第一篇:熱處理工藝總結
1.退火
將鋼件加熱到Ac3+30~50度或Ac1+30~50度或Ac1以下的溫度后,一般隨爐溫緩慢冷卻。
目的:1.降低硬度,提高塑性,改善切削加工與壓力加工性能 2.細化晶粒,改善力學性能,為下一步工序做準備 3.消除冷、熱加工所產生的內應力。
應用要點:1.適用于合金結構鋼、碳素工具鋼、合金工具鋼、高速鋼的鍛件、焊接件以及供應狀態不合格的原材料 2.一般在毛坯狀態進行退火。
2.正火
將鋼件加熱到Ac3以上30~50度,保溫后以稍大于退火的冷卻速度冷卻。
目的:1.降低硬度,提高塑性,改善切削加工與壓力加工性能 2.細化晶粒,改善力學性能,為下一步工序做準備 3.消除冷、熱加工所產生的內應力。
應用要點:正火通常作為鍛件、焊接件以及滲碳零件的預先熱處理工序。對于性能要求不高的低碳的和中碳的碳素結構鋼及低合金鋼件,也可作為最后熱處理。對于一般中、高合金鋼,空冷可導致完全或局部淬火,因此不能作為最后熱處理工序。
3.淬火
將鋼件加熱到相變溫度Ac3或Ac1以上,保溫一段時間,然后在水、硝鹽、油、或空氣中快速冷卻。
目的:淬火一般是為了得到高硬度的馬氏體組織,有時對某些高合金鋼(如不銹鋼、耐磨鋼)淬火時,則是為了得到單一均勻的奧氏體組織,以提高耐磨性和耐蝕性。
應用要點:1.一般用于含碳量大于百分之零點三的碳鋼和合金鋼;2.淬火能充分發揮鋼的強度和耐磨性潛力,但同時會造成很大的內應力,降低鋼的塑性和沖擊韌度,故要進行回火以得到較好的綜合力學性能。4.回火
將淬火后的鋼件重新加熱到Ac1以下某一溫度,經保溫后,于空氣或油、熱水、水中冷卻。
目的:1.降低或消除淬火后的內應力,減少工件的變形和開裂;2.調整硬度,提高塑性和韌性,獲得工作所要求的力學性能;3.穩定工件尺寸。
應用要點:1.保持鋼在淬火后的高硬度和耐磨性時用低溫回火;在保持一定韌度的條件下提高鋼的彈性和屈服強度時用中溫回火;以保持高的沖擊韌度和塑性為主,又有足夠的強度時用高溫回火;2.一般鋼盡量避免在230~280度、不銹鋼在400~450度之間回火,因為這時會產生一次回火脆性。
5.調質
淬火后高溫回火稱調質,即將鋼件加熱到比淬火時高10~20度的溫度,保溫后進行淬火,然后在400~720度的溫度下進行回火。
目的:1.改善切削加工性能,提高加工表面光潔程度;2.減小淬火時的變形和開裂;3.獲得良好的綜合力學性能。
應用要點:1.適用于淬透性較高的合金結構鋼、合金工具鋼和高速鋼;2.不僅可以作為各種較為重要結構的最后熱處理,而且還可以作為某些緊密零件,如絲杠等的預先熱處理,以減小變形。
6.時效
將鋼件加熱到80~200度,保溫5~20小時或更長時間,然后隨爐取出在空氣中冷卻。
目的:1.穩定鋼件淬火后的組織,減小存放或使用期間的變形;2.減輕淬火以及磨削加工后的內應力,穩定形狀和尺寸。
應用要點:1.適用于經淬火后的各鋼種;2.常用于要求形狀不再發生變化的緊密工件,如緊密絲杠、測量工具、床身機箱等。
7.冷處理 將淬火后的鋼件,在低溫介質(如干冰、液氮)中冷卻到-60~-80度或更低,溫度均勻一致后取出均溫到室溫。
目的:1.使淬火鋼件內的殘余奧氏體全部或大部轉換為馬氏體,從而提高鋼件的硬度、強度、耐磨性和疲勞極限;2. 穩定鋼的組織,以穩定鋼件的形狀和尺寸。
應用要點:1.鋼件淬火后應立即進行冷處理,然后再經低溫回火,以消除低溫冷卻時的內應力;2.冷處理主要適用于合金鋼制的緊密刀具、量具和緊密零件。
8.火焰加熱表面淬火
用氧-乙炔混合氣體燃燒的火焰,噴射到鋼件表面上,快速加熱,當達到淬火溫度后立即噴水冷卻。
目的:提高鋼件表面硬度、耐磨性及疲勞強度,心部仍保持韌性狀態。
應用要點:1.多用于中碳鋼制件,一般淬透層深度為2~6mm;2.適用于單件或小批量生產的大型工件和需要局部淬火的工件。
9.感應加熱表面淬火
將鋼件放入感應器中,使鋼件表層產生感應電流,在極短的時間內加熱到淬火溫度,然后噴水冷卻。
目的:提高鋼件表面硬度、耐磨性及疲勞強度,心部保持韌性狀態。
應用要點:1.多用于中碳鋼和中堂合金結構鋼制件;2. 由于肌膚效應,高頻感應淬火淬透層一般為1~2mm,中頻淬火一般為3~5mm,高頻淬火一般大于10mm.
10.滲碳
將鋼件放入滲碳介質中,加熱至900~950度并保溫,使鋼件便面獲得一定濃度和深度的滲碳層。
目的:提高鋼件表面硬度、耐磨性及疲勞強度,心部仍然保持韌性狀態。
應用要點:1.用于含碳量為0.15%~0.25%的低碳鋼和低合金鋼制件,一般滲碳層深度為0.5~2.5mm;2.滲碳后必須進行淬火,使表面得到馬氏體,才能實現滲碳的目的。
第二篇:熱處理升溫工藝
熱處理升溫工藝程序
1、常溫至300℃:升溫情況按每15分鐘升10℃,到溫后保溫4小時;(注:在前200℃時,底室門打開,各區水蒸氣流出口打開,升溫至200℃后,需把水蒸氣流出口關閉)
2、300℃至600℃:升溫情況按每12分鐘升10℃,到溫后保溫4小時;
3、600℃至工作溫度:升溫情況按每10分鐘10℃至工作狀態;
4、溫度升至850℃后,即可往爐內提供發生氣;前期天然氣不供給,供入發生氣后,觀察保溫室兩個廢氣點火嘴及加熱爐進料門燃氣口點燃,關閉底室門等候稍許,使底室門點火嘴點燃,方可通入天然氣,使爐內氣氛還原,還原氣體過程中,可持續升溫,850℃直接升溫至工作溫度即可;
5、發生爐常溫升溫需用加熱一檔預熱一小時至兩小時,在切換到二檔加熱,升溫情況為每小時升50℃,常溫升溫至200℃保溫一小時;
6、200℃升溫至400℃保溫一小時,升溫情況為每小時升50℃;400℃升溫至800℃保溫一小時后切換至三擋升溫至加熱溫度,升溫情況為每小時升50℃;
注:
1、爐內溫度高于200℃時,需保證循環風扇運轉;爐溫低于800℃或廢氣點火嘴沒有點燃的狀態下,不可向爐內送入天然氣;各區送入天然氣后才可將碳控儀表由手動改為自動(“Man”為手動自動切換);
2、起爐前,碳控儀差值需歸零,碳勢升至設定值保持1~2個小時由技術員進行定碳分析,并根據定碳結果對碳控儀顯示值進行修正,碳勢測定標準詳見《JB/T 10312-2011 鋼箔稱重法》
3、連續爐各區碳勢設定值如下:
a、強滲一區設定值為1.08;b、強滲二區設定值為1.09;c、擴散三區設定值為0.85;d、預冷四區設定值為0.8;e、保溫室設定值為0.77;
4、低溫回火爐升溫可在產品進滿預冷爐后進行,升溫前需啟動風扇;
5、廢氣排放系統可在設備運行前啟動;
6、設備正常運行前需確認各基本位置是否在規定位置上,各行程開關及限位塊都在規定位置上,如不滿足,需調整到指定位置上;
第三篇:熱處理工藝課程設計
沈陽理工大學熱處理工藝課程設計
T10A 檢驗量棒的 熱處理工藝設計
1 熱處理工藝課程設計的目的
熱處理工藝課程設計是高等工業學校金屬材料工程專業一次專業課設計練習,是 熱處理原理與工藝課程的最后一個教學環節。其目的是:(1)培養學生綜合運用所學的熱處理課程的知識去解決工程問題的能力,并使其所 學知識得到鞏固和發展。(2)學習熱處理工藝設計的一般方法、熱處理設備選用和裝夾具設計等。(3)進行熱處理設計的基本技能訓練,如計算、工藝圖繪制和學習使用設計資料、手冊、標準和規范。
2 熱處理課程設計的任務
①普通熱處理工藝設計 ②制定熱處理工藝參數 ③選擇熱處理設備 ④分析熱處理工序中材料的組織和性能 ⑤設計熱處理工藝所需的掛具、裝具或夾具 ⑥特殊熱處理工藝設計 ⑦填寫工藝卡片
3 T10A 檢驗量棒的技術要求及選材
3.1 T10A 的零件圖
T10A 檢驗量棒的零件如圖 3.1 所示。
圖 3.1
檢驗量棒圖
3.2 技術要求
1
沈陽理工大學熱處理工藝課程設計
T10A 檢驗量棒的技術要求 如下: 硬度:HRC60~63
[1]
3.3 材料的選擇
3.3.1 零件用途 量棒是用來度量工件工件內經專門尺寸的工具。3.3.2 工作條件(1)量棒在使用過程中經常受到工件的摩擦與碰撞,長時期使用量棒會因磨損 而失去其精度。(2)量棒在長時期存放和使用過程中,會因環境和工作而導致量棒的變形,進 而尺寸不再穩定,不能再用來度量工件。(3)量棒在使用過程中,還會受到沖擊作用,會導致量棒因偶然碰撞而斷裂。綜上所述,量棒在使用過程中,經常受到工件的摩擦和碰撞,而作為量棒本身又 必須具備非常高的尺寸精確性和恒定性。長期使用會導致量棒失去其精度,且在存放 時會因保存不當而導致其變形,所以要求量棒不僅要有高的硬度和耐磨性,還要有一 定的韌性。
3.3.3
性能要求
檢驗量棒的形狀簡單,尺寸不太大,但量棒在使用中要求很高,為了滿足這些要 求,可選用含碳量高的鋼,同時要求有一定的韌性。含碳量高的鋼經淬火熱處理后可 得到馬氏體和未溶碳化物,可使量棒有高的硬度和耐磨性,保證量棒在長期使用中不 致被很快磨損,而失去其精度。此外還有高的尺寸穩定性,保證量棒在使用和存放過 程中保持其形狀和尺寸的穩定性。高碳鋼經淬火并及時回火后,可以在很少降低硬度 的同時使鋼的韌性明顯提高,這樣可使量棒有足夠的韌性,以保證量棒在使用時不致 因偶然因素而損壞。
3.3.4
材料選擇
根據檢驗量棒的工作條件,尺寸及性能要求選擇碳素工具鋼,其未加入合金元素,價格便宜,退火后硬度低,可
加工性好,磨削及拋光性好。T8,T8A,T9,T9A,T10A,T11A 等都屬于碳素工具鋼,但T8,T8A,T9,T9A接近共析成分,含碳量較少,淬火后的組織
2
沈陽理工大學熱處理工藝課程設計
中未溶碳化物極少,耐磨性差。而T11,T11A遠離共析成分,在淬火后組織中的未溶碳 化物較多,降低了鋼的韌性。T10A在淬火加熱時不易過熱,又存適量的未溶碳化物,耐磨性高,且彌補了T11A韌性不足的缺點。
3.3.5
T10A鋼化學成分及合金元素作用
T10A 鋼的化學成分示于表 3.1
表 3.1 T10A 鋼的化學成分 ω/% C 0.15~0.30 Mn 0.15~0.30 Si 0.15~0.30 P ≤0.030 S ≤0.030
[1]
化學元素作用: ①C :保證形成碳化物所需要的碳和保證淬火馬氏體能夠獲得的硬度 ②Si: 能提高鋼的淬透性和抗回火性,對鋼的綜合機械性能,還能增高淬火溫度,阻礙碳元素溶于鋼中。③Mn:能增加鋼的強度和硬度,有脫氧及脫硫的功效(形成 MnS),防止熱脆,故 Mn 能改善鋼的鍛造性和韌性,可增進剛的硬化深度,降低鋼的下臨界點,增加奧氏 體冷卻時的過冷度,細化珠光體組織以改善機械性能。
3.3.6
T10A 鋼熱處理臨界轉變溫度
T10A 鋼熱處理的臨界轉變溫度見表 3.2[1]
表 3.2 T10A 鋼臨界轉變溫度/℃ 鋼號 T10A Ac1 730 Ac3 800 Ar1 700
3.4
T10A 鋼量棒加工制造工藝流程 T10A 鋼量棒加工制造工藝流程如下:
下料→鍛造→調質處理→機加工→不完全淬火→清洗→冷處理→低溫回火→時效→ 檢驗→包裝
4
T10A 鋼的熱處理工藝
3
沈陽理工大學熱處理工藝課程設計
4.1 T10A 鋼的調質處理工藝
4.1.1 調質處理(淬火+高溫回火)目的
進行預備熱處理,獲得粗大回火索氏體,降低淬火前機加工的表面粗糙度,使淬 火后具有高而且均勻的硬度。如果采用正火加球化退火,則加熱周期長,生產效率低。所以選擇調質處理作為 T10A 鋼的預備熱處理,處理后可以獲得回火索氏體,減少淬 火變形,提高機械加工的光潔度。4.1.2 淬火工藝(1)淬火目的 淬火是為了獲得馬氏體(2)淬火溫度 加熱溫度:780±10℃。因為 T10A 是過共析鋼,鋼中含有碳化物形成元素。為使碳化物溶入奧氏體中,使 奧氏體合金化程度增高,提高淬火回火后的機械性能,因此調質處理加熱溫度在 730℃(即 Ac1 溫度)加 30-50℃。所以最終選擇的加熱溫度為 780±10℃.(3)淬火設備 選用RDM系列埋入式鹽浴爐,鹽浴爐參數見表 4.1。
表 4.1 RDM-70-8 埋入式鹽浴爐 型號 額定功率 電源 相數 RDM-70-8 70(KW)3 電壓 380(V)850℃
[7]
額定溫度
工作空間尺寸(mm ×mm)450×350×700
說明:爐溫均勻,介質流動性好,加熱速度,溫度均勻,工件變形小,加熱質量好,利于提高產品質量,爐膛容積有效利
用率高,產量大,耗電量少,可節省電能與筑爐 材料,電極壽命長,減小停爐時間。適用于中,小型工件成批量生產。
(4)加熱方法 采用到溫加熱的方法,是指當爐溫加熱到指定的溫度時,再將工件裝進熱處理爐進行 加熱。原因是加熱速度快,節約時間,便于批量生產。
4
沈陽理工大學熱處理工藝課程設計
(5)加熱介質 加熱介質為 44%NaCl+56%KCl
表 4.2 加熱介質與使用溫度的關系 鹽浴成分(%,按重量計算)28NaCl+72CaCl2 34NaCl+33CaCl2+33BaCl2 50NaCl+50BaCl2 22NaCl+78BaCl2 44NaCl+56KCl 34KCl+66BaCl2 熔點(℃)500 570 600 640 663 657 使用溫度范圍(℃)540~870 600~870 650~900 675~900 700~870 700~950
(6)保溫時間 保溫時間:12min 選定的依據: 加熱時間可按下列公式進行計算: t=a×K×D,式中 t 為加熱時間(min),K 為反映裝爐時的修正系數,可根據表 4.4 可得 K 取 1.4,a 為加熱系數 min/mm,加熱 系數 a 可根據鋼種與加熱介質、加熱溫度,參數按照表 4.3 選取,D 為工件有效厚度(mm).可得 t=a×K×D=1.4×20×24=672s
表 4.3 工件加熱系數 a 鋼號 碳鋼 合金鋼 高合金鋼 高速鋼 退火、正火(箱式爐)箱式爐 0.7~0.8min/mm 0.9~1.0min/mm 1.0~1.5min/mm 2~3min/mm 0.7~0.8min/mm 0.9~1.0min/mm 預熱 1min/mm 加熱 45s/mm 2~2.5min/mm 淬火 鹽爐 20~30s/mm 30~45s/mm 預熱 30s/mm 加熱 16s/mm 預熱 15~30s/mm 加熱 8~12s/mm
(7)冷卻方式 由 T10A 的淬透性曲線可知,要達到所要求的硬度,可選擇水淬,且由于 T10A 的淬透 性低,為獲得馬氏體組織,應選擇強烈的淬火介質.所以選擇水作為 T10A 的淬火介質。(8)冷卻介質 冷卻介質:水
5
第四篇:金屬熱處理原理及工藝 期末總結
正火:將鋼材或鋼件加熱到臨界點AC3或ACM以上的適當溫度保持一定時間后在空氣中冷卻,得到珠光體類組織的熱處理工藝。
退火:將亞共析鋼工件加熱至AC3以上20—40度,保溫一段時間后,隨爐緩慢冷卻(或埋在砂中或石灰中冷卻)至500度以下在空氣中冷卻的熱處理工藝
固溶熱處理:將合金加熱至高溫單相區恒溫保持,使過剩相充分溶解到固溶體中,然后快速冷卻,以得到過飽和固溶體的熱處理工藝 時效:合金經固溶熱處理或冷塑性形變后,在室溫放置或稍高于室溫保持時,其性能隨時間而變化的現象。Al-4Cu合金在時效過程中,過飽和固溶體的各個沉淀階段,其順序可概括為: ?過飽和?G.P.區????過渡相???過渡相??(CuAl2)穩定相 固溶處理:使合金中各種相充分溶解,強化固溶體并提高韌性及抗蝕性能,消除應力與軟化,以便繼續加工成型 時效處理:在強化相析出的溫度加熱并保溫,使強化相沉淀析出,得以硬化,提高強度時效處理有自然時效和人工時效兩種。
淬火:將鋼奧氏體化后以適當的冷卻速度冷卻,使工件在橫截面內全部或一定的范圍內發生馬氏體等不穩定組織結構轉變的熱處理工藝
回火:將經過淬火的工件加熱到臨界點AC1以下的適當溫度保持一定時間,隨后用符合要求的方法冷卻,以獲得所需要的組織和性能的熱處理工藝
調質處理:將鋼件淬火,隨之進行高溫回火,這種復合工藝稱調質處理。表面熱處理:改變鋼件表面組織或化學成分,以其改面表面性能的熱處理工藝。表面淬火:是將鋼件的表面通過快速加熱到臨界溫度以上,但熱量還未來得及傳到心部之前迅速冷卻,這樣就可以把表面層被淬在馬氏體組織,而心部沒有發生相變,這就實現了表面淬硬而心部不變的目的。適用于中碳鋼。化學熱處理:是指將化學元素的原子,借助高溫時原子擴散的能力,把它滲入到工件的表面層去,來改變工件表面層的化學成分和結構,從而達到使鋼的表面層具有特定要求的組織和性能的一種熱處理工藝 滲碳:向鋼的表面滲入碳原子,提高表面含碳量,提高材料表面硬度、抗疲勞性和耐磨性。
滲氮:在工件表面滲入氮原子,形成一個富氮硬化層的過程。提高材料表面硬度、抗疲勞性和耐磨性,且滲氮性能優于滲碳。碳氮共滲:碳氮同時滲入工件表層。提高表面硬度、抗疲勞性和耐磨性,并兼具滲碳和滲氮的優點
完全退火和等溫退火又稱重結晶退火,一般簡稱為退火,這種退火主要用于亞共析成分的各種碳鋼和合金鋼的鑄,鍛件及熱軋型材,有時也用于焊接結構。一般常作為一些不重工件的最終熱處理,或作為某些工件的預先熱處理。
球化退火主要用于過共析的碳鋼及合金工具鋼(如制造刃具,量具,模具所用的鋼種)。其主要目的在于降低硬度,改善切削加工性,并為以后淬火作好準備。
去應力退火又稱低溫退火(或高溫回火),這種退火主要用來消除鑄件,鍛件,焊接件,熱軋件,冷拉件等的殘余應力。如果這些應力不予消除,將會引起鋼件在一定時間以后,或在隨后的切削加工過程中產生變形或裂紋。鐵素體(F)1.組織: 碳在α-Fe(體心立方結構的鐵)中的間隙固溶體2.特性: 呈體心立方晶格.溶碳能力最小,最大為0.02%;硬度和強度很低,HB=80-120,σb=250N/mm^2;而塑性和韌性很好,δ=50%,ψ=70-80%.因此,含鐵素體多的鋼材(軟鋼)中用來做可壓、擠、沖板與耐沖擊震動的機件.這類鋼有超低碳鋼,如 0Cr13,1Cr13、硅鋼片等
奧氏體1.組織: 碳在γ-Fe(面心立方結構的鐵)中的間隙固溶體。2.特性:呈面心立方晶格.最高溶碳量為2.06%,在一般情況下,具有高的塑性,但強度和硬度低,HB=170-220,奧氏體組織除了在高溫轉變時產生以外,在常溫時亦存在于不銹鋼、高鉻鋼和高錳鋼中,如奧氏體不銹鋼等 滲碳體(C)1.組織: 鐵和碳的穩定化合物(Fe3C)2.特性: 呈復雜的八面體晶格.含碳量為6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,滲碳體不能單獨應用,而總是與鐵素體混合在一起.碳在鐵中溶解度很小,所以在常溫下,鋼鐵組織內大部分的碳都是
以滲碳體或其他碳化物形式出現
珠光體(P)1.組織;鐵素體和滲碳體組成的機械混合物(F+Fe3c 含碳0.8%)鐵素體片和滲碳體
片交替排列的層狀顯微組織, 2.特性: 是過冷奧氏體進行共析反應的直接產物.其片層組織的粗細隨奧氏體過冷程度不同,過冷程度越大,片層組織越細性質也不同.奧氏體在約600℃分解成的組織稱為細珠光體(有的叫一次索氏體),在500-600℃分解轉變成用光學顯微鏡不能分辨其片層狀的組織稱為極細珠光體(有的一次屈氏體),它們的硬度較鐵素體和奧氏體高,而較滲碳體低,其塑性較鐵素體和奧氏體低而較滲碳體高.正火后的珠光體比退火后的珠光體組織細密,彌散度大,故其力學性能較好,但其片狀滲碳體在鋼材承受負荷時會引起應力集中,故不如索氏體 萊氏體(L)1.組織: 滲碳體和奧氏體組成的機械混合物(含碳4.3%)2.特性: 鐵合金溶液含碳量在2.06%以上時,緩慢冷到1130℃便凝固出萊氏體.當溫度到達共析溫度萊氏體中的奧氏轉變為珠光體.因此,在723℃以下萊氏體是珠光體與滲碳體機械混合物(共晶混合).萊氏體硬而脆(>HB700),是一種較粗的組織,不能進行壓力加工,如白口鐵.在鑄態含有萊氏體組織的鋼有高速工具鋼和Cr12型高合金工具鋼等.這類鋼一般有較大有耐磨性和較好的切削性
淬火與馬氏體1.組織: 碳在α-Fe中的過飽和固溶體,顯微組織呈針葉狀2.特性:淬火后獲得的不穩定組織.具有很高的硬度,而且隨含碳量增加而提高,但含碳量超過0.6%后的硬度值基本不變,如含C0.8%的馬氏體,硬度約為HRC65,沖擊韌性很低,脆性
很大,延伸率和斷面收縮率幾乎等于零.奧氏體晶粒愈大,馬氏體針葉愈粗大,則沖擊韌性愈低;淬火溫度愈低,奧氏體晶粒愈細,得到的馬氏體針葉非常細小,即無針狀馬氏組織,其韌性最高 回火馬氏體(S)1.組織: 與淬火馬氏體硬度相近,而脆性略低的黑色針葉狀組織
2.特性:淬火鋼重新加熱到150-250℃回火獲得的組織.硬度一般只比淬火馬氏體低HRC1-3格,但內應力比淬火馬氏體小
索氏體(S)1.組織: 鐵索體和較細的粒狀滲碳體組成的組織2.特性:淬火鋼重新加熱到500-680℃回火后獲得的組織.與細珠光體相比,在強度相同情沖下塑性及韌性都高,隨回火溫度提高,硬度和強度降低,沖擊韌性提高.硬度約為HRC23-35.綜合機械性能比較好.索氏體有的叫二次索氏體或回火索氏體
屈氏體屈氏體(T)組織或特性
1.組織: 鐵索體和更細的粒狀滲碳體組成的組織2.特性:淬火鋼重新加熱到350-450℃回火后獲得的組織.它的硬度和強度雖然比馬氏體低,但因其組織很致密,仍具有較高的強度和硬度,并有比馬氏體好的韌性和塑性,硬度約為
HRC35-45.屈氏體有的叫二次屈氏體或回火屈氏體
下貝氏體(B)1.組織: 顯微組織呈黑色針狀形態,其中的鐵素體呈現針狀,而碳化物呈現極小的質點以彌散狀分布在針狀鐵素體內2.特性:過冷奧氏體在400-240℃等溫度轉變后的產物.具有較高的硬度,約為HRC40-55,良好的塑性和很高的沖擊韌性,其綜合機械性能比索氏體更好;因此,在要求較大的、韌性和高強度相配合時,常以含有適當合金元素的中碳結構鋼等溫淬火,獲得貝氏體以改善鋼的機械性能,并減小內應力和變形 低碳馬氏體具有高強度與良好的塑性、韌性相結合的特點(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2);同時還有低的冷脆轉化溫度(≤-60℃);在靜載荷、疲勞及多次沖擊載荷下,其缺口敏感度和過載敏感性都較低.低碳馬氏體狀態的20SiMn2MoVA綜合力學性能,比中碳合金鋼等溫淬火獲得的下貝氏體更好.保持了低碳鋼的工藝性能,但切削加工較難.工藝
1.低碳鋼及低碳合金鋼制模具 例如,20,20Cr,20CrMnTi等鋼的工藝路線為:下料→鍛造模坯→退火→機械粗加工→冷擠壓成形→再結晶退火→機械精加工→滲碳→淬火、回火→研磨拋光→裝配。
2.高合金滲碳鋼制模具 例如12CrNi3A,12CrNi4A鋼的工藝路線為:下料→鍛造模坯→正火并高溫回火→機械粗加工→高溫回火→精加工→滲碳→淬火、回火→研磨拋光→裝配。3.調質鋼制模具 例如,45,40Cr等鋼的工藝路線為:下料→鍛造模坯→退火→機械粗加工→調質→機械精加工→修整、拋光→裝配。
4.碳素工具鋼及合金工具鋼制模具 例如T7A~T10A,CrWMn,9SiCr等鋼的工藝路線為:下料→鍛成模坯→球化退火→機械粗加工→去應力退火→機械半精加工→機械精加工→淬火、回火→研磨拋光→裝配。
5.預硬鋼制模具
例如5NiSiCa,3Cr2Mo(P20)等鋼。對于直接使用棒料加工的,因供貨狀態已進行了預硬化處理,可直接加工成形后拋光、裝配。對于要改鍛成坯料后再加工成形的,其工藝路線為:下料→改鍛→球化退火→刨或銑六面→預硬處理(34~42HRC)→機械粗加工→去應力退火→機械精加工→拋光→裝配。氮化工件工藝路線:鍛造-退火-粗加工-調質-精加工-除應力-粗磨-氮化-精磨或研磨。適用于各種高速傳動精密齒輪、機床主軸(如鏜桿、磨床主軸),高速柴油機曲軸、閥門等。由于氮化層薄,并且較脆,因此要求有較高強度的心部組織,所以要先進行調質熱處理,獲得回火索氏體,提高心部機械性能和氮化層質量。論述鋼材在熱處理過程中出現脆化現象的主要原因及解決方法。答:①過共析鋼奧氏體化后冷卻速度較慢出現網狀二次滲碳體時,使鋼的脆性增加,脆性的網狀二次滲碳體在空間上把塑性相分割開,使其變形能力無從發揮。解決方法,重新加熱正火,增加冷卻速度,抑制脆性相的析出。②淬火馬氏體在低溫回火時會出現第一類回火脆性,高溫回火時有第二類回火脆性,第一類回火脆性不可避免,第二類回火脆性,可重新加熱到原來的回火溫度,然后快冷恢復韌性。③工件等溫淬火時出現上貝氏體時韌性降低,重新奧氏體化后降低等溫溫度得到下貝氏體可以解解。④奧氏體化溫度過高,晶粒粗大韌性降低。如:過共析鋼淬火溫度偏高,晶粒粗大,獲得粗大的片狀馬氏體時,韌性降低;奧氏體晶粒粗大,出現魏氏組織時脆性增加。通過細化晶粒可以解決。
20CrMnTi、40CrNiMo、60Si2Mn、T12屬于哪類鋼?含碳量為多少?鋼中合金元素的主要作用是什么?淬火加熱溫度范圍是多少?常采用的熱處理工藝是什么?最終的組織是什么?性能如何?
20CrMnTi為滲碳鋼,含碳量為0.2%,最終熱處理工藝是淬火加低溫回火,得到回火馬氏體,表面為高碳馬氏體(滲碳后),強度、硬度高,耐磨性好;心部低碳馬氏體(淬透)強韌性好。Mn與Cr 提高淬透性,強化基體,Ti阻止奧氏體晶粒長大,細化晶粒。
40CrNiMo為調質鋼,含碳量為0.4%,最終
熱處理工藝是淬火加高溫回火,得到回火索氏
體,具有良好的綜合機械性能,Cr、Ni提高淬透性,強化基體,Ni提高鋼的韌性,Mo細化晶粒,抑制第二類回火脆性。
60Si2Mn為彈簧鋼,含碳量為0.6%,最終熱處理工藝是淬火加中溫回火,得到回火托氏體(或回火屈氏體),具有很高的彈性極限,Si、Mn提高淬透性,強化基體,Si提高回火穩定性。
T12鋼為碳素工具鋼鋼,含碳量為1.2%,最終熱處理工藝是淬火加低溫回火,得到回火馬氏體+粒狀Fe3C+殘余奧氏體(γ'),強度硬度高、耐磨性高,塑性、韌性差。
用T12鋼(鍛后緩冷)做一切削工具,工藝過程為:正火→球化退火→機加工成形→淬火→低溫回火。各熱處理工藝的目的是什么?得到什么組織?各種組織具有什么性能。
① 正火:消除網狀的二次滲碳體,同時改善鍛
造組織、消除鍛造應力,得到片狀的珠光體,片狀的珠光體硬度較高,塑性韌性較差。② 球化退火:將片狀的珠光體變成粒狀珠光
體,降低硬度,便于機械加工;組織為粒狀珠光體,這種組織塑性韌性較好,強度硬度較低。
③ 淬火:提高硬度、強度和耐磨性;組織為馬
氏體+粒狀碳化物+殘余奧氏體;這種組織具有高強度高硬度,塑性韌性差。
④ 低溫回火:減少或消除淬火應力,提高塑形
和韌性;組織為回火馬氏體+粒狀碳化物+殘余奧氏體。回火組織有一定的塑性韌性,強度、硬度高,耐磨性高。
什么是淬火?目的是什么?具體工藝有哪些?簡述淬火加熱溫度的確定原則。
把鋼加熱到臨界點(Ac1或Ac3)以上保溫并隨之以大于臨界冷卻速度(Vc)冷卻,以得到介穩狀態的馬氏體或下貝氏體組織的熱處理工藝方法稱為淬火。
淬火目的:提高工具、滲碳零件和其它高強度耐磨機器零件等的硬度、強度和耐磨性;結構鋼通過淬火和回火之后獲得良好的綜合機械性能;此外,還有很少數的一部分工件是為了改善鋼的物理和化學性能。如提高磁鋼的磁性,不銹鋼淬火以消除第二相,從而改善其耐蝕性等。
具體工藝有:單液淬火法;中斷淬火法(雙淬火介質淬火法);噴射淬火法;分級淬火法;等
溫淬火法。
淬火加熱溫度,主要根據鋼的相變點來確定。對亞共析鋼,一般選用淬火加熱溫度為Ac3+(30~50℃),過共析鋼則為Ac1+(30~50℃),合金鋼一般比碳鋼加熱溫度高。確定淬火加熱溫度時,尚應考慮工件的形狀、尺寸、原始組織、加熱速度、冷卻介質和冷卻方式等因素。在工件尺寸大、加熱速度快的情況下,淬火溫度可選得高一些。另外,加熱速度快,起始晶粒細,也允許采用較高加熱溫度。
某車床主軸(45鋼)加工路線為: 下料→鍛造→正火→機械加工→淬火(淬透)→高溫回火→花鍵高頻表面淬火→低溫回火→半精磨→人工時效→精磨。正火、淬火、高溫回火、人工時效的目的是什么?花鍵高頻表面淬火、低溫回火的目的是什么?表面和心部的組織是什么?
正火處理是為了得到合適的硬度,以便切削加工,同時改善鍛造組織,消除鍛造應力。淬火是為了得到高強度的馬氏體組織,高溫回火是為了得到回火索氏體,淬火+高溫回火稱為調質,目的是為使主軸得到良好的綜合力學性能。人工時效主要是為了消除粗磨削加工時產生的殘余應力。花鍵部分用高頻淬火后低溫回火是為了得到回火馬氏體,增加耐磨性。表面為回火馬氏體,心部為回火索氏體組織。
低碳鋼(15、20)、中碳鋼(40、45)、共析鋼(T8)獲得良好綜合力學性能的最終熱處理工藝及組織。
低碳鋼:淬火加低溫回火,組織為回火馬氏體。中碳鋼:淬火加高溫回火,組織為回火索氏體。共析鋼:等溫淬火,組織為下貝氏體。三
十九、正火、退火工藝選用的原則是什么? 含0.25%C以下的鋼,在沒有其它熱處理工序時,可用正火來提高強度。對滲碳鋼,用正火消除鍛造缺陷及提高切削加工性能。對含碳0.25~0.50%的鋼,一般采用正火。對含碳0.50~0.75%的鋼,一般采用完全退火。含碳0.75~1.0%的鋼,用來制造彈簧時采用完全退火作預備熱處理,用來制造刀具時則采用球化退火。含碳大于1.0%的鋼用于制造工具,均采用球化退火作預備熱處理。珠光體、貝氏體、馬氏體的特征、性能特點是什么?
片狀P體,片層間距越小,強度越高,塑性、韌性也越好;粒狀P體,Fe3C顆粒越細小,分布越均勻,合金的強度越高。第二相的數量越多,對塑性的危害越大;片狀與粒狀相比,片狀強度高,塑性、韌性差;上貝氏體為羽毛狀,亞結構為位錯,韌性差;下貝氏體為黑針狀或竹葉狀,亞結構為位錯,位錯密度高于上貝氏體,綜合機械性能好;低碳馬氏體為板條狀,亞結構為位錯,具有良好的綜合機械性能;高碳馬氏體為片狀,亞結構為孿晶,強度硬度高,塑性和韌性差。
常用的熱處理方法
一、退火目的:
1、降低硬度,便于切削加工;
2、細化晶粒,均勻組織,以改善鋼件毛坯的機械性能,或者為下一步淬火做好準備;
3、消除內應力具體工藝有:擴散退火、完全退火、不完全退火、球化退火、再結晶退火和消除應力退火。
二、正火目的是使低碳和中碳鋼件及滲碳機件的組織細化,增加強度與韌性,減少內應力,改善切削性能。正火實質上是退火的一種特殊形式具有與退火相似的目的所不同的是冷卻速度比退火快,可以縮短生產周期,比較經濟。
三、淬火目的是提高鋼件的硬度和強度。對于工具剛來說,淬火的主要目的是提高它的硬度,以保證刀具的切削性能和沖模工具及量具的耐磨性。有很多零件如齒輪、曲軸等,他們在工作時一方面要受磨,另一方面又要受到沖擊作用,因此要求零件表面有很高的硬度,而中心有較好的韌性。這時可以利用表面淬火的方法來達到上述要求。表面淬火是應用將工件的表面迅速加熱到淬火溫度(這時金屬內部的溫度仍比較低),隨后立即用水噴到工件表面上,進行急速冷卻。這樣就能獲得表面硬、中心韌的要求。表面加熱時,可用氧炔焰、高頻電流或中頻電流加熱。
四、回火目的是消除淬火后的脆性和內應力,調整組織,提高鋼件的塑性和沖擊韌性。對于工具來說,是為了盡可能減少脆性保留硬度。對于零件來說是為了提高韌性,但不可避免的會使硬度降低。
五、調質淬火后高溫回火,叫做調質。
目的是使鋼件獲得很高的韌性和足夠的強度,使其具有良好的綜合機械性能。很多重要零件如主軸、絲杠、齒輪等都是經過調質處理的。調質一般是在零件機械加工后進行的,也可把鍛坯或經過粗加工的光坯調質后再進行機械加工。
第五篇:中外熱處理工藝現狀和趨勢
中外熱處理工藝現狀和趨勢 熱處理工藝現狀
中國熱處理工藝現狀簡介
熱處理是機械工業中的一項十分重要的基礎工藝,對提高機械零件內在質量和使用壽命,加強產品在國內外市場競爭能力具有舉足輕重的作用。但是人們認識到這一點卻花了相當長的時間和很大的代價。由于熱處理影響的是產品的內在質量,它一般不會改變制品的形狀,不會使人直觀地感到它的必要性,弄不好還會嚴重畸變和開裂;破壞制品的表面質量和尺寸精度,致使制造過程前功盡棄。所以在我國的制造業中長期存在著“重冷(冷加工)輕熱(熱加工)”現象,以致這個行業很長時間處于落后狀態。而機械工業發達國家特別注重熱處理工藝技術的研究和發展。
建國以來特別是20世紀80年代以來,我國的熱處理技術有了很大的發展,現有熱處理生產企業、從業人數、設備數量和能力都有大大增長。目前來說,我國在熱處理的基礎理論研究和某些熱處理新工藝、新技術研究方面,與工業發達國家的差距不大,但在熱處理生產工藝水平和熱處理設備方面卻存在著較大的差距,還沒有完全扭轉熱處理生產工藝和熱處理設備落后、工件氧化脫碳嚴重、產品質量差、生產效率低、能耗大、成本高、污染嚴重的局面。
目前在我國工業生產上大量應用的還是常規熱處理工藝,今后仍將占有重要的地位和相當大的比重,但正在日益改進和不斷完善。要以少無氧化加熱、節能、無污染和微電子技術在熱處理中的應用為重點,大力發展先進的熱處理成套技術,利用現代高新技術對常規熱處理進行技術改造,實現熱處理設備的更新換代,全面提高熱處理的工藝水平、裝備水平、管理水平和產品水平,這對于改變我國熱處理技術的落后面貌,趕上工業發達國家的先進水平,將起到積極的促進作用
中國熱處理工藝技術應用還不十分廣泛,對熱處理工藝的重視程度還需要提高,特別從事熱處理工藝的人才的培養需要加大,現今熱處理專業比較冷淡,這些都需要做出大大的改善。另一方面,熱處理環境給人感覺臟亂差,熱處理工藝控制不夠嚴格,這些都阻礙了熱處理工藝的發展,同時阻礙了中國機械制造工藝的發展。
中國熱處理工藝行業、學術團體
中國全國性的熱處理行業、學術團體是中國機械工程學會熱處理學會和中國熱處理行業協會。
1.中國機械工程學會熱處理學會
英文名稱是CHINESE HEAT TREATMENT SOCIETY,簡稱CHTS。
中國機械工程學會成立于1936年,下設29個專業學會和30個地方省市學會,是全國最大的學術團體。熱處理學會成立于1963年,第一任理事長是原上海交通大學副校長、中科院院士、已故的周志宏教授。當前是第八屆理事會。學會的宗旨是致力于學科發展和行業技術進步。學會下設學術,編輯出版、咨詢與培訓,青年,周志宏獎勵基金5個工作委員,物理冶金、化學熱處理、冷卻技術、可控氣氛熱處理、真空熱處理、典型零件熱處理,感應熱處理、計算機應用、高能密度熱處理、表面技術等11個技術委員會,學會的常設機構是秘書處,掛靠在原機械工業部北京機電研究所。學會的主要任務是開展國內外學術交流、編輯出版《金屬熱處理》、《金屬材料熱處理學報》、《中國熱處理技術通訊》等刊物,定期組織、編輯、出版《熱處理手冊》等專業工具書,教學用書、技術叢書、會議文集、定期舉辦國際展覽,組織繼續教育和培訓,承擔工程項目的論證,評估、咨詢、科技成果鑒定,組織技術難題攻關、科技成果的宣傳推廣等。學會于1981年成為國際熱處理與表面工程聯合會(IFHTSE)成員,成功地舉辦了1983年IFHTSE的第三次國際大會(上海)、2004年第14次大會(上海)、1993年的第4屆國際熱處理討論會(北京)、2003年的國際淬火冷卻與畸變會議(北京)。學會的第三屆理事長雷廷權院士曾被選擔任IFHTSE的第11屆執委會(1994~1995)主席。
2.中國熱處理行業協會
中國熱處理行業協會的前身是中國機械工業工藝協會熱處理專業協會,成立于1986年7月。該協會成立的背景是政府主管部門為在政府和企業間架設橋梁,鞏固和發展專業化協作成果,改善企業的經營管理,提高企業的產品質量和經濟效益,并為今后政府實行宏觀調控,協會(同業會)實行行業管理打基礎。因此,協會的會員是企業。
為了精簡機構和減少層次,機械部于1989年決定撤消工藝協會,建議原下屬的專業協會升格為一級協會。為此,經民政部批準,于1991年成立中國熱處理行業協會。理事會是熱協的權力機構,由會員代表大會選舉產生,秘書處是辦事機構,設在北京機電研究所,協會的第一任理事長是原機械工業部陸燕蓀副部長。
熱協的主要任務是開展對企業基本情況的調查分析,制訂行業發展規劃,為政府部門的決策提供建議。推動行業間的橫向聯合和專業協作,為企業提供咨詢服務,提供技術經濟情報和市場信息,組織企業間的經營管理和生產技術改造的經驗交流,維護會員合法權益,排解和仲裁會員之間的經濟糾紛、組織工人和技術人員培訓,在會員單位中宣傳貫徹熱處理新標準,開展國際間信息交流和合作。
中國熱協下設經營管理、工藝裝備、工藝材料、教育培訓、咨詢服務、對外聯絡6個工作委員會,按照理事會決議和秘書處的計劃開展各項活動。
中國熱協編輯出版了《中國熱處理年鑒》多期《熱處理工作者通訊》和系列手冊、工具書等,和江西省科院物理所聯合舉辦《國外金屬熱處理》雜志、和熱處理學會、北京機電所、熱標委會聯合舉辦《金屬熱處理》、《熱處理技術通訊》,組織制定“八五”、“九五”、“十五”、“十一五”行業發展規劃、和學會聯合組織二年一次的北京熱處理國際展覽、多次組織會員單位和企業負責人赴歐、美、日本等熱處理技術先進的國家考察,每次都有很大收獲。國外熱處理工藝現狀
(1)推廣應用高壓氣冷淬火
國外的熱處理廠家非常重視熱處理過程中的冷卻。根據產品的技術和工藝要求,可進行慢速卻、油淬冷卻、一次性氣淬冷卻等。快速氣氛循環冷卻采用向冷卻室噴射高壓氣體,由計算機控制流速和流量的變化,以達到在特定時間內冷卻速度,從而實現熱處理過程中所要求的冷卻曲線,確保零件的熱處理質量。以前采用氣淬方式冷卻的淬火氣體有氮氣、氦氣等,現在用空氣強烈噴射,使工件在極快速度下冷卻,淬火后表面僅有極薄的氧化色膜,呈灰白色,零件色彩依然美觀,而節約大量氮氣和惰性氣體,使熱處理成本進一步下降。
真空低壓滲碳與高壓氣淬相結合是當今一種先進的滲碳淬火工藝,它具有滲碳速度快、碳化物組織優良、淬火開裂和變形小、節約能源和滲碳劑原料、滲碳零件表面質量好、并有利于環保等特點。
(2)熱處理設備采用油冷
風機冷卻、熱交換器冷卻、淬火油槽冷卻等所有需冷卻的裝置,全部采用油封式自冷,全面取代水冷循環系統,整個熱處理爐不用任何冷卻水。例如,熱風循環風機冷卻:將原水冷套進出水管改用油管引出,接近風機處放一個直徑為102mm的小油箱,油冷卻系統全封閉,當風機軸承有熱量增加時,被加熱的油比重小,自然向上浮起,引起油自然循環。在小油箱存油量和自然散熱的情況下,熱油被冷卻后又加入循環,達到在不耗油又不需要動力的條件下完全取代水冷。淬火油槽板式換熱器中的水換成冷卻油,冷卻油受到熱油的熱交換而被升溫,油比重的變化引起冷卻油的自身循環,在爐頂的油箱外加上散熱片,配合風扇的作用,達到全油冷的效果,節約大量的冷卻水。
(3)滲氮爐上采用氫探頭
德國的Ipsen公司已應用氫探頭和相應的技術測控滲氮爐內的氮勢,以對滲氮的爐氣氛進行調節和控制,實現滲氮爐的現代化。
(4)燃氣輻射管
目前,歐洲的熱處理設備已大部分采用燃氣輻射管,使用天然氣加熱。燃氣加熱技術和裝備在歐洲已十分成熟,天然氣燒嘴已有標準系列,由專業燒嘴廠制造供應,并將燃氣輻射管的內管由不銹鋼換成陶瓷,延長使用壽命并提高功率。天然氣加熱提高能源利用率,降低生產成本。熱處理工藝趨勢
為促進我國熱處理技術的發展,我們應全面了解熱處理技術的現狀和水平,掌握其發展趨勢,大力發展先進的熱處理新技術、新工藝、新材料、新設備,用高新技術改造傳統的熱處理技術,實現“優質、高效、節能、降耗、無污染、低成本、專業化生產”,主要趨勢如下。新的加熱源
在新的加熱源中,以高能率熱源最為引人注目。高能率熱處理在減小工件變形、獲得特殊組織性能和表面狀態方面具有很大的優越性,可以提高工件表面的耐磨性、耐蝕性,延長其使用壽命。高能率熱處理近年來發展很快,是金屬材料表面改性技術最活躍的領域之一,其中激光熱處理和離子注入表面改性技術在國外已進入生產階段。我國一汽、二汽、西安內燃機配件廠等單位,都已建立了汽車發動機缸套的激光表面淬火生產線,但由于高能率熱處理的設備費用昂貴等原因,目前我國尚未大量應用,但其發展前景廣闊,今后將會成為很有前途的熱處理工藝。新的加熱方式
在熱處理時實現少無氧化加熱,是減少金屬氧化損耗、保證工件表面質量的必備條件,而采用真空和可控氣氛則是實現少無氧化加熱的主要途徑。在表面加熱方面,感應加熱具有加熱速度快、工件表面氧化脫碳少、變形小、節能、公害小、生產率高、易實現機械化和自動化等優點,是一種經濟節能的表面加熱手段,主要用于工件的表面加熱淬火。高能率加熱具有加熱速度快、表面質量好、變形小、能耗低、無污
改進原有的淬火介質,采用新型淬火介質
淬火介質是實施淬火工藝過程的重要保證,對熱處理后工件的質量影響很大。正確選擇和合理使用淬火介質,可以減小工件變形,防止開裂,保證達到所要求的組織和性能。
在熱處理生產中,常用的淬火介質有水、油、鹽類等,它們各有優缺點。如用油淬火,雖然對減小工件變形和開裂很有利,但對淬透性較差或尺寸較大的工件淬不硬,且油易老化,對周圍環境的污染大,有發生火災的危險。為此,要對原有淬火介質的性能進行改進,并積極開發應用冷卻速度介于水和油之間、并可根據需要調整冷卻速度,同時又經濟、安全、無污染的新型淬火介質。
無機物水溶液淬火劑和有機聚合物淬火劑是新型淬火介質的發展重點,特別是有機聚合物淬火劑的研究和應用尤為引人注目,其優點是無毒、無煙、無臭、無腐蝕、不燃燒、抗老化、使用安全可靠、且冷卻性能好、冷卻速度可調、適用范圍廣、工件淬硬均勻、可明顯減少淬火變形和開裂傾向。從提高工件質量、改善勞動條件、避免火災和節能的角度考慮,有機聚合物淬火劑有逐步取代淬火油的趨勢,是淬火介質的主要發展方向,尤其是對于水淬開裂、變形大,油淬不硬的工件,采用有機聚合物淬火劑更是成功的選擇。目前,世界上應用最多的是聚烷撐乙二醇(PAG類)淬火劑,它具有逆溶性,冷卻速度在鹽水和冷油之間,適用的淬火鋼種范圍廣,使用壽命長。還有聚丙烯酸鹽(ACR類)淬火劑、聚氧化吡咯烷酮(PVP類)淬火劑和聚乙基惡唑啉(PEO類)淬火劑等,也獲得一定程度的應用。
多年來,我國在淬火介質的研究和應用方面,做了大量的工作,取得了一定的成績,基本上滿足了熱處理生產的需要,但與國外的先進水平相比差距很大,并落后于熱處理其它技術領域的發展,是熱處理行業中的一個薄弱環節,今后應當給予重視和加強。
改進老的淬火方法,采用新的淬火方法
為了使工件實現理想的冷卻,獲得最佳的淬火效果,除根據工件所用的材料、技術要求、服役條件等,來合理選用淬火介質外,還需不斷改進現有的淬火方法,并采用新的淬火方法。如采用高壓氣冷淬火法、強烈淬火法、流態床冷卻淬火法、水空氣混合劑冷卻法、沸騰水淬火法、熱油淬火法、深冷處理法等,均能改善淬火介質的冷卻性能,使工件冷卻均勻,獲得很好的淬硬效果,有效地減少工件的變形和開裂。
新材料與熱處理工藝的緊密結合
低碳馬氏體是低碳低合金鋼經強烈淬火急冷后得到的一種顯微組織結構,具有優良的綜合機械性能以及良好的冷加工性和可焊性。近二十年來,我國開展了低碳馬氏體及其應用研究工作,取得了很大的成績。例如,低碳馬氏體的強度比中碳調質鋼高1/3以上,且綜合性能良好,用來代替某些中碳調質鋼(如高強度螺栓等),可使構件重量成倍減輕;低碳馬氏體還具有很高的耐磨性能,可用來制造某些要求耐磨性好的零件(如拖拉機履帶板等)。總之,低碳馬氏體在石油、煤炭、鐵道、汽車、拖拉機等部門應用廣泛,收到了提高性能、減輕重量、延長使用壽命、簡化工藝、節約能源、節約合金元素、降低成本等技術經濟效果。
貝氏體鋼能夠空冷自硬,并將冶金熱加工工序與產品成型制造工序相連接,具有良好的強韌性配合、生產工序簡單、節約能源、污染少、成本低等優點,因而引起廣泛的重視。至今國際上空冷貝氏體鋼系列有兩類:一類是以英國P.B.Pickering為首于50年代發明的MO-B系貝氏體鋼,但因鉬的價格昂貴而使其發展受到限制;另一類是以我國清華大學方鴻生教授為首于70年代初期發明的MN-B系貝氏體鋼,現己發展有低碳、中低碳、中碳、中高碳系列十多個鋼種,應用到耐磨鋼球、襯板、齒板、沖擊錘、刮板、截齒、離心鑄管、汽車前軸、連桿、液壓支架等,取得了很好的技術效果和顯著的經濟效益,成為貝氏體鋼發展的重要方向。目前我國MN-B系貝氏體鋼己達到年產15萬噸的規模,在“九五”末期將達到70萬噸/年,占到全國特殊鋼產量的5%~10%。
大連鐵道學院戚正風教授等研制成功無萊氏體高速鋼,其合金元素與一般高速鋼相同,碳含量則降低到鋼水凝固時不形成共晶碳化物(萊氏體)、而又能在淬火回火后整體具有足夠的強度、韌性與硬度的水平。這種鋼加工成刀具后,通過滲碳,使表層得到≥70HRC的高硬度和600℃4次回火后仍能保持 67HRC的紅硬性,同時得到55HRC高強韌性的心部,可使刀具使用壽命提高幾倍。
70年代我國與美國、芬蘭等國家同時研制成功A-B球鐵,并獲得了實際應用,由于A-B球鐵既具有較高的強度和硬度,又具有良好的塑性和韌性,因而被廣泛用于汽車、拖拉機、內燃機的齒輪、連桿、軸類等結構件以及礦山磨球、錘頭等耐磨零件。80年代以后,國內外又從A-B球鐵化學成分與熱處理工藝兩個方面深入進行研究。前者通過提高合金成份來得到鑄態A-B球鐵,以期取消成本高、工效低的等溫淬火工藝;后者則努力完善熱處理工藝,提高機械化和自動化水平,以提高生產效率。熱處理的節能和環保
熱處理是機械制造業中耗能最多的工藝之一,在工業發達國家,熱處理生產成本的25%~40%是能源成本。
據統計,我國的熱處理設備中,電爐約占90%,裝機總容量約為600萬KW,熱處理的年用電量近90億KW.H。由于我國的熱處理工藝和設備比較落后,能源利用率低,熱處理能耗水平為500~1000KW.H/T,比工業發達國家多2~3倍,因此節能的潛力很大。熱處理節能的途徑主要有:(1)在熱處理工藝方面,改進老工藝,推廣應用先進的節能新工藝;(2)在熱處理設備方面,改造或淘汰耗能高的落后設備,發展新型高效節能的新設備;(3)在生產組織管理方面,合理組織熱處理的批量生產,力求集中和連續性生產,不斷提高熱處理的專業化生產水平。而搞好熱處理,努力提高熱處理質量,延長工件的使用壽命,則是最大的節能。
開發和推廣應用非調質鋼,是80年代熱處理節能技術的一項重大進展。應用非調質鋼,不僅能顯著節能,而且減少了生產工序,節省了材料消耗,降低了成本,還可避免淬火時帶來的變形和開裂,提高了工件的質量和使用壽命。目前,非調質鋼多用于取代調質碳素結構鋼,今后的發展趨勢是用非調質強韌鋼來取代調質合金結構鋼,進一步擴大非調質鋼的應用范圍。
熱處理生產對環境造成的污染很大,包括排出的廢氣、廢水、廢液、廢渣、粉塵、噪聲、電磁輻射等,且隨著生產的發展,其危害也日益嚴重。研究和采用無污染、無公害的熱處理技術,并對排放的有害物質進行有效控制和綜合治理,是消除熱處理污染的主要措施。
1989年聯合國環境署決定在全世界推行清潔生產技術。所謂清潔生產技術,就是通過對生產過程和產品的綜合防治,減少廢棄物產生,最大限度地保護自然環境和利用自然資源,即選取清潔的原料,采用清潔的工藝,實現清潔的生產過程,制造出清潔的產品。日本東京金屬技術研究所金武典夫博士通過分析引起全球性的溫室效應、空氣污染、酸雨等對環境造成的影響,提出了一種“節能-高效-環保型熱處理”的綜合體系,它包括了預處理、熱處理、后處理、技術保證體系和環境管理體系,而其關鍵是將高新技術應用于熱處理生產中。我國已把環境保護作為一項基本國策,并從1992年開始推進清潔生產技術。根據清潔生產技術的要求,我國現階段熱處理生產的主要控制目標應是少無污染、少無氧化和節能,并應把真空熱處理和可控氣氛熱處理作為熱處理行業“九五”期間重點推廣應用的清潔生產技術。多參數熱處理和復合熱處理工藝
傳統的熱處理,就主要控制的參數而言,多為常壓下的溫度時間兩個參數的熱處理;就工藝方式而言,多為單一的熱處理。這樣熱處理的效果也只能是單一化。為此,要大力發展多參數熱處理和復合熱處理工藝。
1多參數熱處理 1.1真空熱處理
這是一種附加壓力的多參數熱處理。它具有無氧化、無脫碳、工件表面光亮、變形小、無污染、節能、自動化程度高、適用范圍廣等優點,是近年來發展最快的熱處理新技術之一,特別是在進行材料表面改性方面獲得了很大的進展,許多新近開發的先進熱處理技術,如真空高壓氣淬、真空化學熱處理等,也需在真空下方能實施。采用真空熱處理技術可使結構材料、工模具的質量和使用壽命得到大幅度的提高,尤其適合于一些精密零件的熱處理。在工業發達國家,真空熱處理的比例已達到20%左右,而我國目前約有真空熱處理爐1200臺,占熱處理爐總數的1%左右,與國外的差距很大。預計今后隨著熱處理行業的技術進步和對熱處理工件質量要求的越來越高,真空熱處理將會有較大的發展。
1.2化學熱處理
這是一種附加成分的多參數熱處理。普通化學熱處理,如滲碳、碳氮共滲、碳氮硼共滲等,分別屬于附加單成分、雙成分和三成分的多參數熱處理。近年來,又發展了許多利用新技術的新型化學熱處理,如真空化學熱處理,流態床化學熱處理、離子滲金屬、離子注入、激光表面合金化等,均可提高工件的耐磨損及耐腐蝕等使用性能。稀土在化學熱處理中的應用(即與稀土共滲),能顯著提高滲速,縮短處理周期,并可提高滲層的耐磨性和耐腐蝕性,這是我國的一大特色。此外,固溶化學熱處理也是一個值得注意的動向,內蒙農機研究所黃建洪等人開發了含氮馬氏體化處理(N*M處理)工藝,這是第一個以獲得固溶N的含氮馬氏體為目的的滲氮工藝,已成功地應用于剪毛機刀片生產。
1.3.形變熱處理
這是一種附加應力的多參數熱處理。采用壓力加工和熱處理相結合的工藝,把形變強化和相變強化結合起來,使材料達到成型與復合強化的雙重目的。形變熱處理能提高材料的綜合力學性能,并可以簡化工序,利用余熱,節約能源及材料消耗,經濟效益顯著。形變熱處理的應用廣泛,從結構鋼、軸承鋼到高速鋼都適用。目前工業上應用最多的是鍛造余熱淬火和控制軋制。美國采用控制軋制來生產高硬度裝甲鋼板,可提高抗彈性能。我國兵器工業系統開展了火炮、炮彈零件熱模鍛余熱淬火、炮管旋轉精鍛形變熱處理、槍彈鋼芯斜軋余熱淬火等試驗研究,取得了很好的效果。
2復合熱處理
復合熱處理是將兩種或兩種以上的熱處理工藝復合,或將熱處理與其它加工工藝復合,這樣就能得到參與組合的幾種工藝的綜合效果,使工件獲得優良的性能,并節約能源,降低成本,提高生產效率。如滲氮與高頻淬火的復合、淬火與滲硫的復合、滲硼與粉末冶金燒結工藝的復合等。前述的鍛造余熱淬火和控制軋制也屬于復合熱處理,它們分別是鍛造與熱處理的復合、軋制與熱處理的復合。還有一些新的復合表面處理技術,如激光加熱與化學氣相沉積(CVD)、離子注入與物理氣相沉積(PVD)、物理化學氣相沉積(PCVD)等,均具有顯著的表面改性效果,在國內外的應用也日益增多。
需要指出的是,復合熱處理并不是幾種單一熱處理工藝的簡單疊加,而是要根據工件使用性能的要求和每一種熱處理工藝的特點將它們有機地組合在一起,以達到取長補短、相得益彰的目的。例如,由于各種熱處理工藝的處理溫度不同,就需要考慮參加組合的熱處理工藝的先后順序,避免后道工序對前道工序的抵消作用。
熱處理生產的自動化和專業化
電子計算機在熱處理中的應用,包括計算機輔助設計(CAD)、計算機輔助生產(CAM)、計算機輔助選材(CAMS)、熱處理事務辦公自動化(OA)、熱處理數據庫和專家系統等,它為熱處理工藝的優化設計、工藝過程的自動控制、質量檢測與統計分析等,提供了先進的工具和手段。計算機在熱處理中的應用,最初主要用于熱處理工藝程序和工藝參數(溫度、時間、氣氛、壓力、流量等)的控制,現在也用于熱處理設備、生產線和熱處理車間的自動控制和生產管理,還有的用計算機進行熱處理工藝、熱處理設備、熱處理車間設計中的各種計算和優化設計。在熱處理中引入計算機,可實現熱處理生產的自動化,保證熱處理工藝的穩定性和產品質量的再現性,并使熱處理設備向高效、低成本、柔性化和智能化的方向發展。計算機在熱處理中的應用國外已十分普遍,例如,日本一家摩托車廠的熱處理車間,有連續式滲碳爐、周期式滲碳爐、連續軟氮化爐等共37臺設備,從開始送料,到最終產品檢驗,全部由計算機控制,每班只需要三個人操作,一人在計算機室內負責全部生產、技術和質量管理,一人在現場巡回檢查,一人負責產品質量檢驗,生產效率極高。我國在熱處理行業中應用計算機還是近十多年的事情,目前國內研制生產的熱處設備已越來越多地引入了微機控制,極大地提高了設備的自動化水平和生產效率。在熱處理工藝過程的實時控制、計算機輔助設計、計算機模擬和數學模型的開發應用等方面,也取得了一定的成績。
機器人在熱處理中的應用,可以有效地改善工人的勞動條件,提高產品質量和勞動生產率。目前主要是用來進行自動裝卸料。由于熱處理的生產環境差、勞動強度較大,也由于熱處理生產向自動化、集成化、柔性化的方向發展,因此,今后機器人在熱處理生產中的應用將日趨增多。
專業化生產是現代工業的基本特征之一,也是促進熱處理行業技術進步的一種重要手段。目前工業發達國家的熱處理專業化程度已達到80%以上,而且工業越是發達的國家,其專業化水平也越高,而我國只有20%左右。即使這些為數不多的熱處理專業廠,也由于組織管理不善,設備利用率較低,新技術、新工藝采用不多,熱處理標準貫徹執行不夠,能耗較高,產品質量較差。
因此,今后要有目的、有重點地扶持一批有條件的熱處理廠和車間,使其成為熱處理專業廠和協作點。對熱處理專業廠要進一步加強管理,積極采用新技術、新工藝、新設備,嚴格按照標準化、規范化組織生產,形成技術、經濟和服務上的優勢,充分發揮專業化生產的優越性。此外,熱處理工藝材料,如各種淬火介質、滲劑、保護涂料、清洗劑、加熱鹽、保護氣氛和可控氣氛的氣源等,也要固定生產單位,進行專業化生產,不斷提高質量和擴大品種,并盡可能實現規格化、標準化、系列化。
恒進科技,專業生產感應淬火成套設備,QQ:2502249701。如果您的產品需要感應加熱,恒進科技將為您提供完善的解決方案與周到的服務!我們提供的設備屬于全自動化成套設備,包括數控淬火機床、IGBT中高頻電源、冷水機組、變壓器等。