資金密集 型企業(yè)而不是勞動(dòng)力密集型企業(yè)。The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries.This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.大部分化學(xué)公司是真正的跨國公司,他們在世界上的許多國家進(jìn)行銷售和開發(fā)市場,他 們在許多國家都有制造廠。這種國際間的合作理念,或全球一體化,是化學(xué)工業(yè)中發(fā)展的趨 勢。大公司通過在別的國家建造制造廠或者是收購已有的工廠進(jìn)行擴(kuò)張。

Unit 2

Research and Development 研究和開發(fā)

Research and development, or R&D as it is commonly referred to, is an activity which is carried out by all sectors of manufacturing industry but its extent varies considerably, as we will see shortly.Let us first understand, or at least get a feel for, what the terms mean.Although the distinction between research and development is not always clear-cut, and there is often considerable overlap, we will attempt to separate them.In simple terms research can be thought of as the activity which produces new ideas and knowledge whereas development is putting those ideas into practice as new process and products.To illustrate this with an example, predicting the structure of a new molecule which would have a specific biological activity and synthesizing it could be seen as research whereas testing it and developing it to the point where it could be marketed as a new drug could be described as the development part.研究和開發(fā),或通常所稱 R&D 是制造業(yè)各個(gè)部門都要進(jìn)行的一項(xiàng)活動(dòng)。我們馬上可 以看到,它的內(nèi)容變化很大。我們首先了解或先感覺一下這個(gè)詞的含義。盡管研究和開發(fā) 的定義總是分得不很清楚,而且有許多重疊的部分,我們還是要試著把它們區(qū)分開來。簡 單說來,研究是產(chǎn)生新思想和新知識(shí)的活動(dòng),而開發(fā)則是把這些思想貫徹到實(shí)踐中得到新 工藝和新產(chǎn)品的行為??梢杂靡粋€(gè)例子來描述這一點(diǎn),預(yù)測一個(gè)有特殊生物活性的分子結(jié) 構(gòu)并合成它可以看成是研究而測試它并把它發(fā)展到可以作為一種新藥推向市場這一階段 則看作開發(fā)部分。1.Fundamental Research and Applied Research In industry the primary reason for

carting out R&D is economic and is to strengthen and improve the company?s position and profitability.The purpose of R&D is to generate and provide information and knowledge to reduce uncertainty, solve problems and to provide better data on which management can base decisions.Specific projects cover a wide range of activities and time scales, from a few months to 20 years.1. 基礎(chǔ)研究和應(yīng)用研究 在工業(yè)上進(jìn)行研究和開發(fā)最主要的原因是經(jīng)濟(jì)利益方面,是為了加強(qiáng)公司的地位,提 高公司的利潤。R&D 的目的是做出并提供信息和知識(shí)以減低不確定性,解決問題,以及向 管理層提供更好的數(shù)據(jù)以便他們能據(jù)此做出決定。特別的項(xiàng)目涵蓋很大的活動(dòng)范圍和時(shí)間范 圍,從幾個(gè)月到 20 年。We can pick out a number of areas of R&D activity in the following paragraphs but if we were to start with those which were to spring to the mind of the academic, rather than the industrial, chemist then these would be basic, fundamental(background)or exploratory research and the synthesis of new compounds.This is also labeled “blue skies” research.我們可以在后面的段落里舉出大量的 R&D 活動(dòng)。但是如果我們舉出的點(diǎn)子來源于研 究院而不是工業(yè)化學(xué)家的頭腦,這就是基礎(chǔ)的或探索性的研究 Fundamental research is typically associated with university research.It may be carried out for its own intrinsic interest and it will add to the total knowledge base but no immediate applications of it in the “real world” well be apparent.Note that it will provide a valuable training in defining and solving problems, i.e.research methodology for the research student who carries it out under supervision.However, later “spin offs” from such work can lead to useful applications.Thus physicists claim that but for the study and development of quantum theory we might not have had computers and nuclear power.However, to take a specifically chemical example, general studies on a broad area such as hydrocarbon oxidation might provide information which would be useful in more specific areas such as cyclohexane oxidation for the production of nylon intermediates.基礎(chǔ)研究通常與大學(xué)研究聯(lián)系在一起,它可能是由于對其內(nèi)在的興趣而進(jìn)行研究并 且這種研究能夠拓寬知識(shí)范圍,但在現(xiàn)實(shí)世界中的直接應(yīng)用可能性是很小的。請注意,這種 以內(nèi)就在提出和解決問題方面提供了極有價(jià)值的訓(xùn)練,比如,在指導(dǎo)下完成研究工作的學(xué)生 所接受的研究方法學(xué)(的訓(xùn)練)。而且,從這些工作中產(chǎn)生的“有用的副產(chǎn)品”隨后也能帶 來可觀的使用價(jià)值。因此,物理學(xué)家宣稱要不是量子理論的研究和發(fā)展我們可能仍然沒有計(jì) 算機(jī)和核能量。不管怎樣,舉一個(gè)特殊的化學(xué)方面的例子吧,在各個(gè)領(lǐng)域如烴的氧化方面所 做的廣泛的研究將為一些特殊的領(lǐng)域如環(huán)己烯氧化生成尼龍中間產(chǎn)物提供有用的信息。

Aspects of synthesis could involve either developing new, more specific reagents for controlling particular functional group interconversions, i.e.developing synthetic methodology or complete synthesis of an entirely new molecule which is biologically active.Although the former is clearly fundamental the latter encompasses both this and applied aspects.This term ?applied? has traditionally been more associated with research out in industrial laboratories, since this is more focused or targeted.It is a consequence of the work being business driven.通過合成可以生產(chǎn)出一些新的、更特殊的試劑以控制特殊的官能團(tuán)轉(zhuǎn)換,即發(fā)展合 成方法或完成一些具有生物活性的新分子的合成。盡管前者顯然屬于基礎(chǔ)性研究而后者則包 括基礎(chǔ)研究和實(shí)用性研究兩部分。所謂“實(shí)用性”習(xí)慣上是指與在工業(yè)實(shí)驗(yàn)室完成的研究聯(lián) 系在一起的,因?yàn)樗吣康男裕巧虡I(yè)行為驅(qū)動(dòng)的結(jié)果。Note, however, that there has been a major change in recent years as academic institutions have increasingly turned to industry for research funding, with the result that much more of their research effort is mow devoted to more applied research.Even so, in ac也用來提純制造廠出來的廢水。膜分離還可以用在氣體方 面,用來回收天然氣中的微量組分。通過清除 CO 提高天然氣的熱值,以及從空氣中得到氮 氣。研

究中的難點(diǎn)包括開發(fā)化學(xué)和物理學(xué)方面更有彈性的膜。這樣可以使制造費(fèi)用不那么貴,39

并且可以提供更好的分離效率以降低分離成本。Biotechnology.Scientists have turned to nature for help in destroying toxic substances.Some microorganisms in soil, water, and sediments can adapt their diets to a wide variety of organic chemicals;they have been used for decades in conventional waste treatment systems.Researchers are now attempting t coax even higher levels of performance from these gifted microbes by carefully determining the optimal physical, chemical, and nutritional conditions for their existence.Their efforts may lead to the design and operation of a new generation of biological waste treatment facilities.A major advance in recent years is the immobilization of such microorganisms in bioreactors, anchoring them in a reactor while they degrade waste materials.Immobilization permits high flow rates that would flush out conventional reactors, and the use of new, highly porous support materials allows a significant increase in the number of microorganisms for each reactor.生物技術(shù)??茖W(xué)家們已經(jīng)向自然界尋求幫助戰(zhàn)勝有毒物質(zhì)。土壤、水和沉積物中的一些 微生物能以許多有機(jī)化學(xué)物質(zhì)為食。數(shù)十年來它們一直被用于傳統(tǒng)的水處理系統(tǒng)。研究者們 正通過仔細(xì)測量微生物生存的最佳物理、化學(xué)和營養(yǎng)條件致力于處理強(qiáng)度更高的對象。他們 的工作可能導(dǎo)致設(shè)計(jì)和生產(chǎn)新一代生物廢水處理設(shè)備。近年來的一個(gè)很大的進(jìn)展是生物反應(yīng) 器內(nèi)微生物的固定。即把微生物固定在反應(yīng)器內(nèi)降解廢物。這種固定可以允許有更高的流速。傳統(tǒng)反應(yīng)器內(nèi)流速過高會(huì)沖走微生物。新的多孔載體的使用也使每個(gè)反應(yīng)器中微生物的數(shù)量 明顯提高。

Excel in Your Engineering

When I reflect on my 20-plus years of experience as a chemical engineer, I realize how wonderful my profession is.As engineers, we provide the essential link between technology and humanity.Our job is to make the world better for its human inhabitants while protecting the environment.And we fulfill our mission amongst the demands and guidelines of the business world.But sometimes we get so bogged down in the everyday aspects of our jobs that we lose sight of the big picture.We forget to appreciate engineering—though it is challenging, creative, interesting, significant, and even fun.For example, there?s nothing like getting engrossed in a tough technical problem and coming up with a neat solution.Do you find yourself hurrying to the office because you look forward to working? Do you ever wake up in the middle of the night thinking about a problem and lie there working out the details of a brilliant solution? Do you get up to write notes so you won?t forget your breakthrough in the morning? Engineering can be that wonderful.And being involved in your work doesn?t mean you?re a nut or a workaholic.We should like what we do: Enjoying something and doing it well is a “chicken-and-egg” situation.We tend to like activities we perform well, and to be good at things we enjoy.So here?s some advice for both enjoying and improving your engineering work.1.Enhance technical skills Engineering provides many opportunities to develop existing skills and to learn new ones.In fact, we have to keep learning or we atrophy--that?s the nature of any profession.The ability to grow is one reward of a good job.As your interests and involvements change, and as technology changes, you need to keep learning.2.Hone interpersonal skills Not all the development opportunities relate to technical matters.Successful engineering practice is strongly dependent on interpersonal and communications skills.It?s important to learn about people, motivation, organizational behavior, written and oral communication and visual aids.With these skills as with any others, practice makes perfect(or at least very proficient).In addition, remember that we are also

“business people” and, as such, should keep up on trends in the business world, particularly in our industry.These communications skills can help develop relations both within and outside the company.Activities outside of the workplace can be good opportunities for enhancing nontechnical skills.They can help you improve interpersonal, leadership and communication capabilities.For example, it?s easy to get into leadership positions in volunteer organizations.All you have to do is attend some meetings and show that you?re willing to help out, and soon you?ll move right into whatever you want to do.3.Do the whole job You?re probably familiar with the concept of “completed staff work”(CSW).According to this concept, a subordinate presents his or her boss with solutions, or at least options, rather than problems.The reasoning is that the person closes to the problem is better prepared than anyone—even the boss—to make a decision and to implement it.Decision are best made at the

lowest practical level.Before passing your work on to the boss, try to make the work as complete as you can.That means not only writing the report, but also the cover letter and any transmittal notes it will need to flow smoothly through channels.Think through any political ramifications and make appropriate contacts to preclude problems.Anticipate questions and prepare for them.If your boss looks good, you look good.By maximizing the quality and quantity of your work, you maximize your value to your employer.Learn to do many things well.Be the engineer who can write a project proposal, plan and perform experiments, design equipment, analyze data, develop a mathematical model, write and present results, and bring in the next job.If you do it yourself—or lead others in doing it—or you will be indispensable.4.see the big picture Many engineers with little experience view their job too narrowly.They?re content to just do what they?re asked.They may be creative in carrying out designated tasks, and they may see some minor extensions of it, but they don?t explore widely enough.But the “big picture” is not just the concern of higher-level people.Everything that happens in the company affects all of its employees.In turn, each employee can contribute to the well being of the company.You can get involved in long-range planning, business development, and diversification into new products or services.The people who are already involved in these matters will welcome your help.Although you might start out with a small role, you will soon be contributing more and more.Such efforts often begin by demanding a little more of your personal time, but are later sanctioned by your supervisors as you prove your capability.5.Be a leader There?s always a need for leadership of technical activities, and many engineers are suited to this.Leaders aren?t born;leadership skills are developed.Leadership is different from management.For example, consider a large group of people in a jungle;their task is to cut a path through the underbrush.Managers recruit the workers, teach them how to use a machete, provide them with appropriate clothing, arrange their transportation to the job site and ensure that they are fed.But the leader is the one at the front of the group, showing them where to cut the path.Pr perhaps the leader tells the group that this is the wrong jungle and they need to go elsewhere.Managers take charge f administrative, executive and business matters.They supervise employees? work to make sure that operations are flowing smoothly.Leaders, on the other hand, are those who break ground, bring in new technologies, and point the way toward innovation.You don?t have to have any assigned management responsibility to be a leader.People respond to leaders—with or without prestigious titles.As a matter of fact, you may be able to develop true leadership skills better if you don?t have administrative responsibilities.When you don?t have jurisdictional authority over people, you find other ways to

influence them.Instead of ordering people to do things, you make them want to do them—and that is the best way.6.Be a mentor As we gain experience, we can help younger engineers develop their potential.People pick up a lot of their attitudes toward work, approaches to problems, and working methods from their

senior colleagues.If you are a senior engineer, your impact on new employees is particularly strong and important.New engineer should be able to take a sufficiently broad view of their jobs and not limits themselves.It is rewarding to accomplish work through others, to see them develop into stronger engineers and move into positions of more responsibility.Sometimes part of your success as an engineer may be hiring or training someone who goes on to do things you can do yourself.You can help a promising engineer with capabilities beyond your own.And if you have a hand in developing someone who goes on to a really high position in your company, be proud of your accomplishment.7.Beware of diversions A multifaceted profession, engineering involves other disciplines.But think about your chosen path before becoming involved in a peripheral area.For example, many engineers become enamored with computers.Today is personal computers can certainly enhance out productivity.Remember, however, that a computer is a tool just like a telephone or a calculator.Do not let yourself value the means over the end.If you are working on computer tasks that support personnel can do more efficiently, you are probably not employing your time well.Some engineers are so fascinated to computers that they have in reality shifted from being engineers to being computer scientists.There?s certainly merit in doing what you enjoy, but issue a caution.Remember that you had good reasons for going into engineering in the first place, and if you drift into another area, you may later find it difficult to return to your engineering duties.Management is another popular diversion.For some engineers, going into management is a positive move.Management is challenging and rewarding, and many engineers are well suited to it.In addition, having an engineer-turned-manager is helpful to the other engineers.Moving in and out of management position, especially in the lower levels of management, can actually be good for an engineer?s career.However, the longer you stay in management, the more you run the risk of no longer being able to return to engineering.Most engineers who move into lower-level management positions are wise to regard them as a temporary diversion from their true profession.8.Keep fit Good health is essential to doing a good job.When you?re fit, you have more energy and feel better generally.Thus you can put more onto your work, a well as into there aspects of your life.Because most engineers have predominantly sedentary jobs, it is important to eat carefully and get enough exercise.9.Enjoy your profession As professional engineers, we need to keep developing and broadening our skills.We need to expand the scope of our work and reach the full potential we have, to the benefit of both ourselves and our employer.For most engineers, the best job security is being able to do high-quality engineering work, which is always in great demand.Finally, we should relish the varied challenges and excitement that constitute engineering at its best.43

Curriculum of chemical engineering

As chemical engineering knowledge developed, it was inserted into university courses and curricula.Before World WarⅠ , chemical engineering programs were distinguishable from chemistry programs in that they contained courses in engineering drawing, engineering thermodynamics, mechanics, and hydraulics taken from engineering departments.Shortly after

World WarⅠthe first text in unit operations was published.Courses in this area became the core of chemical engineering teaching.By the mid-1930s, chemical engineering programs included courses in(1)stoichiometry(using material and energy conservation ideas to analyze chemical process steps),(2)chemical processes or “unit operations”,(3)chemical engineering laboratories “in which equipment was operated and tested”, and(4)chemical plant design(in which cost factors were combined with technical elements to arrive at preliminary plant designs).The student was still asked to take the core chemistry courses, including general, analytical, organic, and physical chemistry.However, in addition, he or she took courses in mechanical drawing, engineering mechanics, electric circuits, metallurgy, and thermo-dynamics with other engineers.Since World War Ⅱ chemical engineering has develop rapidly.As new disciplines have proven useful, they have been added to the curriculum.Chemical engineering thermodynamics became generally formulated and taught by about 1945.By 1950, courses in applied chemical kinetics and chemical reactor design appeared.Process control appeared as an undergraduate course in about 1955ademia the emphasis generally is very much on the research rather than the development.然而,請注意。近幾年有很大的變化,大學(xué)研究機(jī)構(gòu)正越來越多地轉(zhuǎn)向工業(yè)界尋求研 究經(jīng)費(fèi),其結(jié)果就是他們的研究工作越來越多地是致力于實(shí)用研究。即使這樣,學(xué)院工作的 重點(diǎn)通常還是在于研究而不是開發(fā)。2.Types of Industrial Research and Development The applied or more targeted type of research and development commonly carried out in industry can be of several types and we will briefly consider each.They are:(ⅰ)product development,(ⅱ)process development,(ⅲ)process improvement and(ⅳ)applications development.Even under these headings there are a multitude of aspects so only a typical example can be quoted in each case.The emphasis on each of these will vary considerably within the different sectors of the chemical industry.2.工業(yè)研究和開發(fā)的類型 通常在生產(chǎn)中完成的實(shí)用型的或有目的性的研究和開發(fā)可以分為好幾類,我們對此 加以簡述。它們是:(1)產(chǎn)品開發(fā);(2)工藝開發(fā);(3)工藝改進(jìn);(4)應(yīng)用開發(fā);每一類 下還有許多分支。我們.對每一類舉一個(gè)典型的例子來加以說明。在化學(xué)工業(yè)的不同部門內(nèi) 每類的工作重點(diǎn)有很大的不同。(1)Product development.Product development includes not only the discovery and development of a new drug but also, for example, providing a new longer-active anti-oxidant additive to an automobile engine oil.Development such as this have enabled servicing intervals to increase during the last decade from 3000 to 6000 to 9000 and now to 12000 miles.Note that most purchasers of chemicals acquire them for the effects that they produce i.e.a specific use.Teflon, or polytetrafluoroethylene(PTFE), may be purchased because it imparts a non-stick surface to cooking pots and pans, thereby making them easier to clean.(1)產(chǎn)品開發(fā)。產(chǎn)品開發(fā)不僅包括一種新藥的發(fā)明和生產(chǎn),還包括,比如說,給一種汽 車發(fā)動(dòng)機(jī)提供更長時(shí)效的抗氧化添加劑。這種開發(fā)的產(chǎn)品已經(jīng)使(發(fā)動(dòng)機(jī))的服務(wù)期限在最近的十年中從 3000 英里提高到 6000、9000 現(xiàn)在已提高到 12000 英里。請注意,大部分的買 家所需要的是化工產(chǎn)品能創(chuàng)造出來的效果,亦即某種特殊的用途。Tdflon,或稱聚四氟乙烯

(PTFE)被購買是因?yàn)樗苁钩床隋?、盆表面不粘,易于清洗?2)Process development.Process development covers not only developing a manufacturing process for an entirely new product but also a new process or route for an existing product.The push for the latter may originate for one or more of the following reasons: availability of new technology, change in the availability and/or cost of raw materials.Manufacture of vinyl chloride monomer is an example of this.Its manufacturing route has changed several times owing to changing economics, technology

and raw materials.Another stimulus is a marked increase in demand and hence sales volume which can have a major effect on the economics of the process.The early days of penicillin manufacture afford a good example of this.(2)工藝開發(fā)。工業(yè)開發(fā)不僅包括為一種全新的產(chǎn)品設(shè)計(jì)一套制造工藝,還包括為現(xiàn)有 的產(chǎn)品設(shè)計(jì)新的工藝或方案。而要進(jìn)行后者時(shí)可能源于下面的一個(gè)或幾個(gè)原因: 新技術(shù)的利 用、原材料的獲得或價(jià)格發(fā)生了變化。氯乙烯單聚物的制造就是這樣的一個(gè)例子。它的制造 方法隨著經(jīng)濟(jì)、技術(shù)和原材料的變化改變了好幾次。另一個(gè)刺激因素是需求的顯著增加。因 而銷售量對生產(chǎn)流程的經(jīng)濟(jì)效益有很大影響。Penicillin 早期的制造就為此提供了一個(gè)很好 的例子。The ability of penicillin to prevent the onset of septicemia in battle wounds during the Second World War(1939~1945)resulted in an enormous demand for it to be produced in quantity.Up until then it had only been produced in small amounts on the surface of the fermentation broth in milk bottles!An enormous R&D effort jointly in the U.S.and the U.K.resulted in two major improvements to the process.Firstly a different stain of the mould gave much better yields than the original Penicillium notatum.Secondly the major process development was the introduction of the deep submerged fermentation process.Here the fermentation takes place throughout the broth, provided sterile air is constantly, and vigorously, blown through it.This has enabled the process to be scaled up enormously to modern stainless steel fermenters having a capacity in excess of 50000 liters.It is salutary to note that in the first world war(1914~ 1919)more soldiers died from septicemia of their wounds than were actually killed outright on the battlefield!Penicillin 能預(yù)防戰(zhàn)爭中因傷口感染引發(fā)的敗血癥,因而在第二次世界大戰(zhàn)(1939-1945)中,penicillin 的需求量非常大,需要大量生產(chǎn)。而在那時(shí),penicillin 只能用在瓶裝牛奶表面 發(fā)酵的方法小量的生產(chǎn)。英國和美國投入了巨大的人力物力聯(lián)合進(jìn)行研制和開發(fā),對生產(chǎn)流 程做出了兩個(gè)重大的改進(jìn)。首先用一個(gè)不同的菌株—黃霉菌代替普通的青霉,它的產(chǎn)量要比 后者高得多。第二個(gè)重大的流程開發(fā)是引進(jìn)了深層發(fā)酵過程。只要在培養(yǎng)液中持續(xù)通入大量 純化空氣,發(fā)酵就能在所有部位進(jìn)行。這使生產(chǎn)能力大大地增加,達(dá)到現(xiàn)代容量超過 5000 升的不銹鋼發(fā)酵器。而在第一次世界大戰(zhàn)中,死于傷口感染的士兵比直接死于戰(zhàn)場上的人還 要多。注意到這一點(diǎn)不能不讓我們心存感激。Process development for a new product depends on things such as the scale on which it is to be manufactured, the by-products formed and their removal/recovery, and required purity.Data will be acquired during this development stage using semi-technical plant(up to 100 liters capacity)which will be invaluable in the design of the actual manufacturing plant.If the plant is to be a very large capacity, continuously operating one, e.g.petrochemical or ammonia, then a pilot plant will first be built and operated to test out the process and acquire more data, these

semi-technical or pilot plants will be required for testing, e.g., a pesticide, or customer evaluation, e.g., a new polymer.對一個(gè)新產(chǎn)品進(jìn)行開發(fā)要考慮產(chǎn)品生產(chǎn)的規(guī)模、產(chǎn)生的副產(chǎn)品以及分離/回收,產(chǎn)品所 要求的純度。在開發(fā)階段利用中試車間(最大容量可達(dá) 100 升)獲得的數(shù)據(jù)設(shè)計(jì)實(shí)際的制造 廠是非常寶貴的,例如石油化工或氨的生產(chǎn)。要先建立一個(gè)中試車間,運(yùn)轉(zhuǎn)并測試流程以獲 得更多的數(shù)據(jù)。他們需要測試產(chǎn)品的性質(zhì),如殺蟲劑,或進(jìn)行消費(fèi)評估,如一種新的聚合物。Note that by-products can has a major influence on the economics of a chemical process.Phenol manufacture provides a striking example of this.The original route, the benzenesulphonic acid route, has become obsolete because demand for its by-produce sodium sulfite(2.2 tons/l ton phenol)has dried up.Its recovery and disposal will therefore be an additional charge on the process, thus increasing the cost of the phenol.In contrast

the cumene route owes its economic advantage over all the other routes to the strong demand for the by-product acetone(0.6 tons/l ton phenol).The sale of this therefore reduces the net cost of the phenol.注意,副產(chǎn)品對于化學(xué)過程的經(jīng)濟(jì)效益也有很大的影響。酚的生產(chǎn)就是一個(gè)有代表性的 例子。早期的方法,苯磺酸方法,由于它的副產(chǎn)品亞硫酸鈉需求枯竭而變的過時(shí)。亞硫酸鈉 需回收和廢置成為生產(chǎn)過程附加的費(fèi)用,增加了生產(chǎn)酚的成本。相反,異丙基苯方法,在經(jīng) 濟(jì)效益方面優(yōu)于所有其他方法就在于市場對于它的副產(chǎn)品丙酮的迫切需求。丙酮的銷售所得 降低了酚的生產(chǎn)成本。A major part of the process development activity for a mew plant is to minimize, or ideally prevent by designing out, waste production and hence possible pollution.The economic and environmental advantages of this are obvious.對一個(gè)新產(chǎn)品進(jìn)行工藝開發(fā)的一個(gè)重要部分是通過設(shè)計(jì)把廢品減到最低,或盡可能地防 止可能的污染,這樣做帶來的經(jīng)濟(jì)利益和對環(huán)境的益處是顯而易見的。Finally it should be noted that process development requires a big team effort between chemists, chemical engineers, and electrical and mechanical engineers to be successful.最后要注意,工業(yè)開發(fā)需要包括化學(xué)家、化學(xué)工程師、電子和機(jī)械工程師這樣一支龐大 隊(duì)伍的協(xié)同合作才能取得成功。(3)Process improvement.Process improvement relates to processes which are already operating.It may be a problem that has arisen and stopped production.In this situation there is a lot of pressure to find a solution as soon as possible so that production can restart, since ‘down time’ costs money.(3)工藝改進(jìn)。工藝改進(jìn)與正在進(jìn)行的工藝有關(guān)。它可能出現(xiàn)了某個(gè)問題使生產(chǎn)停止。在這種情形下,就面臨著很大的壓力要盡快地解決問題以便生產(chǎn)重新開始,因?yàn)楣收掀诤馁M(fèi) 資財(cái)。down time: 故障期 More commonly, however, process improvement will be directed at improving the profitability of the process.This might be achieved in a number of ways.For example, improving the yield by optimizing the process, increasing the capacity by introducing a new catalyst, or lowering the energy requirements of the process.An example of the latter was the introduction of turbo compressors in the production of ammonia by the Haber process.This reduced utility costs

(mainly electricity)from $6.66 to %0.56 per ton of ammonia produced.Improving the quality of the product, by process modification, may lead to new markets for the product.然而,更為常見的,工藝改進(jìn)是為了提高生產(chǎn)過程的利潤。這可以通過很多途徑實(shí)現(xiàn)。例如通過優(yōu)化流程提高產(chǎn)量,引進(jìn)新的催化劑提高效能,或降低生產(chǎn)過程所需要的能量。可 說明后者的一個(gè)例子是在生產(chǎn)氨的過程中渦輪壓縮機(jī)的引進(jìn)。這使生產(chǎn)氨的成本(主要是電)從每噸 6.66 美元下降到 0.56 美元。通過工藝的改善提高產(chǎn)品質(zhì)量也會(huì)為產(chǎn)品打開新的市場。In recent years, however, the most important process improvement activity has been to reduce the environmental impact of the process, i.e., to prevent the process causing any pollution.Clearly there have been two interlinked driving forces for this.Firstly, the public?s concern about the safety of chemicals and their effect on the environment, and the legislation which has followed as a result of this.Secondly the cost to the manufacturer of having to treat waste(i.e., material which cannot be recovered and used r sold)so that it can be safely disposed of, say by pumping into a river.This obviously represents a charge on the process which will increase the cost of the chemical being made.The potential for improvement by reducing the amount of waste is self-evident.然而,近年來,最重要的工藝改進(jìn)行為主要是減少生產(chǎn)過程對環(huán)境的影響,亦即防止生 產(chǎn)過程所引起的污染。很明顯,有兩個(gè)相關(guān)連的因素推動(dòng)這樣做。第一,公眾對化學(xué)產(chǎn)品的 安全性及其對環(huán)境所產(chǎn)生影響的關(guān)注以及由此而制訂出來的法律; 第二,生產(chǎn)者必須花錢對 廢物進(jìn)行處理以便它能安全地清除,比如說,排放到河水中。顯然這是生

產(chǎn)過程的又一筆費(fèi) 用,它將增加所生產(chǎn)化學(xué)產(chǎn)品的成本。通過減少廢物數(shù)量提高效益其潛能是不言而喻的。Note, however, with a plant which has already been built and is operating there are usually only very limited physical changes which can be made to the plant to achieve the above aims.Hence the importance, already mentioned, of eliminating waste production at the design stage of a new plant.Conserving energy and thus reducing energy cost has been another major preoccupation in recent years.然而,請注意,對于一個(gè)已經(jīng)建好并正在運(yùn)行的工廠來說,只能做一些有限的改變來達(dá) 到上述目的。因此,上面所提到的減少廢品的重要性應(yīng)在新公廠的設(shè)計(jì)階段加以考慮。近年 來另一個(gè)當(dāng)務(wù)之急是保護(hù)能源及降低能源消耗。(4)Applications development.Clearly the discovery of new applications or uses for a product can increase or prolong its profitability.Not only does this generate more income but the resulting increased scale of production can lead to lower unit costs and increased profit.An example is PVC whose early uses included records and plastic raincoats.Applications which came later included plastic bags and particularly engineering uses in pipes and guttering.(4)應(yīng)用開發(fā)。顯然發(fā)掘一個(gè)產(chǎn)品新的用處或新的用途能拓寬它的獲利渠道。這不僅 能創(chuàng)造更多的收入,而且由于產(chǎn)量的增加使單元生產(chǎn)成本降低,從而使利潤提高。舉例來說,PVC 早期是用來制造唱片和塑料雨衣的,后來的用途擴(kuò)展到塑料薄膜,特別是工程上所使 用的管子和排水槽。Emphasis has already been placed on the fact that chemicals are usually purchased for the effect, or particular use, or application which they have.This often means that there will be close liaison between the chemical companies? technical sales representatives and the customer, and the

level of technical support for the customer can be a major factor in winning sales.Research and development chemists provide the support for these applications developments.An example is CF3CH3F.This is the first of the CFC replacements and has been developed as a extracting natural products from plant materials.In no way was this envisaged when the compound was first being made for use as a refrigerant gas, but it clearly is an example of applications development.我們已經(jīng)強(qiáng)調(diào)了化學(xué)產(chǎn)品是由于它們的效果,或特殊的用途、用處而得以售出這個(gè)事實(shí)。這就意味著化工產(chǎn)品公司的技術(shù)銷售代表與顧客之間應(yīng)有密切的聯(lián)系。對顧客的技術(shù)支持水平往往是贏得銷售的一個(gè)重要的因素。進(jìn)行研究和開發(fā)的化學(xué)家們?yōu)檫@些應(yīng)用開發(fā)提供了幫 助。CH3CH3F 的制造就是一個(gè)例子。它最開始是用來做含氟氯烴的替代物作冷凍劑的。然 而近來發(fā)現(xiàn)它還可以用作從植物中萃取出來的天然物質(zhì)的溶解劑。當(dāng)它作為制冷劑被制造 時(shí),固然沒有預(yù)計(jì)到這一點(diǎn),但它顯然也是應(yīng)用開發(fā)的一個(gè)例子。3.Variations in R&D Activities across the Chemical Industry Both the nature and amount of R&D carried out varies significantly across the various sectors of the chemical industry.In sectors which involve largescale production of basic chemicals and where the chemistry, products and technology change only slowly because the process are mature, R&D expenditure is at the lower end of the range for the chemical industry.Most of this will be devoted to process improvement and effluent treatment.Examples include ammonia, fertilizers and chloralkali production from the inorganic side, and basic petrochemical intermediates such a ethylene from the organic side.3.化工行業(yè)中研究與開發(fā)活動(dòng)的變化 化學(xué)工業(yè)的不同部門所進(jìn)行的 R&D 的性質(zhì)與數(shù)量都有很大的變化。與大規(guī)模生產(chǎn)的基 礎(chǔ)化工產(chǎn)品有關(guān)的部門中,化學(xué)產(chǎn)品和技術(shù)變化都很慢,因?yàn)榱鞒桃押艹墒臁&D 經(jīng)費(fèi)支 出屬于化工行業(yè)中低的一端,而且大部分的費(fèi)用是用于過程改進(jìn)和廢水處理。無機(jī)方面的例 子有氨、肥料和氯堿的生產(chǎn),有機(jī)方面的如乙烯等一些基礎(chǔ)石油化學(xué)的中間產(chǎn)物。At the other end of the scale lie pharmaceuticals and pesticides(or plant protection products).Here there are immense and continuous efforts to synthesize new molecules

which exert the desired, specific biological effect.A single company may generate 10,000 new compounds for screening each year.Little wonder that some individual pharmaceutical company?s annual R&D expenditure is now approaching $1000 million!Expressing this in a different way they spend in excess of 14% of sales income(note not profits)on R&D.不一樣規(guī)模生產(chǎn)的是藥品和除草劑。人們付出了巨大而持續(xù)的努力以合成能產(chǎn)生所希望 的、特殊的生物作用的新分子。一家公司每年可能要合成 10,000 新化合物以供篩選。可以 想象一些醫(yī)藥公司其每年的 R&D 經(jīng)費(fèi)支出高達(dá) 100 億美元。換句話說,他們把超過 14%的 銷售收入投入在 R&D 上。

Unit 3 Typical Activities of Chemical Engineers 化學(xué)工程師的例行工作

The classical role of the chemical engineer is to take the discoveries made by the chemist in the laboratory and develop them into money--making, commercial-scale chemical processes.The chemist works in test tubes and Parr bombs with very small quantities of reactants and products(e.g., 100 ml), usually running “batch”, constant-temperature experiments.Reactants are placed in

a small container in a constant temperature bath.A catalyst is added and the reactions proceed with time.Samples are taken at appropriate intervals to follow the consumption of the reactants and the production of products as time progresses.化學(xué)工程師經(jīng)典的角色是把化學(xué)家在實(shí)驗(yàn)室里的發(fā)現(xiàn)拿來并發(fā)展成為能賺錢的、商業(yè)規(guī) 模的化學(xué)過程?;瘜W(xué)家用少量的反應(yīng)物在試管和派式氧彈中反應(yīng)相應(yīng)得到少量的生成物,所 進(jìn)行的通常是間歇性的恒溫下的實(shí)驗(yàn),反應(yīng)物放在很小的置于恒溫水槽的容器中,加點(diǎn)催化 劑,反應(yīng)繼續(xù)進(jìn)行,隨時(shí)間推移,反應(yīng)物被消耗,并有生成物產(chǎn)生,產(chǎn)物在合適的間歇時(shí)間 獲得。By contrast, the chemical engineer typically works with much larger quantities of material and with very large(and expensive)equipment.Reactors can hold 1,000 gallons to 10,000 gallons or more.Distillation columns can be over 100 feet high and 10 to 30 feet in diameter.The capital investment for one process unit in a chemical plant may exceed $100 million!與之相比,化學(xué)工程師通常面對的是數(shù)量多得多的物質(zhì)和龐大的(昂貴的)設(shè)備。反應(yīng) 器可以容納 1000 到 10,000 加侖甚至更多。蒸餾塔有 100 英尺多高,直徑 10 到 30 英尺?;?工廠一個(gè)單元流程的投資可能超過 1 億美元。The chemical engineer is often involved in “scaling up” a chemist-developed small-scale reactor and separation system to a very large commercial plant.The chemical engineer must work closely with the chemist in order to understand thoroughly the chemistry involved in the process and to make sure that the chemist gets the reaction kinetic data and the physical property data needed to design, operate, and optimize the process.This is why the chemical engineering curriculum contains so many chemistry courses.在把化學(xué)家研制的小型反應(yīng)器及分離系統(tǒng)“放大”到很大的商業(yè)化車間時(shí),通常需要化 學(xué)工程師的參與。為了徹底了解過程中的化學(xué)反應(yīng),化學(xué)工程師必須與化學(xué)家密切合作以確 保能得到所需要的反應(yīng)的動(dòng)力學(xué)性質(zhì)和物理性質(zhì)參數(shù)以進(jìn)行設(shè)計(jì)、運(yùn)轉(zhuǎn)和優(yōu)選流程。這就是 為什么化工課程要包括那么多的化學(xué)類課程的原因。The chemical engineer must also work closely with mechanical, electrical, civil, and metallurgical engineers in order to design and operate the physical equipment in a plant--the reactors, tanks, distillation columns, heat exchangers, pumps, compressors, Control and instrumentation devices, and so on.One big item that is always on such an equipment list is piping.One of the most impressive features f a typical chemical plant is the tremendous number of pipes running all over the site, literally hundreds of miles in many plants.These pipes transfer process materials(gases and liquids)into and out of the plant.They also carry utilities(steam, cooling water, air, nitrogen, and refrigerant)to the process units.化學(xué)工程師還必須與機(jī)械、電

子、土木建筑和冶金工程師密切協(xié)作以設(shè)計(jì)和操作工廠的 機(jī)械設(shè)備—反應(yīng)器、槽、蒸餾塔、熱交換器、泵、壓縮機(jī)、控制器和儀器設(shè)備等等。在這張 設(shè)備單上還有一大類是管子?;S最典型的特征之一就是數(shù)目龐大的管道貫穿所有生產(chǎn) 間??梢院敛豢鋸埖卣f,在許多車間都有幾百英里長的管道。這些管道輸入和輸出車間的反 應(yīng)物質(zhì)進(jìn)行傳遞,同時(shí)還可攜帶有用的東西(水蒸氣、冷卻水、空氣、氧、冷卻劑)進(jìn)入操 作單元。To commercialize the laboratory chemistry, the chemical engineer is involved in development,design, construction, operation, sales, and research.The terminology used to label these functions is by no means uniform from company to company, but a rose by any other name is still a rose.Let us describe each of these functions briefly.It should be emphasized that the jobs we shall discuss are “typical” and “classical”, but are by no means the only things that chemical engineers do.The chemical engineer has a broad background in mathematics, chemistry, and physics.Therefore, he or she can, and does, fill a rich variety of jobs in industry, government, and academia.要把實(shí)驗(yàn)室研究商業(yè)化,化學(xué)工程師要參與進(jìn)行開發(fā)、設(shè)計(jì)、建筑、操作、銷售和研究 工作。各個(gè)公司用來表示這些工作的名詞不完全一樣,但萬變不離其宗。讓我們簡單地把每 個(gè)工作描述一下。應(yīng)該強(qiáng)調(diào)的是,我們所討論的工作是“典型的”和“經(jīng)典的”,但并不意 味著化學(xué)工程師只能做這些事?;瘜W(xué)工程師在數(shù)學(xué)、化學(xué)和物理學(xué)方面都有很好的知識(shí)基礎(chǔ),因此,他或她能夠而且確實(shí)適應(yīng)工業(yè)、政府部門、大專院校等非常廣泛的職業(yè)要求。1.Development Development is the intermediate step required in passing from a laboratory-size process to a commercial-size process.The “pilot-plant” process involved in development might involve reactors that are five gallons in capacity and distillation columns that are three inches in diameter.Development is usually part of the commercialization of a chemical process because the scale-up problem is a very difficult one.Jumping directly from test tubes to 10,000-gallon reactors can be a tricky and sometimes dangerous endeavor.Some of the subtle problems involved which are not at all obvious to the uninitiated include mixing imperfections, increasing radial temperature gradients, and decreasing ratios of heat transfer areas to heat generation rates.1.開發(fā) 開發(fā)工作是從實(shí)驗(yàn)室規(guī)模向商業(yè)化規(guī)模轉(zhuǎn)化所必需的中間階段。開發(fā)階段所涉及的 “中 試”流程所使用的反應(yīng)器容量為 5 加侖,蒸餾塔直徑為 3 英寸。開發(fā)通常是化學(xué)流程商業(yè)化 的一部分。因?yàn)椤胺糯蟆币?guī)模是一個(gè)非常困難的問題。直接從試管研制跳到在 10.000 加侖 反應(yīng)器里生產(chǎn)是非常棘手的有時(shí)甚至是危險(xiǎn)的工作。一些(在實(shí)驗(yàn)室研究階段)根本不明顯 的未加以考慮的細(xì)微問題,如混合不均勻,溫度梯度輻射狀升高,熱交換面積逐漸降低以及 熱交換速度下降等(在后一階段變得影響很大)。The chemical engineer works with the chemist and a team of other engineers to design, construct, and operate the pilot plant.The design aspect involves specifying equipment sizes, configuration, and materials of construction.Usually pilot plants are designed to be quite flexible, so that a wide variety of conditions and configurations can be evaluated.化學(xué)工程師與化學(xué)家和其他一些工程師協(xié)作對中師車間進(jìn)行設(shè)計(jì)、安裝和運(yùn)行,設(shè)計(jì)方 面包括確定設(shè)備的尺寸、結(jié)構(gòu)、制造所用的材料。通常中師車間的設(shè)計(jì)是有很大的變通性的,以便能對各種情況和構(gòu)造進(jìn)行評估。Once the pilot plant is operational, performance and optimization data can be obtained in order to evaluate the process from an economic point of view.The profitability is assessed at each stage of the development of the process.If it appears that not enough money will be made to justify the capital investment, the project will be stopped.中試車間一旦開始運(yùn)轉(zhuǎn),就能獲得性能數(shù)據(jù)和選定最佳數(shù)值以便從經(jīng)濟(jì)學(xué)角度對流程進(jìn) 行評價(jià)。對生產(chǎn)過程的每一個(gè)階段可能獲得的利潤進(jìn)行評定。如果結(jié)果顯示投入的資金不能

有足夠的回報(bào),這項(xiàng)計(jì)劃將被停止。The pilot plant offers the opportunity to evaluate materials of construction, measurement techniques, and process control strategies.The experimental findings in the pilot plant can be used to improve the design of the full-scale plant.中師車間還提供了評價(jià)設(shè)備制造材料、測量方法、流程控制技術(shù)的機(jī)會(huì)。中試車間的這 些實(shí)驗(yàn)數(shù)據(jù)對于工業(yè)裝置設(shè)計(jì)的改善能提供有用的幫助。2.Design Based on the experience and data obtained in the laboratory and the pilot plant, a team of engineers is assembled to design the commercial plant.The chemical engineer’s job is to specify all process flow rates and conditions, equipment types and sizes, materials of construction, process configurations, control systems, safety systems, environmental protection systems, and other relevant specifications.It is an enormous responsibility.2. 設(shè)計(jì) 根據(jù)在實(shí)驗(yàn)室和中試車間獲得的經(jīng)驗(yàn)和數(shù)據(jù),一組工程師集中起來設(shè)計(jì)工業(yè)化的車間?;瘜W(xué)工程師的職責(zé)就是詳細(xì)說明所有過程中的流速和條件,設(shè)備類型和尺寸,制造材料,流 程構(gòu)造,控制系統(tǒng),環(huán)境保護(hù)系統(tǒng)以及其它相關(guān)技術(shù)參數(shù)。這是一個(gè)責(zé)任重大的工作。The design stage is really where the big bucks are spent.One typical chemical process might require a capital investment of $50 to $100 million.That?s a lot of bread!And the chemical engineer is the one who has to make many of the decisions.When you find yourself in that position, you will be glad that you studied as hard as you did(we hope)so that you can bring the best possible tools and minds to bear on the problems.設(shè)計(jì)階段是大把金錢花進(jìn)去的時(shí)候。一個(gè)常規(guī)的化, and digital computer use began to develop about 1960.The idea that the various unit operations depended on common mechanisms of heat, mass, and momentum transfer developed about 1960.Consequently, courses in transport phenomena assumed an important position as an underlying, unifying basis for chemical engineering education.New general disciplines that have emerged in the last two decades include environmental and safety engineering, biotechnology, and electronics manufacturing processing.There has been an enormous amount of development in all fields, much of it arising out of more powerful computing and applied mathematics capabilities.1.Science and Mathematics Courses Chemistry Chemical engineers continue to need background in organic, inorganic and physical chemistry, but also should introduced to the principles of instrumental analysis and biochemistry.Valuable conceptual material should be strongly emphasized in organic chemistry including that associated with biochemical process.Much of thermodynamic is more efficiently taught in chemical engineering, and physical chemistry should include the foundations of thermodynamic.Physics.Biology.Biology has emerged from the classification stage, and modern molecular biology holds great promise for application.Future graduates will become involved with applying this knowledge at some time in their careers.44

A special course is required on the functions and characteristics of living cells with some emphasis on genetic engineering as practiced with microorganisms.Materials Science.Course work should include the effects of microstructure on physical, chemical, optical, magnetic and electronic properties of solids.Fields of study should encompass ceramics, polymers, semiconductors, metals, and composites.Mathematics.Computer Instruction.Although students should develop reasonable proficiency in programming, the main thrust should be that use of standard software including the merging of various programs to accomplish a given task.Major emphasis should be on how to analyze and solve problems with existing software including that for simulation to evaluate and check such software with thoroughness and precision.Students

should learn how to critically evaluate programs written by others.All courses involving calculations should make extensive use of the computer and the latest software.Such activity should be more frequent as students progress in the curriculum.Adequate computer hardware and software must be freely available to the student through superior centralized facilities and/or individual PC?s.Development of professionally written software for chemical engineering should be encouraged.2.Chemical engineering courses Thermodynamics.The important concepts of the courses should be emphasized;software should e developed to implement the concepts in treating a wide variety of complex, yet interesting, problems in a reasonable time.The value of analysis of units and dimensions in checking problems should continue to be emphasized.Examples in thermodynamics should involve problems from a variety of industries so that the subject comes alive and its power in decision making is clearly emphasized.Kinetics, Catalysis, and Reactor Design and Analysis.This course also needs a broad variety of real problems, not only design but also diagnostic and economic problems.Real problems involve real compounds and the chemistry related to them.Existing software for algebraic and differential equation solving make simulation and design calculation on many reactor systems quite straightforward.Shortcut estimating methods should be emphasized in addition to computer calculations.The increased production of specialties make batch ad semibatch reactor more important, and scale-up of laboratory studies is an important technique in the fast-moving specialties business.3.Unit Operations The unit operations were conceived as an organized means for discussing the many kind of equipment-oriented physical processes required in the process industries.This approach continues to be valid.Over the years some portions have bee given separate status such as transport phenomena and separations while some equipment and related principles have not been included

in the required courses, as is the case with polymer processing, an area in which all chemical engineers should have some knowledge.Transport phenomena principles can be made more compelling by using problems form a wide range of industries that can be analyzed and solved using the principles taught.Some efficiency may be gained by teaching several principles and procedures for developing specifications and selection the large number of equipment items normally purchased off-the-shelf or as standard design.A great deal of time can be saved in addressing designed equipped such as fractionators and absorbers be emphasizing rigorous computer calculations and the simplest shortcut procedures.Most intermediate calculation procedures and graphical methods should be eliminated unless they have real conceptual value.Process Control.This course should emphasize control strategy and precise measurement in addition to theory.Some hands-on experience using current practices of computer control with industrial-type consoles should be encouraged.Computer simulation of processes for demonstration of control principles and techniques can be most valuable, but contact with actual control devices should not be ignored.Chemical engineering laboratories.Creative problem solving should be emphasized.Reports should be written as briefly as possible;they should contain an executive summary with clearly drawn conclusions and brief observations and explanations with graphical rather than tabular representation of data.A great deal of such graphing can be done in the laboratory on computers with modern graphics capabilities.Detailed calculations should be included in an appendix.Some part of the laboratory should be structured to relate to product development, Design/Economics In the design course in engineering, students learn the techniques of complex problem solving and decision making within a framework of

economic analysis.The very nature of processes requires a system approach? the ability to analyze a total system is one of the special attributes of chemical engineers that will continue to prove most sought after in a complex technological world.Because of the greater diversity of interests and job opportunities, some consideration should be given to providing a variety of short design problem of greatest personal interest.The design approach can be most valuable in diagnosing plant problems, and some practice in this interesting area should be provided.Rigorous economic analysis and predictive efforts should be required in all decision processes.Safety and environmental considerations should also be emphasized.Modern simulation tools should be made available to the students.Other Engineering Courses.The electrical engineering courses should emphasize application of microprocessors, lasers, sensing devices, and control systems as well as the traditional areas of circuits and motors.The course should provide insight into the principles on which each subject is based.46

Remaining courses in engineering mechanics and engineering drawing should be considered for their relevance to current and future chemical engineering practice.4.Other courses Economics and Business courses.It is difficult to find a single course in economics or business departments that covers the various needs of engineers.The qualitative ability of engineers makes it possible to teach following topics in a single-semester course—in many cases in the Chemical Engineering Department: business economics, project economic analysis, economic theory, marketing and market studies, and national and global economics.Humanities and Social Science Courses.It is important to understand the origins of one?s own culture as well as that of others.Communication Course.Since improved communication skills require continuous attention, the following requirements may be useful: Oral presentations in at least one course each year.Several literature surveys in the junior and senior years.Introduce computer-based communication systems.Area of Specialization.The elective areas should be generous in hours to maximize freedom of choice.Each department will have to consider its own and its total university resources and strenghs as well as the quality and preparation of its students.The suggested areas are: Life sciences and applications Materials sciences and applications Catalysis and electrochemical science and applications Separations technology Computer applications technology Techniques of product development and marketing Polymer technology Each of these areas should be strongly career-oriented.The interest in a given area will depend on opportunities perceived by the students.47

1構(gòu)體的形成。大部分這些化合物只是滿足實(shí)驗(yàn)室好奇心或?qū)W術(shù)興

趣。然而,其 他剩余的達(dá)幾千種,是商業(yè)和實(shí)踐興趣。因此,可以預(yù)料到這些化學(xué)物質(zhì)的來源很廣。雖然 對無機(jī)化學(xué)品 如此,但是奇怪的是,大多數(shù)有機(jī)化學(xué)品來源于一種資源,即原油(石油)。1.無機(jī)化學(xué)品 Table1-1 無機(jī)化學(xué)品的主要來源 因?yàn)椤盁o機(jī)化學(xué)品”這個(gè)詞(術(shù)語)涉及到(cover,包括、涵蓋)的是除碳以外所有元素構(gòu) 成的化合物。其來源的多樣性并不很大(見表1-1)。一些較重要的來源是金屬礦(包括重要的金屬鐵和 鋁)以及鹽和海 水(用于生產(chǎn)氯、鈉、氫氧化鈉和碳酸鈉)。在這些情況下,至少兩種不同的元素化合以一 種穩(wěn)定的化合 物在一起。因此,如果要得到單個(gè)元素(也就是金屬),那么提取過程除了純物理的分離方 法以外,還必 須涉及到化學(xué)處理(過程)。金屬礦或無機(jī)礦很少以純物質(zhì)的形式存在,因此,處理過程的 第一步通常是:(將無機(jī)礦中)從不要的固體

如粘土或沙石中分離出來。固體篩分后經(jīng)壓碎和研磨,利用顆 粒尺寸差異可 以完成一些物理分離。下一步驟則取決于所需礦物的本質(zhì)及其特征。例如,鐵礦常在磁分離 器利用他們的 磁性加以分離。泡沫浮選是另一種廣泛應(yīng)用的分離技術(shù)。在該技術(shù)中,所需要的礦物,以細(xì) 小顆粒形式存 在,借助被水溶液潤濕能力的差異而與其他礦物加以分離。常加入表面活性劑(抗?jié)櫇駝@些典型的 分子,一頭為非極性部分(如長碳?xì)滏湥硪活^為極性部分(如-NH2)。該極性基團(tuán)與 礦物相吸,形成不 牢固的鍵;而碳?xì)浠鶊F(tuán)與水相斥而阻止礦物被潤濕,因而礦物能浮選。相反,其他固體物質(zhì) 很容易被潤濕 而沉在水溶液中。攪拌溶液或液體中鼓泡以產(chǎn)生泡沫能大大促進(jìn)表面活性劑包裹的礦物的漂 浮,這些礦物 從容器中溢出到收集容器中,在收集容器,礦物得到回收。顯然,該過程成功的關(guān)鍵在于,為所處理礦物 選擇一種高選擇的特定的表面活性劑。2 有機(jī)化合物 相比于無機(jī)化學(xué)品來自于眾多不同的資源(這一點(diǎn)我們已經(jīng)明白了),商業(yè)上的一些重要的 有機(jī)化合 物基本上來源單一。如今,所有有機(jī)化合物的99%以上,可以通過石化工藝過程從原油(石 油)和天然氣 得到。這是一種有趣的情形— — 該情形一直在改變,而且將來也會(huì)變化,因?yàn)閺募夹g(shù)上講,相同的化學(xué)品 可以從其他原料得到。尤其是脂肪族化合物,可以通過由碳水化合物的發(fā)酵所得的乙醇加以 生產(chǎn),另一方 面,芳香族化合物可以從煤焦油中分離得到。煤焦油是煤炭化工過程的副產(chǎn)物。動(dòng)植物油脂,是為數(shù)不多的脂肪族化合物的特定的資源,這些脂肪族化合物包括長鏈脂肪酸(如正十八酸)和長鏈醇(如正十二烷 醇)?;剂希词?、天然氣和煤)的形成要花上百萬年,一旦用掉就不能被替換,因此,它 們稱之為 不可再生的資源。這與來自于植物的碳水化合物恰恰相反,碳水化合物能夠較快被更新。一 種較為普遍應(yīng) 用的資源為蔗糖— — 一旦作物被收割和土地被清理,又可以種植和收割新的作物,通常少 于一年。因此,碳?xì)浠衔锟煞Q為可再生資源。據(jù)估計(jì),植物原料(干重)的總的年產(chǎn)量為 1*1011 噸?;剂希烊粴狻⒃秃兔?,主要用作為能源,而不是作為有機(jī)化合物的資源。例如,各種石油分餾物的氣體,用于家用烹調(diào)和取暖、用作為汽車用的汽油、加熱建筑物重 燃油,或用于在工業(yè)處理以產(chǎn)生 的蒸汽。通常,一桶原油的8%用于化學(xué)品的生產(chǎn)。下列數(shù)據(jù)可以說明,為什么化學(xué)工業(yè)在 原油的使用方 面與燃料或能源消耗的工業(yè)展開著競爭。顯然,若我們愿意使用可代替化石燃料的其他能源,那么這些可替代能源可以利用的,同時(shí),我們自 信地預(yù)料到在不久的將來,可以用上其他的可替代能源。因此,有必要要去保存寶貴的石油 供應(yīng)以用于化 學(xué)品的生產(chǎn)?!疤幚硎偷淖詈笠患虑槭菍⒅紵痹撜f法是有根據(jù)的。注意到這件事很有 趣且有益的: 早在1894 年門捷列夫(發(fā)現(xiàn)元素周期表之俄國科學(xué)家)就向當(dāng)局報(bào)道,“石油是太寶貴的資 源而不能將之 燃燒掉,應(yīng)該將之以化學(xué)品資源加以保存。” 來自于碳水化合物(植物莖桿)的有機(jī)化學(xué)物質(zhì),職務(wù)的主要成分是碳水化合物,碳水化合 物組成職 務(wù)的結(jié)構(gòu)。它們?yōu)槎嗵牵ㄈ缋w維素和淀粉),大量的淀粉存在于食物(如谷類、大米和馬鈴 薯)之中,纖 維素是組成細(xì)胞壁的主要物質(zhì),因而廣泛存在,可以從木材、棉花等中得到。因此,來自于 碳水化合物的 化學(xué)品的潛力是相當(dāng)大的,而且該原料可再生。從碳水化合物得到化學(xué)物質(zhì)的主要途徑是通過發(fā)酵過程。然而發(fā)酵過程不能利用多糖(如維 素和淀 粉),因此,淀粉必須先收到酸性或酶水解反應(yīng)生成更簡單的糖類(單糖或二糖(如蔗糖),這些較為簡單 的糖是發(fā)酵過程中的)合適的起始原料。發(fā)酵過程是利用單細(xì)胞的微生物(一般有酵母菌、真菌、細(xì)菌或霉菌)生產(chǎn)特殊化學(xué)品。有 些發(fā)酵農(nóng) 家已用了上千年。最著名的例子為,谷物發(fā)酵生產(chǎn)含酒精的飲料。直到1950 年,該方法才 成為生產(chǎn)脂肪 族有機(jī)化學(xué)品的最普遍的途徑。因?yàn)樯a(chǎn)的乙醇脫水生成乙烯,而乙烯是合成大量脂肪族化 合物的關(guān)鍵中 間體。盡管用此方法生產(chǎn)的化學(xué)品有所減少,但是用這種方法生產(chǎn)汽車燃料方面存在大量的 興趣。

下載化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}word格式文檔
下載化學(xué)工程與工藝專業(yè)發(fā)展方向?qū)n}.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    化學(xué)工程與工藝專業(yè)介紹

    化學(xué)工程與工藝專業(yè) 培養(yǎng)目標(biāo) 化學(xué)工程與工藝專業(yè)以厚基礎(chǔ)、寬專業(yè)、重素質(zhì)為特色,培養(yǎng)適應(yīng)我國社會(huì)主義現(xiàn)代化建設(shè)和社會(huì)主義市場經(jīng)濟(jì)發(fā)展需求,具有從事石油化工科研、生產(chǎn)、......

    化學(xué)工程與工藝專業(yè)試驗(yàn)

    《化學(xué)工程與工藝專業(yè)實(shí)驗(yàn)》(本)教學(xué)大綱 英文名稱:Experiment of Chemical Engineering and Technology 課程性質(zhì):必修 學(xué)分?jǐn)?shù):2 學(xué)分 要求先修課程:化工原理,化工熱力學(xué),化學(xué)反應(yīng)......

    化學(xué)工程與工藝專業(yè)教學(xué)計(jì)劃(大全)

    化學(xué)工程與工藝專業(yè)教學(xué)計(jì)劃 一、專業(yè)簡介 化學(xué)工程與工藝是研究化工類生產(chǎn)過程以及過程技術(shù)的基本規(guī)律,運(yùn)用這些規(guī)律建立有關(guān)的基本理論和基本方法,并解決與生產(chǎn)、研究、設(shè)計(jì)......

    化學(xué)工程與工藝專業(yè)(本科)(范文)

    1. 化學(xué)工程與工藝 本專業(yè)培養(yǎng)具有扎實(shí)的化學(xué)、化學(xué)工程、計(jì)算機(jī)技術(shù)和管理等科學(xué)理論知識(shí)及其在從事化工生產(chǎn)、化工產(chǎn)品檢驗(yàn)與評價(jià)、設(shè)計(jì)、技術(shù)開發(fā)與生產(chǎn)技術(shù)管理和科學(xué)研......

    化學(xué)工程與工藝專業(yè)問答稿

    化學(xué)工程與工藝—產(chǎn)品最優(yōu)化的“總控師”問答解讀:四川化工學(xué)?;は?1、化學(xué)工藝專業(yè)作為貴校的優(yōu)勢專業(yè),開設(shè)多年,也很有成效,請問老師能否從該專業(yè)本身的角度,介紹一下其開設(shè)......

    化學(xué)工程與工藝專業(yè)自薦信[定稿]

    姓名:XXX國籍:中國目前所在地:汕頭民族:漢族戶口所在地:汕頭身材:173 cm婚姻狀況:未婚年齡:24 歲求職意向及工作經(jīng)歷應(yīng)聘職位:精細(xì)/日用化工:技術(shù)員、實(shí)驗(yàn)員、工業(yè)/工廠類:化妝品生產(chǎn)......

    化學(xué)工程與工藝

    第一部分無機(jī)化學(xué)1. 物質(zhì)及其變化 理想氣體狀態(tài)方程、分壓定律、熱化學(xué)定律。2. 化學(xué)反應(yīng)定律和化學(xué)平衡熟悉濃度、溫度和催化劑對反應(yīng)速率的影響:化學(xué)平衡移動(dòng)規(guī)律;化學(xué)平衡......

    化學(xué)工程與工藝

    化學(xué)工程與工藝專業(yè) 本專業(yè)學(xué)生主要學(xué)習(xí)化學(xué)工程學(xué)與化學(xué)工藝學(xué)等方面的基本理論和基本知識(shí),受到化學(xué)與化工實(shí)驗(yàn)技能、工程實(shí)踐 、計(jì)算機(jī)應(yīng)用、科學(xué)研究與工程設(shè)計(jì)方法的基本......

主站蜘蛛池模板: 久久久久国产精品人妻aⅴ毛片| 亚洲国产成人久久综合| 国产a√精品区二区三区四区| 成人做爰视频www网站小优视频| 亚洲中文无码人a∨在线| 国产日韩制服丝袜第一页| 精品第一国产综合精品蜜芽| 日日碰狠狠添天天爽超碰97| 国产午夜高清高清在线观看| 狠狠色噜噜狠狠狠狠888奇禾| 国语高潮无遮挡无码免费看| 中文字幕网伦射乱中文| 成人免费视频?国产免费| av国産精品毛片一区二区在线| 亚洲第一在线综合网站| 国产成人无码精品一区在线观看| 狼人大香伊蕉国产www亚洲| 成年女人18级毛片毛片免费| 亚洲 欧美 国产 日韩 精品| 久久香蕉国产线看观看精品yw| 国产婷婷综合在线视频| 国产电影无码午夜在线播放| 国产精品原创巨作av女教师| 久久成人国产精品免费软件| 尤物国精品午夜福利视频| 亚洲伊人色欲综合网无码中文| 国产无套粉嫩白浆在线观看| 国产放荡对白视频在线观看| 最新国模无码国产在线视频| 亚洲国产精品无码7777一线| 成人午夜视频一区二区无码| 狠狠色丁香五月综合缴情婷婷五月| 亚洲精品毛片av一区二区三区| 粉嫩虎白女p虎白女在线| 亚洲人交乣女bbw| 午夜羞羞影院男女爽爽爽| 伊人色综合视频一区二区三区| 亚洲精品一区二区三区中文字幕| 又大又粗欧美黑人aaaaa片| 亚洲精品乱码久久久久久蜜桃欧美| 久久久久青草线蕉综合|