第一篇:二次函數(shù)教學(xué)建議
二次函數(shù)教學(xué)建議
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
本節(jié)的重點(diǎn)之一是使學(xué)生能掌握用描點(diǎn)法畫出拋物線的方法。后面的學(xué)習(xí)中,經(jīng)常會涉及到利用函數(shù)圖像解決數(shù)學(xué)問題。因此,快速、準(zhǔn)確地畫出二次函數(shù)的圖像,是學(xué)生必須要掌握的基本技能。畫圖時(shí)要求科學(xué)、準(zhǔn)確。并且要盡量做到美觀,這就要求要確定拋物線頂點(diǎn)的位置,與y軸、x軸交點(diǎn)的位置,對稱軸開口方向等。因此,利用圖像或配方法確定拋物線的開口方向及對稱軸、頂點(diǎn)的位置成為本節(jié)的另一個(gè)重點(diǎn),二次函數(shù)是初中階段遇到的較為復(fù)雜的函數(shù),無論它的解析式,還是它的圖像、性質(zhì)等都比另外三種函數(shù)復(fù)雜。在中考中,更始幾乎每一年都要考察二次函數(shù)的相關(guān)知識。學(xué)生在反復(fù)地描點(diǎn)畫圖過程中,逐漸體會數(shù)形結(jié)合的數(shù)學(xué)思想,認(rèn)識到圖形更直觀,能幫助我們發(fā)現(xiàn)解決問題的線索。在配方的具體訓(xùn)練中,學(xué)生能體會到配方的思想。
本節(jié)的難點(diǎn)之一是初步理解數(shù)形結(jié)合的思想。學(xué)生對深刻理解數(shù)形結(jié)合的數(shù)學(xué)思想方法有一定的困難。往往是題目要求畫圖了才畫圖,比較被動,不能形成主動畫圖解題的習(xí)慣。另外,對二次函數(shù)對稱軸的理解也是難點(diǎn)。學(xué)生可以從圖像中識別出拋物線關(guān)于哪條直線對稱,但對主動應(yīng)用拋物線的對稱性解題卻有一定的困難。例如拋物線直線方程也不太理解。
2、教學(xué)建議
這一節(jié)的知識點(diǎn)較多,正如前面所分析的二次函數(shù)是初中階段所遇到的較為復(fù)雜的函數(shù),而且對靈活性的要求較高。因此,要求學(xué)生在學(xué)習(xí)這一部分知識時(shí)要深刻地理解,不能機(jī)械地模仿、記憶。在老師創(chuàng)設(shè)的教學(xué)情境中,親自感受數(shù)學(xué)知識的形成過程,積累豐富的經(jīng)驗(yàn),憑借自己的力量獲取知識,從而達(dá)到培養(yǎng)能力的目的。
(1)創(chuàng)設(shè)情境,激勵學(xué)生提出問題
辯證唯物主義告訴我們,理性認(rèn)識是從豐富的感性認(rèn)識中抽象、概括出來的。沒有一定數(shù)量的材料和經(jīng)驗(yàn),事物的規(guī)律、本質(zhì)是很難發(fā)現(xiàn)的。因此,在這一節(jié)課的開始,建議教師留出一段時(shí)間與學(xué)生共同列表、畫圖,允許學(xué)生有一個(gè)走彎,對稱軸方程是x=1,學(xué)生對表示對稱軸的路的過程,在探索的過程中,會有許多的疑問。而這恰是學(xué)習(xí)新知識的開始。例如,有的同學(xué)會認(rèn)識到在畫圖時(shí),有一個(gè)點(diǎn)是很重要的,必須要畫出來。那么這個(gè)點(diǎn)的坐標(biāo)是如何確定的呢?如果教師舍不得花時(shí)間,讓學(xué)生不斷地體驗(yàn),而是迅速切入正題,指明二次函數(shù)的形狀,教學(xué)生記下二次函數(shù)的性質(zhì)。那么學(xué)生就喪失了主動探索的機(jī)會。我們要意識到,認(rèn)識客觀事物是有一個(gè)過程的,人為地縮短或逾越,違反了事物發(fā)展的一般規(guī)律。由老師代替學(xué)生的思考,會使數(shù)學(xué)學(xué)習(xí)索然無味,學(xué)習(xí)成為機(jī)械地模仿、復(fù)制,這樣也會導(dǎo)致學(xué)生對數(shù)學(xué)概念的膚淺理解,無法把握事物運(yùn)動變化的規(guī)律性,數(shù)學(xué)能力自然無法提高。
(2)數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題
學(xué)習(xí)數(shù)學(xué)要善于多問幾個(gè)為什么。剛才提到,在畫圖時(shí),我們意識到二次函數(shù)的頂點(diǎn)非常重要,是必須要畫出來的。二次函數(shù)在頂點(diǎn)處拐了一個(gè)彎,當(dāng)拋物線開口向上時(shí),圖像有最低點(diǎn);當(dāng)拋物線開口向下時(shí),圖像有最高點(diǎn)。那么為什么二次函數(shù)有這個(gè)性質(zhì),而一次函數(shù)就沒有呢?例如:,可變形為,依靠以前學(xué)過的代數(shù)知識,可知。又因?yàn)閽佄锞€開口向上,所以會有最低點(diǎn)。學(xué)生在探索過程中不斷地發(fā)現(xiàn)問題,并利用自己學(xué)過的知識解決問題。在這個(gè)過程中,對數(shù)學(xué)的理解不斷地加深。
(3)反思回顧,總結(jié)深化
我們的教學(xué)可以從畫個(gè)圖開始,卻不能止于僅能熟練畫出圖像。在發(fā)現(xiàn)二次函數(shù)的性質(zhì)并進(jìn)行代數(shù)方面的逐一說理論證的過程中。試圖使學(xué)生領(lǐng)悟到數(shù)學(xué)知識的客觀存在性,樹立懷疑一切的科學(xué)探索精神。在學(xué)習(xí)時(shí),既要建立相應(yīng)的圖像,借助形象整體、全面地把握知識,又要會用數(shù)學(xué)抽象,概括的語言去刻畫。使學(xué)生既欣賞到數(shù)學(xué)的美,又為數(shù)學(xué)的力量所折服。正如笛卡兒所說:“每一個(gè)我解決過的問題都成為以后解決其它問題的原則或方法。”因此,如果學(xué)生情況允許的話,可以組織學(xué)生撰寫小論文,談一談二次函數(shù)的學(xué)習(xí)。對這部分知識不僅要知道操作步驟,還要善于多問幾個(gè)為什么?這樣,在熟練地畫圖過程中,學(xué)生逐漸地體會到了數(shù)形結(jié)合的思想方法。
第二篇:淺談二次函數(shù)教學(xué)
淺談二次函數(shù)教學(xué)
函數(shù)是初等教學(xué)中最基本的概念之一,貫穿于整個(gè)初等數(shù)學(xué)體系之中,也是實(shí)際生活中數(shù)學(xué)建模的重要工具之一,二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用,二次函教與一元二次方程、一元二次不等式等知識的聯(lián)系,能培養(yǎng)學(xué)生對所學(xué)知識融會貫通的能力,加強(qiáng)二次函數(shù)的應(yīng)用能力是學(xué)好高中函數(shù)部分的基礎(chǔ),現(xiàn)特對二次函數(shù)問題常見題型的解析進(jìn)行歸納總結(jié)。
二次函數(shù) 高中數(shù)學(xué) 教學(xué)
在初中教材中,對二次函數(shù)作了較詳細(xì)的研究,由于初中學(xué)生基礎(chǔ)薄弱,又受其接受能力的限制,這部份內(nèi)容的學(xué)習(xí)多是機(jī)械的,很難從本質(zhì)上加以理解。進(jìn)入高中以后,尤其是高三復(fù)習(xí)階段,要對他們的基本概念和基本性質(zhì)(圖象以及單調(diào)性、奇偶性、有界性)靈活應(yīng)用,對二次函數(shù)還需再深入學(xué)習(xí)。
一、進(jìn)一步深入理解函數(shù)概念
初中階段已經(jīng)講述了函數(shù)的定義,進(jìn)入高中后在學(xué)習(xí)集合的基礎(chǔ)上又學(xué)習(xí)了映射,接著重新學(xué)習(xí)函數(shù)概念,主要是用映射觀點(diǎn)來闡明函數(shù),這時(shí)就可以用學(xué)生已經(jīng)有一定了解的函數(shù),特別是二次函數(shù)為例來加以更深認(rèn)識函數(shù)的概念。二次函數(shù)是從一個(gè)集合A二次函數(shù),它有豐富的內(nèi)涵和外延。作為最基本的冪函數(shù),可以以它為
代表來研究函數(shù)的性質(zhì),可以建立起函數(shù)、方程、不等式之間的聯(lián)系,可以偏擬出層出不窮、靈活多變的數(shù)學(xué)問題,考查學(xué)生的數(shù)學(xué)基礎(chǔ)知識和綜合數(shù)學(xué)素質(zhì),特別是能從解答的深入程度中,區(qū)分出學(xué)生運(yùn)用數(shù)學(xué)知識和思想方法解決數(shù)學(xué)問題的能力。
二次函數(shù)的內(nèi)容涉及很廣,本文只討論至此,希望各位同仁在高中數(shù)學(xué)教學(xué)中也多關(guān)注這方面知識,使我們對它的研究更深入。
第三篇:二次函數(shù)
2.二次函數(shù)定義__________________________________________________二次函數(shù)(1)導(dǎo)學(xué)案
一.教學(xué)目標(biāo):
(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。教學(xué)過程:
二、教學(xué)過程
(一)提出問題
某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤最大?在這個(gè)問題中,1.商品的利潤與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?[利潤=(售價(jià)-進(jìn)價(jià))×銷售量]
2.如果不降低售價(jià),該商品每件利潤是多少元?一天總的利潤是多少元?[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價(jià)x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x)(100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D(0≤x≤2)……………………(2)
(二)、觀察;概括
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?(4)這些問題有什么共同特點(diǎn)?
三、課堂練習(xí)
1.下列函數(shù)中,哪些是二次函數(shù)?(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P25練習(xí)第1,2,3題。
四、小結(jié)
1.請敘述二次函數(shù)的定義.
2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
五.堂堂清
下列函數(shù)中,哪些是二次函數(shù)?
(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1
第四篇:二次函數(shù)
?二次函數(shù)?測試
一.選擇題〔36分〕
1、以下各式中,y是的二次函數(shù)的是
()
A.
B.
C.
D.
2.在同一坐標(biāo)系中,作+2、-1、的圖象,那么它們
()
A.都是關(guān)于軸對稱
B.頂點(diǎn)都在原點(diǎn)
C.都是拋物線開口向上
D.以上都不對
3.假設(shè)二次函數(shù)的圖象經(jīng)過原點(diǎn),那么的值必為
()
A.
0或2
B.
0
C.
D.
無法確定
4、點(diǎn)〔a,8〕在拋物線y=ax2上,那么a的值為〔
〕
A、±2
B、±2
C、2
D、-2
5.把拋物線y=3x2先向上平移2個(gè)單位,再向右平移3個(gè)單位,所得拋物線的解析式是〔
〕
〔A〕y=3〔x+3〕2
〔B〕y=3〔x+2〕2+2
〔C〕y=3〔x-3〕2
〔D〕y=3〔x-3〕2+2
6.拋物線y=x2+6x+8與y軸交點(diǎn)坐標(biāo)〔
〕
〔A〕〔0,8〕
〔B〕〔0,-8〕
〔C〕〔0,6〕
〔D〕〔-2,0〕〔-4,0〕
7、二次函數(shù)y=x2+4x+a的最大值是2,那么a的值是〔
〕
A、4
B、5
C、6
D、7
8.原點(diǎn)是拋物線的最高點(diǎn),那么的范圍是
()
A.
B.
C.
D.
9.拋物線那么圖象與軸交點(diǎn)為
〔
〕
A.
二個(gè)交點(diǎn)
B.
一個(gè)交點(diǎn)
C.
無交點(diǎn)
D.
不能確定
10.不經(jīng)過第三象限,那么的圖象大致為
〔
〕
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
11.對于的圖象以下表達(dá)正確的選項(xiàng)是
〔
〕
A
頂點(diǎn)作標(biāo)為(-3,2)
B
對稱軸為y=3
C
當(dāng)時(shí)隨增大而增大
D
當(dāng)時(shí)隨增大而減小
12、二次函數(shù)的圖象如下圖,那么以下結(jié)論中正確的選項(xiàng)是:〔
〕
A
a>0
b<0
c>0
B
a<0
b<0
c>0
C
a<0
b>0
c<0
D
a<0
b>0
c>0
二.填空題:〔每題4分,共24分〕
13.請寫出一個(gè)開口向上,且對稱軸為直線x
=3的二次函數(shù)解析式。
14.寫出一個(gè)開口向下,頂點(diǎn)坐標(biāo)是〔—2,3〕的函數(shù)解析式;
15、把二次函數(shù)y=-2x2+4x+3化成y=a〔x+h〕2+k的形式是________________________________.16.假設(shè)拋物線y=x2
+
4x的頂點(diǎn)是P,與X軸的兩個(gè)交點(diǎn)是C、D兩點(diǎn),那么
△
PCD的面積是________________________.17.(-2,y1),(-1,y2),(3,y3)是二次函數(shù)y=x2-4x+m上的點(diǎn),那么
y1,y2,y3從小到大用
“<〞排列是
.18.小敏在某次投籃中,球的運(yùn)動路線是拋物線的一局部(如圖),假設(shè)命中籃圈中心,那么他與籃底的距離是________________________.三.解答題(共60分)
19.〔6分〕假設(shè)拋物線經(jīng)過點(diǎn)A〔,0〕和點(diǎn)B〔-2,〕,求點(diǎn)A、B的坐標(biāo)。
20、(6分)二次函數(shù)的圖像經(jīng)過點(diǎn)〔0,-4〕,且當(dāng)x
=
2,有最大值—2。求該二次函數(shù)的關(guān)系式:
21.〔6分〕拋物線的頂點(diǎn)在軸上,求這個(gè)函數(shù)的解析式及其頂點(diǎn)坐標(biāo)。
25米x22、〔6分〕農(nóng)民張大伯為了致富奔小康,大力開展家庭養(yǎng)殖業(yè),他準(zhǔn)備用40米長的木欄圍一個(gè)矩形的雞圈,為了節(jié)約材料,同時(shí)要使矩形面積最大,他利用了自己家房屋一面長25米的墻,設(shè)計(jì)了如圖一個(gè)矩形的羊雞圈。請你設(shè)計(jì)使矩形雞圈的面積最大?并計(jì)算最大面積。
23、二次函數(shù)y=-〔x-4〕2
+4
〔本大題總分值8分〕
1、先確定其圖象的開口方向,對稱軸和頂點(diǎn)坐標(biāo),再畫出草圖。
2、觀察圖象確定:X取何值時(shí),①y=0,②y﹥0,⑶y﹤0。
24.〔8分〕某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,假設(shè)每千克漲價(jià)一元,日銷售量將減少20千克。
〔1〕現(xiàn)要保證每天盈利6000元,同時(shí)又要讓顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
〔2〕假設(shè)該商場單純從經(jīng)濟(jì)角度看,那么每千克應(yīng)漲價(jià)多少元,能使商場獲利最多。
25.〔8分〕某市人民廣場上要建造一個(gè)圓形的噴水池,并在水池中央垂直安裝一個(gè)柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流〔在各個(gè)方向上〕沿形狀相同的拋物線路徑落下〔如下圖〕。假設(shè)OP=3米,噴出的水流的最高點(diǎn)A距水平面的高度是4米,離柱子OP的距離為1米。
〔1〕求這條拋物線的解析式;
〔2〕假設(shè)不計(jì)其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外。
26.〔12分〕二次函數(shù)的圖象與x軸從左到右兩個(gè)交點(diǎn)依次為A、B,與y軸交于點(diǎn)C,〔1〕求A、B、C三點(diǎn)的坐標(biāo);
〔2〕如果P(x,y)是拋物線AC之間的動點(diǎn),O為坐標(biāo)原點(diǎn),試求△POA的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
〔3〕是否存在這樣的點(diǎn)P,使得PO=PA,假設(shè)存在,求出點(diǎn)P的坐標(biāo);假設(shè)不存在,說明理由。
第五篇:二次函數(shù)教學(xué)設(shè)計(jì)
《二次函數(shù)》教學(xué)設(shè)計(jì)
一、教材分析:
《二次函數(shù)》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(五四學(xué)制)《數(shù)學(xué)》(人教版)九年級上冊第二十一章,這章是在學(xué)生學(xué)習(xí)了一次函數(shù)與反比例函數(shù),對于函數(shù)已經(jīng)有所認(rèn)識,從一次函數(shù)和反比例函數(shù)的學(xué)習(xí)大家已經(jīng)知道學(xué)習(xí)函數(shù)大致包括以下內(nèi)容:1.通過具體的事例認(rèn)識這種函數(shù);2.探索這種函數(shù)的圖像和性質(zhì);3.利用這種函數(shù)解決實(shí)際問題;4.探索這種函數(shù)與相應(yīng)方程等的關(guān)系。本章“二次函數(shù)”的學(xué)習(xí)也是從以上幾個(gè)方面展開。首先讓學(xué)生認(rèn)識二次函數(shù),掌握二次函數(shù)的圖像和性質(zhì),然后讓學(xué)生探索二次函數(shù)與一元二次方程的關(guān)系,從而得出用二次函數(shù)的圖像求一元二次方程的方法。最后讓學(xué)生運(yùn)用二次函數(shù)的圖像和性質(zhì)解決一些實(shí)際問題。
本章教學(xué)時(shí)間約需12課時(shí),具體分配如下(僅供參考): 21.1 二次函數(shù)
(6課時(shí))21.2用函數(shù)的觀點(diǎn)看一元二次方程
(1課時(shí))21.3實(shí)際問題與二次函數(shù)
(3課時(shí))數(shù)學(xué)活動
小結(jié)
(2課時(shí))
21.1 二次函數(shù)教學(xué)時(shí)間約為 6課時(shí),下面是第一課時(shí)的教學(xué)設(shè)計(jì),此時(shí)學(xué)生對函數(shù)的相關(guān)知識已經(jīng)很陌生,第一課時(shí)應(yīng)對上學(xué)段學(xué)的一次函數(shù)和反比例函數(shù)的知識做一個(gè)回顧,讓學(xué)生重溫學(xué)習(xí)函數(shù)應(yīng)該從以下四個(gè)內(nèi)容入手:認(rèn)識函數(shù);研究圖像及其性質(zhì);利用函數(shù)解決實(shí)際問題;函數(shù)與相應(yīng)方程的關(guān)系。再通過分析實(shí)際問題,以及用關(guān)系式表示這一關(guān)系的過程,引出二次函數(shù)的概念,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn)。然后根據(jù)這種體驗(yàn)?zāi)軌虮硎竞唵巫兞恐g的二次函數(shù)關(guān)系.并能利用嘗試求值的方法解決實(shí)際問題.
二、教學(xué)目標(biāo):
知識技能:
1.探索并歸納二次函數(shù)的定義;
2.能夠表示簡單變量之間的二次函數(shù)關(guān)系. 數(shù)學(xué)思考:
1.感悟新舊知識間的關(guān)系,讓學(xué)生更深地體會數(shù)學(xué)中的類比思想方法; 2.經(jīng)歷探索、分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.
解決問題:
1.讓學(xué)生學(xué)習(xí)了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關(guān)系;
2.能夠利用嘗試求值的方法解決實(shí)際問題.進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系,增強(qiáng)用數(shù)學(xué)意識。
情感態(tài)度:
1.把數(shù)學(xué)問題和實(shí)際問題相聯(lián)系,從學(xué)生感興趣的問題入手,能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心和求知欲;
2.使學(xué)生初步體會數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用;
3.通過學(xué)生之間互相交流合作,讓學(xué)生學(xué)會與人合作,并能與他人交流思維的過程,培養(yǎng)大家的合作意識.
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得二次函數(shù)的定義。
2.能夠表示簡單變量之間的二次函數(shù)關(guān)系. 教學(xué)難點(diǎn):
經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn).
四、教學(xué)方法:教師引導(dǎo)——自主探究——合作交流。五:教具、學(xué)具:教學(xué)課件
六、教學(xué)媒體:計(jì)算機(jī)、實(shí)物投影。
七、教學(xué)過程:
[活動1] 溫故知新,引出課題。
師:對于“函數(shù)”這個(gè)詞我們并不陌生,大家還記得我們學(xué)過哪些函數(shù)嗎?
生:學(xué)過正比例函數(shù),一次函數(shù),反比例函數(shù).
師:那函數(shù)的定義是什么,大家還記得嗎?
生:記得,在某個(gè)變化過程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量.
師:能把學(xué)過的函數(shù)回憶一下嗎?
生:可以。
一次函數(shù)y=kx+b(其中k、b是常數(shù),且k≠0)
正比例函數(shù)y=kx(k是不為0的常數(shù))
反比例函數(shù)y=k
(k是不為0的常數(shù))
x師:學(xué)習(xí)這些函數(shù)的時(shí)候,大家還記得我們從哪幾個(gè)方面探究的嗎? 生: 定義、函數(shù)的一般形式、函數(shù)的圖像和性質(zhì)、函數(shù)在實(shí)際問題中的應(yīng)用、函數(shù)與方程與不等式的關(guān)系等。
師:很好,從上面的幾種函數(shù)來看,每一種函數(shù)都有一般的形式.那么二次函數(shù)的一般形式究竟是什么呢?本節(jié)課我們將揭開它神秘的面紗.
師生行為:教師提出問題,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價(jià)。教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,對于一些概括性較強(qiáng)的問題,教師要進(jìn)行適當(dāng)引導(dǎo)。
設(shè)計(jì)意圖:由復(fù)習(xí)回顧舊知識入手,通過回顧已經(jīng)學(xué)過的函數(shù)的相關(guān)知識,對要探究的新的函數(shù)有個(gè)明確的方向,讓學(xué)生由舊知識中尋找新知識的生長點(diǎn),符合認(rèn)識新事物的規(guī)律,由淺入深,由表及里,逐漸深化。
[活動2]創(chuàng)設(shè)情境 探究新知: 問題
1.正方體六個(gè)面是全等的正方形,設(shè)正方形棱長為 x,表面積為 y,則 y 關(guān)于x 的關(guān)系式為是什么?
2.多邊形的對角線數(shù) d 與邊數(shù) n 有什么關(guān)系?
n邊形有___個(gè)頂點(diǎn),從一個(gè)頂點(diǎn)出發(fā),連接與這點(diǎn)不相鄰的各頂點(diǎn),可作____條對角線。因此,n邊形的對角線總數(shù)d =______。
3.某工廠一種產(chǎn)品現(xiàn)在年產(chǎn)量是20件,計(jì)劃今后兩年增加產(chǎn)量,如果每年都比上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計(jì)劃所定的x的值而確定,y與x之間的關(guān)系應(yīng)怎樣表示?
這種產(chǎn)品的原產(chǎn)量是20件,一年后的產(chǎn)量是
件,再經(jīng)過一年后的產(chǎn)量是
件,即兩年后的產(chǎn)量為。
4. 問題2中有哪些變量?其中哪些是自變量? 大家根據(jù)剛才的分析,判斷一下式子中的d是否是n的函數(shù)?若是函數(shù),與原來學(xué)過的函數(shù)相同嗎?問題3呢? 5.觀察上面的三個(gè)函數(shù),從解析式看有什么共同點(diǎn)?
師生行為:教師在大屏幕上逐一提出問題,問題1、2、3讓學(xué)生獨(dú)立思考完成師生共同訂正,問題4、5小組討論完成,教師做適當(dāng)?shù)囊龑?dǎo),點(diǎn)撥,得出問題結(jié)論。
定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠ 0)的函數(shù)叫做x的二次函數(shù)。教師重點(diǎn)關(guān)注:1.強(qiáng)調(diào)幾個(gè)注意的問題:(1)等號左邊是變量y,右邊是關(guān)于自變量x的整式。(2)a,b,c為常數(shù),且a≠0;(3)等式的右邊最高次數(shù)為 2,可以沒有一次項(xiàng)和常數(shù)項(xiàng),但不能沒有二次項(xiàng)。(4)x的取值范圍是任意實(shí)數(shù)。
2.學(xué)生在探究問題的過程中,能否優(yōu)化思維過程,使解決問題的方法更準(zhǔn)確。設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,通過問題的解決,為得出二次函數(shù)的定義做好鋪墊,并讓學(xué)生感受到身邊的數(shù)學(xué),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。學(xué)生通過分析、交流,探求二次函數(shù)的概念,加深對概念的理解,為解決問題打下基礎(chǔ)。
[活動3] 例題學(xué)習(xí)內(nèi)化新知
問題
例1,下列函數(shù)中,哪些是二次函數(shù)?若是,分別指出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).(1)y=3(x-1)2+1
(2)y=x+k
x
(3)s=3-2t2
(4)y=(x+3)2-x2
(5)y=-x
(6)v=10Л r2
m例2,函數(shù) y
?
(? 3)xm2?(1)m取什么值時(shí),此函數(shù)是正比例函數(shù)?(2)m取什么值時(shí),此函數(shù)是反比例函數(shù)?(3)m取什么值時(shí),此函數(shù)是二次函數(shù)?
師生行為:教師出示例1,同學(xué)們稍加考慮即可獲得問題的結(jié)論,進(jìn)而引出例2,例2讓學(xué)生分組展開討論,待學(xué)生充分交流后,教師再組織各小組展示自己的討論結(jié)果,共同得到正確是結(jié)論,并獲得解題的經(jīng)驗(yàn)。
教師重點(diǎn)關(guān)注:(1)探究中各小組是否積極展開活動;(2)學(xué)生對二次函數(shù)概念是否理解透徹,應(yīng)用是否得當(dāng);(3)教師在小組中巡視,盡可能多給學(xué)生一點(diǎn)思考的時(shí)間和空間,對學(xué)習(xí)有困難的學(xué)生適當(dāng)引導(dǎo)。
設(shè)計(jì)意圖:通過例1的設(shè)計(jì),有利于學(xué)生對二次函數(shù)的概念的理解,邊學(xué)邊練,為下一個(gè)討論做鋪墊;例2中三個(gè)問題的設(shè)計(jì),由淺入深,層層遞進(jìn),在復(fù)習(xí)舊知的同時(shí)獲得解決新問題的經(jīng)驗(yàn),進(jìn)一步內(nèi)化新知、突破難點(diǎn)。整個(gè)探究過程都是讓學(xué)生自己去探索,在探索中發(fā)現(xiàn)新知,在交流中歸納新知,把學(xué)習(xí)的主動權(quán)交給學(xué)生,增強(qiáng)學(xué)生創(chuàng)造的信心,體驗(yàn)到成功的快樂。
[活動4] 練習(xí)反饋
鞏固新知 問題:
(1)
P80.練習(xí)1、2(2)
若
y ?
(m
?
m)x
是二次函數(shù),求m的值.
師生行為:教師提出問題,問題(1)學(xué)生獨(dú)立思考后寫出答案,師生共同評價(jià);問題(2)學(xué)生獨(dú)立思考后同桌交流,指名口答結(jié)果,教師強(qiáng)調(diào)正確解題思路;
教師重點(diǎn)關(guān)注:學(xué)生能否準(zhǔn)確用二次函數(shù)表示變量之間關(guān)系;學(xué)生解題時(shí)候暴露的共性問題作針對性的點(diǎn)評,注重培養(yǎng)學(xué)生正確的思路和方法,積累解題經(jīng)驗(yàn)。
設(shè)計(jì)意圖:問題(1)是從簡單的應(yīng)用開始,及時(shí)鞏固新知,讓學(xué)生獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn);問題(2)是讓學(xué)生對二次函數(shù)定義很深層次的理解,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性; 2m2?m
八、自主小結(jié),深化提高:
請同學(xué)們談?wù)劚竟?jié)課的體會和收獲,各抒己見,不拘泥于形式,教師對學(xué)生的回答給予幫助,讓語言表達(dá)更準(zhǔn)確。
設(shè)計(jì)意圖:學(xué)生歸納本節(jié)課學(xué)習(xí)的主要內(nèi)容,讓學(xué)生自覺對所學(xué)知識進(jìn)行梳理,形成體系,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
九、分層作業(yè),發(fā)展個(gè)性:
作業(yè)設(shè)計(jì):(必做題)1.閱讀教材并完成P90 習(xí)題21.1:
1、2. 2.寫好數(shù)學(xué)日記。
(備選題)1.已知函數(shù)y=ax2+bx+c(a、b、c是常數(shù)),當(dāng)a___時(shí)是二次函數(shù);
當(dāng)a___,b___時(shí)是一次函數(shù);
當(dāng)a__,b__,c__時(shí)是正比例函數(shù)。2.畫出最簡單的二次函數(shù)y=x2的圖象。預(yù)習(xí)作業(yè):1.看書P80 設(shè)計(jì)意圖:把作業(yè)分為必做題和選做題兩種。必做題較基礎(chǔ),可以發(fā)現(xiàn)和彌補(bǔ)課堂學(xué)習(xí)的遺漏和不足;備選題則僅供學(xué)有余力的學(xué)生選用。
十、教學(xué)反思:
數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)上。二次函數(shù)第一課時(shí),教材中安排的內(nèi)容不多,但學(xué)生對函數(shù)的知識已經(jīng)生疏,接受起來不會很順利。由此,我的設(shè)計(jì)是從溫故知新開始,通過溫故知新,引出課題、創(chuàng)設(shè)情境、探究新知、例題學(xué)習(xí)、內(nèi)化新知、練習(xí)反饋、鞏固新知等幾個(gè)數(shù)學(xué)活動,引導(dǎo)學(xué)生用類比的思想,用已有的知識經(jīng)驗(yàn)歸納總結(jié)出新知、內(nèi)化新知、鞏固應(yīng)用新知的。活動中也注意了學(xué)生的知識與實(shí)際問題的聯(lián)系,使學(xué)生充分體會數(shù)學(xué)源于生活又服務(wù)于生活。