久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

考研大綱第一章函數與極限

時間:2019-05-12 20:35:14下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《考研大綱第一章函數與極限》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《考研大綱第一章函數與極限》。

第一篇:考研大綱第一章函數與極限

2013年試卷內容結構: 高等教學 約56% 線性代數 約22% 概率論與數理統計22%

試卷題型結構: 單選題8小題每題4分共32分;填空題6小題每題4分共24分; 解答題包括證明題9小題共94分高等數學

一、函數、極限、連續

考試內容

函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立 數列極限與函數極限的定義及其性質 函數的左極限與右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則單調有界準則和夾逼準則 兩個重要極限函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質。

考試要求

1理解函數的概念掌握函數的表示法會建立應用問題的函數關系.2了解函數的有界性、單調性、周期性和奇偶性

3理解復合函數及分段函數的概念了解反函數及隱函數的概念

4掌握基本初等函數的性質及其圖形了解初等函數的概念.5理解極限的概念理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系

6掌握極限的性質及四則運算法則.7掌握極限存在的兩個準則并會利用它們求極限掌握利用兩個重要極限求極限的方法

8理解無窮小量、無窮大量的概念掌握無窮小量的比較方法會用等價無窮小量求極限

9理解函數連續性的概念含左連續與右連續會判別函數間斷點的類型

10了解連續函數的性質和初等函數的連續性理解閉區間上連續函數的性質有界性、最大值和最小值定理、介值定理并會應用這些性質函數、極限、連續

第二篇:2016考研數學大綱解析及復習重點--函數、極限、連續

凱程考研輔導班,中國最強的考研輔導機構

2016考研數學大綱解析及復習重點--函

數、極限、連續

9月18日這個在中國歷史上成為轉折點的一天,同樣也為2016年參加考研的同學帶來了重磅消息—2016年考研大綱正式發布,下面凱程教育數學教研室老師就按章節來分析大綱的要求以及復習該章節的重點:

一、大綱要求:函數、極限、連續

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.2.了解函數的有界性、單調性、周期性和奇偶性.3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.6.掌握極限的性質及四則運算法則.7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.二、復習重點

本部分重點是極限,前后內容交叉多,綜合性強,主要有兩個出題點,一個是計算極限,一個是對極限的定義的考查。主要求極限的方法有:

利用極限的四則運算法則、冪指函數運算、連續函數代入法

利用兩個重要極限求極限

利用洛必達法則

利用等價無窮小

極限存在準則:夾逼準則,單調有界準則

利用左右極限求分段函數分段點

利用導數定義

利用定積分定義

利用泰勒公式求極限

通過與2015年的數學一大綱比較,今年沒有做任何調整,同學們按照原計劃復習,夯實基礎,把握重點,重視總結、歸納解題思路、方法和技巧,提高解題計算能力必能在2016

凱程考研輔導班,中國最強的考研輔導機構 的考試中創造輝煌。最后祝同學們,金榜題名。

2016考研數學考試大綱對比—高等數學(數二)

大家翹首以待的2016年考研數學大綱終于出爐,凱程教育數學教研室第一時間為各位考生權威、詳盡解析大綱變化、預測命題趨勢,從而有的放矢地提供備考指導,以幫助同學們快速了解、把握今年的考試方向、復習重點,選擇適合的復習方法和策略,以利于同學們在今后復習中,高效學習,取得好成績。

在逐字逐句的比對后,發現2016年考研數學二大綱與2015年相比,沒有發生任何變化,經歷了多年統考實踐,考研數學的考試內容已趨于完善,因此,相應的考試大綱今年也沒有發生變化??忌梢酝ㄟ^研究真題來揣摩命題者的出題規律,從而把握今年命題的思路和趨勢,按部就班的進行分析復習,增加復習備考的針對性和有效性。盡管2016年考研數學大綱沒有變動,但是仍然需要考生提高橫向、縱向梳理考點的能力,只有這樣才能拿到高分,所以考生仍然需要扎實備考。

下面我們就看看今年數學二高等數學部分的大綱要求:

一、函數、極限、連續

1.理解函數的概念,掌握函數的表示法,并會建立應用問題的函數關系.2.了解函數的有界性、單調性、周期性和奇偶性.3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.6.掌握極限的性質及四則運算法則.7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.二、一元函數微分學

1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.3.了解高階導數的概念,會求簡單函數的高階導數.4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.6.掌握用洛必達法則求未定式極限的方法.7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數的最大值和最小值的求法及其應用.8.會用導數判斷函數圖形的凹凸性(注:在區間 內,設函數 具有二階導數.當 時,的圖形是凹的;當 時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會

凱程考研輔導班,中國最強的考研輔導機構

描繪函數的圖形.9.了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑.三、一元函數積分學

1.理解原函數的概念,理解不定積分和定積分的概念.2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函數、三角函數有理式和簡單無理函數的積分.4.理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式.5.了解反常積分的概念,會計算反常積分.6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數平均值.四、多元函數微積分學

1.了解多元函數的概念,了解二元函數的幾何意義.2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標).五、常微分方程

1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.3.會用降階法解下列形式的微分方程: 和.4.理解二階線性微分方程解的性質及解的結構定理.5.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.6.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.7.會用微分方程解決一些簡單的應用問題.所以同學們繼續按照原計劃復習,夯實基礎,把握重點,重視總結、歸納解題思路、方法和技巧,提高解題計算能力必能在2016的考試中創造輝煌。最后祝同學們,金榜題名。

第三篇:函數極限

習題

1.按定義證明下列極限:

(1)limx???6x?5=6;(2)lim(x2-6x+10)=2;x?2x

x2?5?1;(4)lim?(3)lim2x???x?1x?2

(5)limcos x = cos x0 x?x04?x2=0;

2.根據定義2敘述limf(x)≠ A.x?x0

3.設limf(x)= A.,證明limf(x0+h)= A.x?x0h?0

4.證明:若limf(x)= A,則lim| f(x)| = |A|.當且僅當A為何值時反之也成立? x?x0x?x0

5.證明定理3.1

6.討論下列函數在x0→0 時的極限或左、右極限:(1)f(x)=x

x;(2)f(x)= [x]

?2x;x?0.?(3)f(x)=?0;x?0.?1?x2,x?0.?

7.設 limf(x)= A,證明limf(x???x?x01)= A x

8.證明:對黎曼函數R(x)有limR(x)= 0 , x0∈[0,1](當x0=0或1時,考慮單側極限).x?x0

習題

1. 求下列極限:

x2?1(1)lim2(sinx-cosx-x);(2)lim;?x?02x2?x?1x?22

x2?1?x?1???1?3x?;

lim(3)lim;(4)

x?12x2?x?1x?0x2?2x3

xn?1(5)limm(n,m 為正整數);(6)lim

x?1xx?4?1

(7)lim

x?0

?2x?3x?2

70;

a2?x?a?3x?6??8x?5?.(a>0);(8)lim

x???x5x?190

2. 利用斂性求極限:(1)lim

x???

x?cosxxsinx

;(2)lim2

x?0xx?4

x?x0

3. 設 limf(x)=A, limg(x)=B.證明:

x?x0

(1)lim[f(x)±g(x)]=A±B;

x?x0

(2)lim[f(x)g(x)]=AB;

x?x0

(3)lim

x?x0

f(x)A

=(當B≠0時)g(x)B

4. 設

a0xm?a1xm?1???am?1x?am

f(x)=,a0≠0,b0≠0,m≤n,nn?1

b0x?b1x???bn?1x?bn

試求 limf(x)

x???

5. 設f(x)>0, limf(x)=A.證明

x?x0

x?x0

lim

f(x)=A,其中n≥2為正整數.6.證明limax=1(0

x?0

7.設limf(x)=A, limg(x)=B.x?x0

x?x0

(1)若在某∪(x0)內有f(x)< g(x),問是否必有A < B ? 為什么?

(2)證明:若A>B,則在某∪(x0)內有f(x)> g(x).8.求下列極限(其中n皆為正整數):(1)lim ?

x?0

x

x11

lim;(2);nn?x?0x1?xx1?x

x?x2???xn?n

(3)lim;(4)lim

x?0x?0x?1

?x?1

x

(5)lim

x??

?x?(提示:參照例1)

x

x?0

x?0

x?0

9.(1)證明:若limf(x3)存在,則limf(x)= lim f(x3)(2)若limf(x2)存在,試問是否成立limf(x)=limf(x2)?

x?0

x?0

x?0

習題

1.敘述函數極限limf(x)的歸結原則,并應用它證明limcos x不存在.n???

n???

2.設f 為定義在[a,+?)上的增(減)函數.證明: lim= f(x)存在的充要條件是f在n???

[a,+?)上有上(下)界.3.(1)敘述極限limf(x)的柯西準則;

n???

(2)根據柯西準則敘述limf(x)不存在的充要條件,并應用它證明limsin x不存在.n???

n???

4.設f在∪0(x0)內有定義.證明:若對任何數列{xn}?∪0(x0)且limxn=x0,極限limf(xn)都

n??

n??

存在,則所有這極限都相等.提示: 參見定理3.11充分性的證明.5設f為∪0(x0)上的遞減函數.證明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0x?u?

?x0?

0x?un(x0)

inff(x)

6.設 D(x)為狄利克雷函數,x0∈R證明limD(x)不存在.x?x0

7.證明:若f為周期函數,且limf(x)=0,則f(x)=0

x???

8.證明定理3.9

習題

1.求下列極限

sin2xsinx3

(1)lim;(2)lim

x?0x?0sinx2x

(3)lim

x?

cosxx?

?

tanx?sinxarctanx

lim(5)lim;(6);3x?0x?0xx

sin2x?sin2a1

(7)limxsin;(8)lim;

x???x?axx?a

;(4)lim

x?0

tanx

;x

?cosx2

(9)lim;(10)lim

x?0x?01?cosxx?1?1

sin4x

2.求下列極限

12?x

(1)lim(1?);(2)lim?1?ax?x(a為給定實數);

n??x?0x

x

(3)lim?1?tanx?

x?0

cotx

;(4)lim?

?1?x?

?;

x?01?x??

(5)lim(x???

3x?22x?1?);(6)lim(1?)?x(?,?為給定實數)

n???3x?1x

3.證明:lim?lim?cosxcoxcos4.利用歸結原則計算下列極限:(1)limnsin

n??

?

x?0n??

??

?

x2

xx???cos?1 2n??22??

?

n

;(2)

習題

1. 證明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinx?O(x)(x→0);

+

(3)?x?1?o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 為正整數)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 應用定理3.12求下列極限:

?x2?1x(1)lim(2)lim x?01?cosxx??x?cosx

x3. 證明定理3.13

4. 求下列函數所表示曲線的漸近線:

13x3?4

(1)y =;(2)y = arctan x;(3)y = 2

xx?2x

5. 試確定a的值,使下列函數與xa當x→0時為同階無窮小量:

(1)sin2x-2sinx;(2)

-(1-x);1?x

(3)?tanx??sinx;(4)

x2?4x3

6. 試確定a的值,使下列函數與xa當x→∞時為同階無窮大量:

(1)

x2?x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 證明:若S為無上界數集,則存在一遞增數列{xn}?s,使得xn→+∞(n→∞)

8. 證明:若f為x→r時的無窮大量,而函數g在某U0(r)上滿足g(x)≥K>0,則fg為x→r

時的無窮大量。

9. 設 f(x)~g(x)(x→x0),證明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

總 練習題

1. 求下列極限:

?1

(x?[x])lim([x]?1)(1)lim;(2)??

x?3

x?1

(3)lim(x???

a?xb?x?a?xb?x)

xx?a

(4)lim

x???

(5)lim

xx?a

x???

(6)lim

?x??x?x??x

x?0

(7)lim?

n??m,m,n 為正整數 ?n?x?11?xm1?x??

2. 分別求出滿足下述條件的常數a與b:

?x2?1?

(1)lim??ax?b???0 x????x?1??

x(3)limx

(2)lim

x???x???x?2

??x?1?ax?b??0

?x?1?ax?b?0

x?2

3. 試分別舉出符合下列要求的函數f:

(1)limf(x)?f(2);(2)limf(x)不存在。

4. 試給出函數f的例子,使f(x)>0恒成立,而在某一點x0處有limf(x)?0。這同極限的x?x0

局部保號性有矛盾嗎?

5. 設limf(x)?A,limg(u)?B,在何種條件下能由此推出

x?a

g?A

limg(f(x))?B?

x?a

6. 設f(x)=x cos x。試作數列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 證明:若數列{an}滿足下列條件之一,則{an}是無窮大數列:

(1)liman?r?1

n??

(2)lim

an?1

?s?1(an≠0,n=1,2,…)

n??an

n2

n2

8. 利用上題(1)的結論求極限:

(1)lim?1?

?n??

?1??1??(2)lim?1??

n??n??n?

9. 設liman???,證明

n??

(1)lim

(a1?a2???an)??? n??n

n??

(2)若an > 0(n=1,2,…),則lima1a2?an??? 10.利用上題結果求極限:

(1)limn!(2)lim

n??

In(n!)

n??n

11.設f為U-0(x0)內的遞增函數。證明:若存在數列{xn}?U-0(x0)且xn→x0(n→∞),使得

limf(xn)?A,則有

n??

f(x0-0)=

supf(x)?A

0x?U?(x0)

12.設函數f在(0,+∞)上滿足方程f(2x)=f(x),且limf(x)?A。證明:f(x)?A,x∈(0,+∞)

x???

13.設函數f在(0,+∞)此上滿足方程f(x2)= f(x),且

f(x)=limf(x)?f(1)lim?

x?0

x???

證明:f(x)?f(1),x∈(0,+∞)

14.設函數f定義在(a,+∞)上,f在每一個有限區間內(a,b)有界,并滿足

x???

lim(f(x?1)?f(1))?A證明

x???

lim

f(x)

?A x

第四篇:函數極限

《數學分析》教案

第三章 函數極限

xbl

第三章 函數極限

教學目的:

1.使學生牢固地建立起函數極限的一般概念,掌握函數極限的基本性質; 2.理解并運用海涅定理與柯西準則判定某些函數極限的存在性; 3.掌握兩個重要極限

和,并能熟練運用;

4.理解無窮?。ù螅┝考捌潆A的概念,會利用它們求某些函數的極限。教學重(難)點:

本章的重點是函數極限的概念、性質及其計算;難點是海涅定理與柯西準則的應用。

教學時數:16學時

§ 1 函數極限概念(3學時)

教學目的:使學生建立起函數極限的準確概念;會用函數極限的定義證明函數極限等有關命題。

教學要求:使學生逐步建立起函數極限的???定義的清晰概念。會應用函數極限的???定義證明函數的有關命題,并能運用???語言正確表述函數不以某實數為極限等相應陳述。

教學重點:函數極限的概念。

教學難點:函數極限的???定義及其應用。

一、復習:數列極限的概念、性質等

二、講授新課:

(一)時函數的極限:

《數學分析》教案

第三章 函數極限

xbl

例4 驗證

例5 驗證

例6 驗證

證 由 =

為使

需有

需有

為使

于是, 倘限制 , 就有

例7 驗證

例8 驗證(類似有

(三)單側極限:

1.定義:單側極限的定義及記法.幾何意義: 介紹半鄰域

《數學分析》教案

第三章 函數極限

xbl

我們引進了六種極限:.以下以極限,為例討論性質.均給出證明或簡證.二、講授新課:

(一)函數極限的性質: 以下性質均以定理形式給出.1.唯一性:

2.局部有界性:

3.局部保號性:

4.單調性(不等式性質):

Th 4 若使,證 設

和都有 =

(現證對 都存在, 且存在點 的空心鄰域),有

註: 若在Th 4的條件中, 改“ 就有

5.6.以

迫斂性:

”為“ 舉例說明.”, 未必

四則運算性質:(只證“+”和“ ”)

(二)利用極限性質求極限: 已證明過以下幾個極限:

《數學分析》教案

第三章 函數極限

xbl

例8

例9

例10 已知

求和

補充題:已知

求和()§ 3 函數極限存在的條件(4學時)

教學目的:理解并運用海涅定理與柯西準則判定某些函數極限的存在性。教學要求:掌握海涅定理與柯西準則,領會其實質以及證明的基本思路。教學重點:海涅定理及柯西準則。教學難點:海涅定理及柯西準則 運用。

教學方法:講授為主,輔以練習加深理解,掌握運用。本節介紹函數極限存在的兩個充要條件.仍以極限

為例.一.Heine歸并原則——函數極限與數列極限的關系:

Th 1 設函數在,對任何在點

且的某空心鄰域

內有定義.則極限都存在且相等.(證)

存Heine歸并原則反映了離散性與連續性變量之間的關系,是證明極限不存在的有力工具.對單側極限,還可加強為

單調趨于

.參閱[1]P70.例1 證明函數極限的雙逼原理.7 《數學分析》教案

第三章 函數極限

xbl

教學難點:兩個重要極限的證明及運用。

教學方法:講授定理的證明,舉例說明應用,練習。一.

(證)(同理有)

例1

例2.例3

例4

例5 證明極限 不存在.二.證 對

例6

特別當 等.例7

例8

《數學分析》教案

第三章 函數極限

xbl

三. 等價無窮?。?/p>

Th 2(等價關系的傳遞性).等價無窮小在極限計算中的應用: Th 3(等價無窮小替換法則)

幾組常用等價無窮小:(見[2])

例3 時, 無窮小

是否等價? 例4

四.無窮大量:

1.定義:

2.性質:

性質1 同號無窮大的和是無窮大.性質2 無窮大與無窮大的積是無窮大.性質3 與無界量的關系.無窮大的階、等價關系以及應用, 可仿無窮小討論, 有平行的結果.3.無窮小與無窮大的關系:

無窮大的倒數是無窮小,非零無窮小的倒數是無窮大

習題 課(2學時)

一、理論概述:

《數學分析》教案

第三章 函數極限

xbl

例7.求

.注意 時, 且

.先求

由Heine歸并原則

即求得所求極限

.例8 求是否存在.和.并說明極限

解;

可見極限 不存在.--32

第五篇:函數極限

數學之美2006年7月第1期

函數極限的綜合分析與理解

經濟學院 財政學 任銀濤 0511666

數學不僅僅是工具,更是一種能力。一些數學的方法被其它學科廣泛地運用。例如,經濟學中的邊際分析、彈性分析等方法。函數極限是高等數學中的一個重要問題。極限可以與很多的數學問題相聯系。例如,導數從根本上是求極限;函數連續首先要求函數在某一點的左極限等于右極限。有鑒于函數極限的重要性,結合自己的學習心得,筆者寫下了此文。其目的在于歸納和總結解決函數極限問題的實用方法和技巧,以期對函數極限問題的學習有所幫助。局限于筆者的認知水平,缺點和不足在所難免,歡迎批評指正。

一、函數極限的定義和基本性質

函數極限可以分成x→x0,x→∞兩類,而運用ε-δ定義更多的見諸于已知

極限值的證明題中。掌握這類證明對初學者深刻理解運用極限定義大有裨益。以x?x0的極限為例,f?x?在點x0以A極限的定義是:???0,???0,使當0?x?x0??時,有f(x)?A??(A為常數).問題的關鍵在于找到符合定義要求的?,在這一過程中會用到一些不等式技巧,例如放縮法等。1999年的研究生考試試題中,更是直接考察了考生對定義的掌握情況。詳見附例1。

函數極限性質的合理運用。常用的函數極限的性質有函數極限的唯一性、局部有界性、保序性以及函數極限的運算法則和復合函數的極限等等。如函數極限的唯一性(若lim存在,則在該點的極限是唯一的)可以體現在用海涅定理證明x?x0

''即如果f?xn??A,fxn,f?x?在x0處的極限不存在。?B(n??,xn和xn?x0)??

則f?x?在x0處的極限不存在。

運用函數極限的性質可以方便地求出一些簡單函數的極限值。例如對于有理分式f?x??P?x?P?x?,Q?x?均為多項式,Q?x??0)。設P?x?的次數為n,Q?x?的Qx次數為m,當x??時,若n?m,則f?x??0;若n?m,則f?x??P?x?與Q?x?的最高次項系數之比;若n?m,則f?x???。當x?x0時,f(x)?P(x0)(Q(x0)?0)。Q(x0)

二、運用函數極限的判別定理

最常用的判別定理包括單調有界定理和夾擠定理,在運用它們去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然后再求極限值,參見附例2。二是應用夾擠定理的關鍵是找到極限值相同的函數g?x?與

h?x?,并且要滿足g?x??f?x??h?x?,從而證明或求得函數f?x?的極限值。

三、應用等價無窮小代換求極限

掌握常用的等價無窮小很重要。等價無窮小代換可以將復雜的極限式變的簡單明了,讓求解過程變得簡明迅速。

x?0時,sinx與x,tanx與x,arcsinx與x,arctanx與x,1?cosx與x2,xa,ax?1與xlna,?1?a?與ax(a?0)等等可ln?1?x?與x,loga?1?x?與lna

以相互替換。特別需要注意的是,等價無窮小代換只能用于分子、分母中的乘積

sinx?x

因子,而對于加減法運算則不能運用。例如lim,不能直接把sinx替換

x?0x

3sinx?x

1??成x,得出極限值為0,實際上lim。

x?0x36

四、運用洛必達法則求函數極限

設函數f?x?,g?x?在點a的某空心鄰域可導,且g'(x)?0。當x?a時,f?x?f'?x?,f?x?和g?x?的極限同時為0或?時才適用?'?A(A為常數或?)

gxgx洛必達法則。洛必達法則實際上把求函數極限問題轉化為學生較為拿手的求導數

0??、00、1?、?0等類型則需要問題。這使得求解思路簡單程序化。而對于???、0?

對式子進行轉化,或通分或取倒數或取對數等轉化為型,再使用洛必達法

0?

則求極限。例如f?x?

g?x?的極限轉化為求eg?x?lnf?x?的極限等等。然而,對于數列,則必須轉化為函數再運用洛必達法則。這是因為如果把數列看作是自變量為n的函數時,它的定義域是一系列孤立的點,不存在導數。這是使用洛必達法則時必須要注意的一點。參見附例3。

五、泰勒公式的運用

對于使用洛必達法則不易求出結果的復雜函數式,可以考慮使用泰勒公式。這樣將函數式化為最高次項為相同或相近的式子,這時就變成了求多項式的極限值(接著求值見上文所述方法),使計算一目了然。因此掌握和記憶常用基本初

等函數的麥克勞林展開式是十分必要的。如ex,sinx,cosx,ln?1?x?等等。至于展開式展開多少,則要與題干中的自變量x最高次項保持一致。如

cosx?elimx?0x4x4)。

?x

2利用泰勒公式展開cosx,e

?

x22,展開到x4即可(原式x最高次項為

六、利用微分中值定理來求極限

f(x)在?a,b?上連續,在?a,b?上可導,則至少存在一點???a,b?,使

f'(?)?

f(b)?f(a)'f(b)?f(a),f(?)即可看成特殊的極限,用來求解。一般需

b?ab?a

要函數式可以看成同一函數的區間端點的差,這樣可以使用微分中值定理。參見附例4。

另外,一些重要的結論往往在求極限時可以直接加以引用,例如

lim(1?x)?e,lim

x?0

1x

sinx

?

1,?

1,?1等等。

x?0nnx

求極限的方法和技巧更多的在于實踐中的摸索和探討,上述方法只是筆者在高等數學學習和練習的一些心得,求極限的方法還有很多。局限于筆者的認知水平,缺點和不足在所難免,敬請批評指正。

南開大學張陽和張效成老師的課堂教學給了筆者很大的啟發,在此向兩位老師表示感謝。

附:例1:對任意給定的???0,1?,總存在正整數N,使得當n?N時,恒有。xn?a?2?,是數列?xn?收斂于a的()

A 充分非必要條件 B必要非充分條件C充分必要條件D既非充分又非必要條件

解析:這道題是1999年全國考研試卷(二)的數學選擇題,這道題直接考察了對極限定義的掌握和理解。

例2:若x1?a,y1?b(b?a?0),xn?1?xnyn,yn?1?明數列?xn?,?yn?有相同的極限。(見習題冊1 Page.18)

解析:由已知條件易知,b?y1?y2?……?yn?1?xn?1?……?x1?a,數列

xn?1?yn?

1,試證

2文中習題冊是指南開大學薛運華,趙志勇主編的《高等數學習題課講義(上冊)》,為學生用數學練習冊。

x?yn

limyn?1?lin?xn?,?yn?單調有界,可以推出?xn?,?yn?收斂。n??n??

n??

。設

limyn?A,limxn?B,則?A?

n??

A?B,?A?B。2

例3:求lim(ntan)n的值。(見課本2 Page.153)

n??n

1??

解析:這是數列。設f?x???xtan?,則對limf?x?可以運用洛必達法則,x???x??且原式=limf?x?。

x???

x2

aa

?arctan),a?0

n??nn?1

arctan解析:如例題3,設f?x??a,則在?x,x?1?上f?x?連續,在?x,x?1?內

x

例4:求limn2(arctan

可導。于是,????x,x?1?,f'(?)?arctan

aaa?arctan??2(使用微分中x?1xa??2

a)?a。22

a??

值定理可得)。x??,則???,原式=lim?2(???

參考書目

[1] 張效成主編,《經濟類數學分析(上冊)》,天津大學出版社,2005年7月 [2] 薛運華,趙志勇主編,《高等數學習題課講義(上冊)》,南開大學 [3] 張友貴等,《掌握高等數學(理工類、經濟類)》,大連理工出版社,2004年11月

[4]《碩士研究生入學考試試題》,1984—2005

※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○

文中課本是指筆者使用的天津大學出版社05年7月版的《經濟類數學分析(上冊)》張效成主編

下載考研大綱第一章函數與極限word格式文檔
下載考研大綱第一章函數與極限.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    第一章函數與極限(本站推薦)

    第一章函數與極限 第一節 映射與函數 一、集合 1、集合的概念 集合是數學中的一個基本概念,我們先通過例子來說明這個概念。例如,一個書柜的書構成一個集,一間教室里的學生構成......

    函數極限與連續(匯編)

    函數、極限與連續一、基本題1、函數f?x??ln?6?x?的連續區間?ax2?x?2x?12、設函數f?x???,若limf?x??0,且limf?x?存在,則 x?1x??1x?1?2ax?ba?-1,b?41sin2x??3、lim?x2sin???-2x?0xx??4、n2x?4/(√2-3)?k?5、lim?1???e2,則k=-1x???x......

    第一章函數與極限

    《函數與極限》重難點電信1003班 ? 函數1. 定義域與定義區間的關系。2. 映射的種類及存在條件。3. 求函數定義域的基本原則(7條)。4. 幾種特殊的函數類型(絕對值函數、符號函數......

    2018考研高等數學基本定理:函數與極限部分

    凱程考研輔導班,中國最權威的考研輔導機構 2018考研高等數學基本定理:函數與極限部分 在暑期完成第一輪基礎考點的復習之后,9月份開始需要對考研數學所考的定理定義進行必要......

    函數與極限測試題答案(定稿)

    函數與極限測試題答案(卷面共有26題,100分,各大題標有題量和總分)一、選擇(9小題,共26分)1.D2.B3.B4.C5.A6.D7.B8.A9.B二、填空(6小題,共13分)1.1 e2.y?ln(x?2)??) 3.(?3,4.x?1及x??15.a?ln36.5 3三、計算(10小題......

    函數極限與連續教案

    第四講Ⅰ 授課題目(章節)1.8:函數的連續性Ⅱ 教學目的與要求:1、正確理解函數在一點連續及在某一區間內連續的定義;2、會判斷函數的間斷點.4、了解初等函數在定義區間內是連續的......

    函數與極限測試題答疑

    第一章函數與極限測試題答疑一、選擇題(7×4分)?x,?1. 設f(x)??2?x,?x?0,g(x)?5x?4,則f[g(0)]?-------------------( D) x?0A ?16B ?4C 4D 16 注:中學基本問題,應拿分!2. 函數y?f(x)的增量?y?f(x??x)?f(x)......

    2012年考研數學大綱函數

    2012年考研數學大綱函數、極限和連續性(一)考試內容 共濟 函數的概念及表示法,函數的有界性、單調性、周期性和奇偶性,復合函數、反函數、分段函數和隱函數,基本初等函數的性質及......

主站蜘蛛池模板: 亚洲制服丝袜一区二区三区| 天天天天做夜夜夜做| 国产日韩精品一区二区三区在线| 亚洲欧美日韩成人一区| 午夜高清国产拍精品福利| 日韩夜夜高潮夜夜爽无码| 撕开奶罩揉吃奶高潮av在线观看| 99精品产国品一二三产区| 中文字幕亚洲色妞精品天堂| 青草久久人人97超碰| 国产av综合第一页| 18禁免费吃奶摸下激烈视频| 日韩亚洲国产中文永久| 免费男人下部进女人下部视频| 亚洲男同志网站| 欧美日韩国产在线人成| 亚洲精品成人无限看| 亚洲人精品亚洲人成在线| 久久国产乱子伦精品免费台湾| 欧美亚洲日本国产其他| 国产乱来乱子视频| 国产口爆吞精在线视频| 日韩国产亚洲高清在线久草| 国产一区二区女内射| 亚洲人成小说网站色在线观看| 久久久国产99久久国产久麻豆| 国产激情久久久久久熟女老人| 国产精品va在线播放我和闺蜜| 美女mm131午夜福利在线| 成人性生交片无码免费看| 免费无码肉片在线观看| 国产成人免费高清直播| 国产成人无码a区在线观看视频免费| 小鲜肉自慰网站| 色悠久久久久综合网伊人| 亚洲人精品午夜射精日韩| 午夜天堂一区人妻| 国产精品久久久久久久久久妞妞| 久久96国产精品久久久| 国产成人无码区免费网站| 狠狠cao2020高清视频|