第一篇:《乘法結合律》教案
課題名稱:
乘法結合律
教學內容:
乘法結合律
教學目標:
初步學會用乘法結合律進行簡便計算,并能用字母表示這一規律。
重點難點
1.重點:引導學生理解乘法結合律及簡便運算。
2.難點:乘法結合律的推導過程。
教學方法:
先學后教,當堂訓練
課時安排:
1課時
教學過程
一、板題示標
師:同學們,今天我們來學習乘法結合律(板書課題),那么這節課我們的學習目標是什么呢?請看:(投影出示學習目標);要達到這個目標,靠大家自學,你們有信心嗎?老師相信:你們是最棒的!請看自學指導。
二、自學指導(投影出示):
打開書25頁認真看情境圖和例6的問題,認真思考,重點看藍色邊框部分。看誰思考自學最認真。
1、認真觀察例6的兩個算式,你發現了什么?
2、比較兩個算式,你發現哪個算式計算比較簡便?
3、完成劃紅線部分的內容,你發現了什么?
4、什么叫做乘法的結合律?能用你喜歡的符號表示這一規律嗎?
(6分鐘后比一比誰檢測題做的最好。)
師:自學的時候,比一比,看誰看書最認真,坐姿最端正。下面,自學競賽開始
三、先學
(1)、看一看
學生認真看書,教師巡視,監督人人都在認真看書。
(2)、做一做
1、完成25頁的做一做,派兩名學困生板演,其余學生做在練習本。
2、教師進行巡視了解情況,發現錯例進行二次備課。
四、更正
讓學生觀察黑板上的題發現錯誤的可用不同顏色的粉筆糾正。
五、后教
先觀察算式,認為算式列對的請舉手,為什么?認為第二步做對的請舉手,為什么?(生說師板書:運用乘法的結合律計算比較簡便:先乘前兩個數或先乘后兩個數積不變。)
六、課堂小結
今天,你的收獲是什么?生說師板書。思考比較乘法和加法結合律你發現了什么?
七、練一練
1、把練習七的第2題后三道題做在書上,獨立完成,集體訂正。
八、當堂訓練(20分鐘)
1.學生做題
2.校對答案
九、布置家庭作業
學習與鞏固
板書設計
先把前兩個數相乘或者先把后兩個數相乘積不變,這叫乘法結合律。
(a×b)×c= a×(b×c)(a、b、c為任意數)乘法結合律是乘法運算的一種運算定律。
定義:三個數相乘,先把前兩個數相乘,或先把
后兩個數相乘,積不變。
第二篇:《乘法結合律》教案
教案設計
設計說明
1.結合操作活動,理解乘法結合律。
學生在觀察算式后,歸納整理出乘法結合律,但對運算律的理解仍停留在表面,不夠深刻,本節課的教學設計通過引導學生搭積木用不同方法計算積木的數量來加深學生對運算律的理解。
2.及時梳理思路,掌握探究的基本步驟。
探究數學的規律是有過程的,這個過程的認識如果依靠教師傳授,學生的理解是不夠深刻的,需要學生從活動中自己體驗、感受,然后對已有的體驗與感受及時地進行梳理,總結方法,形成模式。根據這一理念,在本節課的教學中,當學生已經概括出乘法結合律后,我并沒有立即組織學生進行相關內容的練習,而是詢問學生:“請同學們想一想,我們是怎樣發現乘法結合律的呢?”通過學生對探究過程的反思、討論,結合教師的引導得出探究模式,這樣的教學設計能夠有效地提高學生探索問題的能力。
課前準備
教具準備 PPT課件 正方體積木
教學過程 ⊙創設情境,導入新課
1.課件出示淘氣和笑笑寫的式子:
(2×4)×
3=8×3 2×(4×3)
=2×12 =24
=24(2×4)×3=2×(4×3)
(7×4)×2
5=28×25 7×(4×25)
=7×100 =700
=700(7×4)×25=7×(4×25)
2.師:觀察淘氣、笑笑寫的式子,你能寫一組這樣的式子嗎?(學生照樣子寫式子,并展示)設計意圖:把已經學過的算式進行變式,改編成今天要學習的內容,激發學生的學習興趣,在自然導入新課的同時,為新知的學習埋下伏筆,增強學生對所學內容的親切感。/ 4 ⊙探究發現,獲取新知
1.師:請同學們根據以往的探究經驗來研究這些式子,你發現了什么?(學生獨立思考后匯報)設計意圖:由于學生已經積累了運算律的探究方法和經驗,并且已經掌握了加法結合律的特征,因此,在這個活動環節過后,學生會很容易類推出乘法結合律。
2.總結乘法結合律。
(1)引導學生總結乘法結合律。
(2)教師根據學生的匯報,進行適時引導和語言修正,總結出乘法結合律:
三個數相乘,可以先把前兩個數相乘,再把所得的積與第三個數相乘,也可以先把后兩個數相乘,再把所得的積與第一個數相乘,結果不變,這就是乘法結合律。
(3)用字母表示乘法結合律。(a×b)×c=a×(b×c)3.解釋乘法結合律。
師:請你結合生活中的事例解釋乘法結合律。
(這里可以啟發學生用搭正方體積木的活動來解釋乘法結合律,并給學生準備一些正方體積木以方便學生操作)學生可以邊操作邊匯報。4.總結探究方法。
師:請同學們想一想,我們是怎樣發現乘法結合律的?(引導學生了解探究過程:發現問題→舉例驗證→總結規律)設計意圖:讓學生觀察發現算式的特點,并舉例驗證發現的規律,總結出規律,讓學生經歷探究的過程,并總結探究的方法,為以后探究其他運算定律作鋪墊。
⊙應用體驗,感悟提升 利用乘法運算律進行簡算。
師:想一想,下面的題怎樣計算簡便? 125×9×8(1)學生觀察算式的運算符號和數的特點,思考如何進行簡算,并嘗試計算。(2)組織學生在小組內議一議,說一說。(3)匯報自己的算法。預設: / 4 生1: 125×9×8
=(125×8)×9 =1000×9 =9000
生2: 125×9×8
=9×(125×8)=9×1000 =9000 師小結:因為125×8能夠湊成整千數(1000),所以想辦法先利用乘法交換律把這兩個數移到一起,然后利用乘法結合律先計算這兩個數的積,再和9相乘,使計算簡便。
設計意圖:讓學生通過活動,體驗運用乘法運算定律改變運算順序的好處,獲得成功的體驗。借助前面的探究模式,自主探索出簡算方法,提高了學生的探究能力。
⊙課堂練習,提升反饋 1.填空。
(1)78×5×2=78×(5×____)(2)(56×25)×4=56×(____×4)2.下面各題,你能用簡便算法計算嗎? 38×25×4 125×3×8(13×5)×6 3.試用乘法交換律和乘法結合律簡算。64×125 125×25×32 ⊙全課總結
這節課我們學習了什么?通過這節課的學習,你有什么收獲? ⊙布置作業 教材57頁1、2題。
板書設計
乘法結合律
(2×4)×3=2×(4×3)
↓
(a×b)×c=a×(b×c)/ 4 125×9×8 =(125×8)×9 =1000×9 =9000 / 4
第三篇:乘法結合律教案
《乘法交換律和結合律》教案
紅寺堡開發區大河七小 李文霞
一、導入
師:你能用這些數字(25、4、9)寫乘法算式嗎?可以交換位置,也可以加小括號。猜猜可以寫幾個?同桌商量怎么寫才不會漏下,然后寫在紙片上。(生動手編寫,交流展示,請最快的一組說說是怎么寫的。)師:請大家認真觀察,他們是怎么貼的?
生:左邊都是二個數的算式,右邊都是三個數的算式。
師:你寫的算式中有沒有是他們沒有的?他們沒有的話,請你拿上來,也貼在黑板上。
師:觀察三個數的算式,你發現了什么? 生:有的有小括號,有的沒有小括號。
師:有小括號的這些算式,又有什么特點? 生:有的放在前面,有的放在后面。師:想想放在前面的有沒有起作用? 生:沒有起作用,可以省略不寫。
二、展開
1、研究乘法交換律:
師:觀察左邊的算式,你發現了什么?
生:有兩個算式差不多,只不過兩個數調換了一下位置。師:你能舉例嗎? 生:4×9和9×4 生:2×54和4×25 生:25×9和9×25 師:你能說說他們都有什么特點? 生:兩個數交換了位置。
師:交換后他們的什么是相同的? 生:得數
師:所以兩個算式之間我們可以連上—— 生:等號
師:你還能舉出其他例子嗎? 生:??
師:能舉多少個?
生:很多,舉也舉不完
師:既然舉不完,你能用一個簡單的算式表示一下嗎? 生:a×b=b×a 師:你能給他起個名字嗎? 生:乘法交換律
2、研究乘法結合律
師:下面我們再來看右邊的這些算式,猜猜是否也藏著一個規律呢?四人小組研究一下。(生討論)
師:哪一小組先來匯報一下你們的研究結果? 生:數字一樣,順序變了
師:數字一樣,積呢?這么多算式的積都一樣嗎?我們用事實說話——算一算(生分組口算)
師:積都一樣,說明這些算式都可以連上“=”
生:我覺得這兩個算式有聯系,4×(25×9),4×(9×25)師:4×(25×9)和哪個算式另外的都相同,只是括號的區別? 生:4×25×9,這個算式沒有加括號,其余都一樣 [思考:這兒教師只是一味地將學生往自己的思路上拉,期待學生能找出像4×(25×9)和4×25×9這樣的等式。其實前一位學生雖然說的并不是教師心目的答案,但他已經在運用剛剛學過的乘法交換律解決問題了,這兒教師不應該不作任何評價,反而應該表揚他活學活用,會動腦筋,然后再慢慢引導他發現其他的規律。] 師:誰能像這樣給其他算式也排一下隊?(生上臺整理,排列)
師:已經找到朋友的算式,左右兩邊有什么特點?他們最大的相同點是什么? 生:三個因數位置都一樣。生:積不變
師:最大的不同點在哪? 生:加了括號
師:加了括號表示什么? 生:改變運算順序
師:一起說說這些算式的運算順序是怎樣的/ 生:從左往右 生:從右往左
師:也就是可以先算什么,也可以先算什么?
生:可以先算前兩個因數的積,也可以先算后兩個因數的積
師:你能運用剛才的規律,給下面兩個沒有朋友的算式也找找規律,找找他們的朋友? 生:??
師:你也能寫二年這樣的算式嗎?看看積到底是否相同?(生舉例書寫)
師:說明剛才的規律對嗎?寫得完嗎?能用簡單的算式表示一下嗎? 生:a×b×c=a×(b×c)師:也給它起個名字 生:乘法結合律
[思考:“結合”這個詞,在這之前師生都沒有提到,但在起名時,學生脫口而出是乘法結合律,這兒值得探討。也許有些學生已經預習過,但教師在學生自己提出結論后,也應作適當的解釋,因為有些學生對“結合”這個究竟是否理解,我們并不知道。]
3、感受用途
師:這么多算式,你最欣賞哪個? 生:25×4×9 師:為什么?
生:因為25×4比較簡便 生:我喜歡9×(25×4)師:為什么?
生:和剛才的同學的理由一樣 師:那么9×25×4呢? 生:不簡便
生:4×25×9也很簡便 ??
師:你們選擇的這些算式都很簡便,它們簡便在哪兒呢? 生:其中兩個數能湊成整百數
師:是呀,二個能湊成整百數的先算,比較簡便。
4、小結
師:這節課你學到了什么? 生:??
三、練習
1、填空,說說運用了什么? 37×148=148×()
13×25×40=13(____×____)
125×25×8×4=(____×____)×(____×____)20×(a×5)=____×____×____ △×□×〇=____×(____×____)
2、怎樣簡便怎樣算
250×34×8 8×45×2×125 25×125×4×9×8
3、實驗小學同學做操,平均每班排2列,每列14人。低年級共15個班,共有多少人?誰對?
丁丁: 冬冬: 2×14×15 2×15×14 如果是你,你會是丁丁還是冬冬?為什么?
4、塔山小學給聽課的老師準備中餐,你估計下大概有多少人?
請你當回總務處主任,你打算每天給每位老師安排幾元,再算算一共要多少元?你這樣打算合理嗎?
第四篇:《乘法交換律和結合律》教案
乘法交換律和結合律
教學內容: 教科書24頁、25頁,例5、6.教學目標:
1、知識與技能:引導學生探究和理解乘法交換律、結合律,能運用運算定律進行一些簡便運算。
2、過程與方法:培養學生根據具體情況,選擇算法的意識與能力,發展思維的靈活性。
3、情感態度與價值觀:使學生感受數學與現實生活的聯系,能用所學知識解決簡單的實際問題。
教學重點:理解乘法交換律、結合律,能運用運算定律進行一些簡便運算。教學難點:
1、能靈活運用乘法交換律和乘法結合律解決簡單的實際問題,提高計算能力。
2、能用自己的語言描述乘法交換律和乘法結合律,并會用字母表示。教學設計
一、創設情境,生成問題
1、舊知復習:
(1)我們剛剛學習了兩條加法運算定律,同學們還記得么?誰能說一說?什么是加法交換律,用字母應該怎樣表示?加法結合律呢?(2)學習加法運算定律時采用的教學思路是怎樣的?
引導學生思考、回答,教師板書:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
2、引入新課:回答的真不錯!今天我們來學習新的運算定律
3、教師談話引出情景:同學們,每年的3月12日是什么日子?植物對我們的生活有什么作用?為保護環境,光明小學開展了植樹活動(出示主題圖),這就是植樹活動的現場,我們來看看。從圖上你發現了哪些數學信息?根據這些數學信息你能提出哪些數學問題?讓學生充分發言,根據學生的回答老師板書3個問題:
4、(1)負責挖坑、種樹的一共有多少人?(2)一共要澆多少桶水?(3)一共有多少名同學參加了這次植樹活動?
教師說明:這節課我們先來解決前兩個問題。引導學生看第一個問題:負責挖坑、種樹的一共有多少人?應該怎樣列式?
指名列式,并說明列式依據。教師板書:4×25和25×4
二、探索交流,解決問題
1、教學乘法交換律:
(1)探究、發現問題:
教師提問:4×25和25×4得數是否相等?都表示什么?兩個算式之間可以用什么符號連接?(引導學生回答,明確:4×25=25×4)
(2)舉例驗證:
教師問:你還能舉出類似的例子嗎?
(指名舉例,教師板書:如,35×2=2×35 60×30=30×60)
(3)概括規律: a、總結定律:
教師提問:從以上幾組算式中你能發現什么,能用自己的話說出你發現的規律嗎?
提醒學生由加法交換律的總結思路想,總結好后說給同桌聽。匯報得出結論,板書定律:交換兩個因數的位置,積不變。b、定律命名:
教師提問:這個規律叫什么名字呢?
學生可能馬上說出:乘法交換律,再讓學生說是怎么想到的。c、用字母表示定律:
教師談話:請用你喜歡的方式表示乘法交換律,看誰的方法既簡單又清楚。學生很容易想到:用字母表示:a×b=b×a,對學生的表現給予肯定,板書公式:a×b=b×a 讓學生判斷:這里的a 與b可以是哪些數?(任意數)(4)乘法交換律的應用: 教師提問:以前我們什么時候用過乘法交換律? 引導學生回憶:做乘法驗算時。
完成“做一做”前兩道,指名板演,訂正。
教師談話:用這個定律時該注意什么?(數不能變化,運算符號不能錯)
2、教學乘法結合律:
(1)發現問題:教師談話引出:我們再來看第二個問題:一共要澆多少桶水?
讓學生觀察主題圖,提問:要解決這個問題必須先求什么?要幾步?怎樣列算式? 讓學生獨立列式解答。
小組討論:小組同學之間互相比較選擇的算法是否相同,組長作好不同算法記錄。匯報交流,根據學生回答老師板書兩種算法:
(25×5)×2 25×(5×2)
比較兩種算法的異同,明確(25×5)×2=25×(5×2)
(2)舉例驗證:
讓學生自己再舉幾個例子填到課本25頁,匯報板書學生舉的例子。教師出示:觀察下面每組的兩個算式,它們有什么關系?
(15×4)×10 ○ 15×(4×10)(125×8)×5 ○ 125×(8×5)學生計算后,指名回答,明確是相等關系。
(3)小組合作學習,概括規律:
讓學生觀察以上所有算式,回憶加法結合律的總結思路,小組同學之間討論:你發現了什么規律?
討論這個規律的命名和字母表示方法。
最后匯報交流,老師板書:乘法結合律:(a×b)×c=a×(b×c)讓學生說說運用乘法結合律時注意的問題。
3、加法交換律和乘法交換律、加法結合律和乘法結合律的比較
教師提問:比較所學的四個定律,你發現了什么?學生小組討論后匯報。教師出示:交換律是兩個數相加、相乘的規律,即換加(因)數的位置,和(積)不變;結合律是三個數相加、相乘的規律,既可以從左往右依次計算,也可以先把后兩個數先相加(乘),和(積)不變。
三、鞏固應用:完成做一做后兩道
四、回顧整理:
這一課通過同學們的觀察與思考,自己發現并總結出了乘法的交換律和結合律,今后同學們做題時,要仔細觀察題目特點,更準確更
簡便地把題目計算出來。
五、作業
練習七第2、3題。板書設計
乘法交換律和結合律 4×25=25×4
兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法交換律。
用字母表示:a×b=b×a(25×5)×2=25×(5×2)
三個數相乘,先乘前兩個數,或者先乘后兩個數,積不變。
用字母表示:(a×b)×c=a×(b×c)
第五篇:乘法交換律、結合律展示教案
《乘法交換律、乘法結合律》教學設計
嶗山區鳳凰臺小學 李佳霖
【教學內容】
國標蘇教版小學數學四年級上冊第61-62頁例題,及62-63頁“想想做做”的第1、2、5、7、8題。【教學目標】
1.讓學生經歷乘法交換律和乘法結合律的探索過程,理解并掌握規律,能用字母表示規律。
2.培養學生觀察、比較、分析、綜合和歸納、概括等思維能力。3.增強合作意識,激發學生學習數學的興趣。【教學重點】
引導學生概括出乘法結合律,并運用乘法結合律進行簡便計算。【教學難點】
乘法結合律的推導過程是學習的難點。【教學準備】
課件、練習紙 【教學過程】
一、復習舊知,導入新課
談話:同學們在學習新課之前,我們先來做一下熱身運動吧。(出示課件)在下列○內填上合適的運算符號。
4○10=10○4(2○3)○5=2○(3○5)。
學生獨立完成,投影展示。
預設1:(填加號)可以嗎?口算一下。你這樣填的根據是什么?預設2:(填加號和乘號)同學們,這兩道題的○里既可以都填寫加號,也可以都填寫乘號。都可以使等式成立。
【設計意圖:加法的交換律和結合律是學生學習乘法交換律和結合律的基礎,通過復習在等式中填運算符號,可以喚起學生對加法運算律的回憶。】
二、舉例驗證,探索規律
(一)學習乘法交換律 1.情景感知乘法交換律
談話:我們學校開展的快樂大課間同學們都在積極練習,看!這是老師在校園里看到的景象。(出示圖片:踢毽子)從這幅圖中你看到了什么數學信息和數學問題?可以
怎樣列式呢?
根據學生回答教師適時板書: 3×5=15(人)5×3=15(人)
追問:你為什這樣列式?
?人
引導:觀察一下,他們的結果相同,所以我們可以用什么把這兩個算式連接起來?3×5=5×3(板書)
談話:課間同學們不僅喜歡踢毽子,還非常喜歡 跳大搖繩。(出示圖片:跳大搖繩)你能根據要 求解答嗎?
根據學生回答教師適時板書:2×8=16(人)8×2=16(人)
?人
追問:為什么要這樣列式呢?根據乘法的意義,我們可以列2個算式,它們的結果相同可以寫成一個等式:2×8=8×2(板書)
【設計意圖:結合學生熟悉的課間活動,讓學生理解求一共有多少人,就是求幾個幾相加是多少,根據乘法的意義可以列出兩種不同的乘法算式。讓學生在真實的情景中初步感知乘法的交換律,有利于喚起學生已有的知識經驗,促進對乘法交換律的理解。】
2.舉例驗證,總結規律
談話:現在請同學們再寫2個這樣的等式,寫完后小組里說說你有什么發現?
學生分組研究,教師巡視。集體交流。教師相應板書3個例子。
追問:誰能說說你的發現?
學生可能會說:兩個數相乘,交換乘數的位置,積不變。(課件展示)同位兩人再說說。
談話:看來像這樣的式子中也有一定的規律。可以叫做乘法??(引出乘法交換律)課件
引導:加法交換律有字母表達式,你能用字母表達乘法交換律嗎? a×b=b×a(板書)
追問:這里的a、b可以表示什么樣的數?(任何數)
【設計意圖:放手讓學生去探索規律,并通過小組合作總結發現,這樣不僅充分激發了學生學習的積極性,而且使學生體會了發現新規律的方法。還使學生進一步體驗用字母表示乘法交換律更加簡潔明了,有利于培養學生的符號意識。】
(二)教學乘法結合律 1.初步感知,引導比較
談話:我們學校還準備組織跳繩比賽,自己讀題,看看你能解決嗎?
鳳凰臺小學6個年級的同學參加跳繩比賽,每個年級有2個班,每班有30人參加。
一共有多少人參加比賽?
追問:你是怎樣想的?
學生根據問題回答。預設1:先算出一個年級參加的人數。(30×2)×6=60×6=360(人)口答
預設2:先算出全校有多少個班。30×(2×6)=30×12=360(人)口答 投影展示教師適時貼板貼。
追問:你會把上面的兩道算式寫成一個等式嗎?
教師根據學生回答適時板書:(30×2)×6=30×(2×6)
引導:觀察等號左右兩邊的算式,有什么相同點和不同點?
學生回答。預設1:相同點;它們都是三個數乘相,結果相同。預設2:不同點;前一個式子是先求出一個年級參加的人數,后一個式子是先求出全校有幾個班。他們先算誰不同。(引導學生發現本質:運算順序不同)
談話:剛剛回答問題的同學非常善于思考,大家一定要向他們學習。2.舉例驗證,總結規律
談話:現在就請同學們再寫2組這樣的等式,寫完后小組里說說你有什么發現?
學生分組研究,教師巡視。集體交流。教師相應板書3個例子。(驗證其中一組練習題)追問:你能用自己的語言描述一下你的發現嗎?
學生可能回答:三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把后兩個數相乘,再同第一個數相乘。積不變。(課件展示)同桌兩人再說說。
談話:這種式子中的規律也可以叫乘法??(引出乘法結合律)課件 引導:你能用字母表達乘法結合律嗎?(a×b)×c=a×(b×c)(板書)追問:這里的a、b、c可以表示什么樣的數?(任何數)
小結:剛才我們學了乘法交換律和乘法結合律,這就是我們今天要學習的乘法運算律。(出示課題)
【設計意圖:乘法結合律與交換律相比,用語言完整地表述有一定難度。教師引導學生交流各人總結規律時的想法,不僅幫助學生規范了數學語言,而且為學生展示自身才能創造了足夠的空間。】
(三)小練習
想想做做第1題,先填空,再想想應用了 什么運算律。
(出示圖片)
三、嘗試運用,理解規律
談話:現在男女分兩組進行比賽。你認為男生會贏還是女生會贏?請你以最快的速度做完后,馬上起立。男生做37×2×5和15×13×2。女生做37×(2×5)和13×(15×2)。
學生做題,教師巡視,及時比較男女做題速度。反饋人數及正確的得數。男女練習題同時展示。
引導:這次比賽我認為女生獲勝。(男生可能會不認輸)你看男生和女生的題都是乘法,三個乘數都相同,老師怎么不公平了?從而引出運用乘法運算律進行簡便計算。(先乘2個相乘能夠湊成整百數或者整十數的數,再乘剩下的那個數)
談話:剛才老師出的題目不公平,現在我們來一場公平的比賽好嗎?出示23×15×2和5×37×2
學生獨立計算,課件演示。學生回答做題時各運用了什么運算律使題目做的比較快。【設計意圖:新授了乘法結合律與交換律之后,利用比賽的方法教學簡便方法計算,不僅讓學生自己體會乘法結合律與交換律對計算的簡便之處,有利于以后計算時能快速運用,還提高了學生學習的興趣。】
四、鞏固深化,應用拓展
1、想想做做第5題。學生獨立完成。(出示圖片)
追問:還有不同做法嗎?你是怎樣想的?
2、想想做做第7題。學生獨立完成。(出示圖片)
觀察、比較小組說說你發現了什么。滲透積的變化規律。
3、想想做做第8題第1組。獨立完成。(出示圖片)
讓學生探究應用乘法結合律的簡便算法,先計算再比較,說說兩道式子的關系,交流 從中能想到些什么。
【設計意圖:練習的層次鮮明,目標明確;促進學生構建新的知識網絡。】
五、全課小結,布置作業
今天這節課你有什么收獲?
布置作業:P62第4題。
六、板書設計
乘法運算律
交換律 a×b=b×a 結合律(a×b)×c=a×(b×c)