第一篇:小學數學六年級上冊知識點總結范文
六年級上冊數學知識要點
一、目標與要求
1.使學生能在方格紙上用數對確定位置。
2.使學生理解分數乘法的意義,掌握分數乘法的計算法則,并能熟練地進行計算。3.使學生理解倒數的意義,掌握求倒數的方法。
4.理解并掌握分數除法的計算方法,會進行分數除法計算。
5.理解比的意義,知道比與分數、除法的關系,并能類推出比的基本性質。能夠正確地化簡比和求比值。
6.使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握 圓周率的近似值。
7.使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。
二、重、難點
1.能用數對表示物體的位置,正確區分列和行的順序; 2.使學生理解分數乘整數的意義,掌握分數乘整數的計算方法; 3.掌握求倒數的方法;
4.圓的周長和圓周率的意義,圓周長公式的推導過程; 5.百分數的意義,求一個數是另一個數的百分之幾的應用題;
6.理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓; 7.理解比的意義。
三、知識點概念總結
1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。2.分數乘法的計算法則
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數乘法意義
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。4.分數乘整數:數形結合、轉化化歸 5.倒數:乘積是1的兩個數叫做互為倒數。6.分數的倒數 找一個分數的倒數,例如3/4 把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。7.整數的倒數
找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。8.小數的倒數
普通算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 9.用1計算法:也可以用1去除以這個數,例如0.25,1/0.25等于4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。10.分數除法:分數除法是分數乘法的逆運算。11.分數除法計算法則:
甲數除以乙數(0除外),等于甲數乘乙數的倒數。
12.分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。
13.分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例:
比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括: 比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。比的性質用于化簡比。
比表示兩個數相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。
16.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。
17.比和比例的區別
(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b 這是比 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4 這是比例。
(2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質: 比的前項和后項都乘或除以一個不為零的數。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積相等。比例的性質用于解比例。聯系: 比例是由兩個相等的比組成。
18.比和比例的意義
比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義 而另一種形式,分數有括號的含義!19.比和比例的聯系:
比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發展,如果把比例式中右邊的比看成一個數,比和比例此時又可以統一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示
22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)] 29.百分數與分數的區別
(1)意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數還可以表示兩數之間的倍數關系.(2)應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
(3)書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。
而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數并不都具有百分數的意義.(4)百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。30.百分數應用
百分數一般有三種情況: ①100%以上,如:增長率、增產率等。②100%以下,如:發芽率、成長率等。③剛好100%,如:正確率,合格率等。31.百分數的意義
百分數只可以表示分率,而不能表示具體量,所以不能帶單位。百分數概念的形成應以學生實際生活中的事例或工農業生產中的事例引入。32.日常應用
每天在電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~
22六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。知識點擴展 1.圓的定義
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,半圓既不是優弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內心和外心:和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,0≤PO 200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數,我們把它叫做分數。而后,人們在分數的基礎上又以100做基數,發明了百分數。 圓知識點總結 一、與圓有關的概念 1、圓是由一條曲線圍成的平面圖形。 (以前所學的圖形如長方形、梯形等都是由幾條線段圍成的平面圖形) 2、畫圓時,針尖固定的一點是圓心,通常用字母O表示; 連接圓心和圓上任意一點的線段是半徑,通常用字母r表示; 通過圓心并且兩端都在圓上的線段是直徑,通常用字母d表示。 在同一個圓里,有無數條半徑和直徑。 在同一個圓里,所有半徑的長度都相等,所有直徑的長度都相等。在同一個圓內的所有線段中,圓的直徑是最長的。 3、用圓規畫圓的過程:先兩腳叉開,再固定針尖,最后旋轉成圓。 畫圓時要注意:針尖必須固定在一點,不可移動;兩腳間的距離必須保持不變;要旋轉一周。 4、在同一個圓里,半徑是直徑的一半,直徑是半徑的2倍。(d=2r, r=d÷2) 5、圓是軸對稱圖形,有無數條對稱軸,對稱軸就是直徑所在的直線。 6、圓心決定圓的位置,半徑決定圓的大小。要比較兩圓的大小,就是比較兩個圓的直徑或半徑。 7、任何一個圓的周長除以它直徑的商都是一個固定的數,我們把它叫做圓周率。用字母π表示。 π是一個無限不循環小數。π=3.141592653?? 我們在計算時,一般保留兩位小數,取它的近似值3.14。π>3.14 8、周長相等的平面圖形中,圓的面積最大; 面積相等的平面圖形中,圓的周長 最短。 9、幾個直徑和為n的圓的周長=直徑為n的圓的周長(如圖) 幾個直徑和為n的圓的面積<直徑為n的圓的周長 10、大小兩個圓比較,半徑的倍數=直徑的倍數=周長的倍數,面積的倍數=半徑倍數的平方 (即r擴大n倍,直徑擴大n倍,周長擴大n倍,面積擴大n2倍) 11、常用的3.14的倍數: 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34 12、常用的平方數: 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 252=625 二、圓的周長公式 1、已知圓的半徑(r),求圓的周長(c):C=2πr 2、已知圓的直徑(d),求圓的周長(c)C=πd 3、已知圓的周長,求圓的半徑:r=C÷π÷2 4、已知圓的周長,求圓的直徑:d=C÷π 5、求半圓的弧長,半圓的弧長等于圓周長的一半:半圓的弧長=πr或者半圓的弧 長=πd÷2 6、求半圓的周長,半圓的周長等于圓周長的一半加一條直徑: C半圓= πr+2r=5.14r C半圓= πd÷2+d=2.57d 7、車輪滾動一周前進的路程就是車輪的周長。 每分前進米數(速度)=車輪的周長×每分的轉數 8、求陰影部分的周長:總體思路,記住一點,周長的概念,所有圍成這個圖形的線段或曲線的長度之和。所以求陰影部分的周長時,首先把陰影部分這個圖形的輪廓畫出來,找出這個圖形都由哪些線段、哪些曲線組合起來的。再分別求出這些線段、曲線的長度,最后相加。圓面積公式1、2、已知圓的半徑,求圓的面積S=πr2 3、已知圓的直徑,求圓的面積S=(d÷2)2 4、已知圓的周長,求圓的面積S=(C÷π÷2)2 5、半圓的面積,即整圓面積的一半:半圓面積=πr2÷2=(d÷2)2÷2=(C÷π÷2)2÷2總之,即得除以2 6、求圓環的面積一般是用外圓的面積減去內圓的面積,還可以利用乘法分配律進行簡便計算。 S圓環=S外圓—S內圓=πR2-πr2=π(R2-r2) 7、正方形里最大的圓。兩者聯系:邊長=直徑;圓的面積=78.5%正方形的面積 畫法:(1)畫出正方形的兩條對角線;(2)以對角線交點為圓心,以邊長為直徑畫圓。 8、長方形里最大的圓。兩者聯系:寬=直徑 畫法:(1)畫出長方形的兩條對角線;(2)以對角線交點為圓心,以寬為直徑畫圓。 例:在長10分米,寬8分米的長方形中畫一個最大的圓,圓的周長和面積各是多少? 9、在圓內畫一個最大的正方形 這個最大的正方形的面積=直徑×半徑 畫法: 10、在半圓內畫一個最大的三角形,三角形的底就是圓的直徑,三角形的高就是圓的關徑。三角形的面積=直徑直徑×半徑÷2 11、周長相等的平面圖形中,圓的面積最大; 面積相等的平面圖形中,圓的周長最短。 11、大小兩個圓比較,半徑的倍數=直徑的倍數=周長的倍數,面積的倍數=半徑倍數的平方(即r擴大n倍,直徑擴大n倍,周長擴大n倍,面積擴大n2倍) 二、分數混合運算 (一)分數混合運算 1、分數混合運算順序與整數混合運算順序相同,沒有括號的先算(乘除),再算(加減);有括號的先算(括號里面的),再算(括號外面的)。 2、整數的運算律在分數運算中同樣適用。加法運算定律: 加法交換律:a+b=b+a 加法結合律:a+b+c=a+(b+c)乘法定律: 乘法交換律:a×b=b×a 乘法結合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c 減法定律:減法的性質a-b-c=a-(b+c)或a-(b+c)=a-b-c 除法的性持:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c 3、用方程解決有關分數混合運算的實際問題,關鍵是找出(單位1),并把它設為未知數,再找出等量關系計算。 4、分數基本性質:分數的分子和分母同時乘以或除以相同的數(0除外)分數的大小不變。 5、分數加減法 同分母分數相加減,分母不變,分子相加減,異分母分數相加減,要先通分為同分母分數再相加減。 (二)分數混合運算的應用 1、打折 計算方法:現價÷原價=折扣 2、一件商品打幾折,求現價。計算方法:原價×折數 3、一件商品打幾折,求原價。計算方法:現價÷折數 4、分數混合運算的應用題解答方法 基本知識規律:解答方法: 1、找單位“1” 2.確定乘或除:已知單位1,用乘法;未知單位1,用除法 3.對應量和對應分率:單位1×對應分率=對應量;對應量÷對應分率=單位1.若用方程,一般設單位1未未知數 找單位1: 三、百分數及百分數的應用 1、表示一個數是另一個數的百分之幾的數叫作(百分數),也叫作(百分率)或(百分比)。 2、百分率一般是指(部分)占(整體)的百分之幾。 3、小數化百分數時,把小數點向(右)移動(兩)位,后面添上百分號;分數化成百分數,可以先化成小數,再化成百分數。 4、百分數化成小數時,把(百分號)先去掉,再把小數點向(左)移動(兩)位;百分數化成分數,先寫成分母是(100)的分數形式,再化成(最簡)分數。 5、求一個數是另一個數的幾分之幾(或百分之幾)? “是”字前面的數÷“是”字后面的數 6、求一個數比另一個數多(或少)幾分之幾(或百分之幾)? (大數-小數)÷“比”字后面的數 7、8、打折 計算方法:現價÷原價=折扣 9、一件商品打幾折,求現價。計算方法:原價×折數 10、一件商品打幾折,求原價。計算方法:現價÷折數 11、應納稅額。計算方法: 營業額×稅率 12、利息=本金×利率×時間,本金=利息÷利率÷時間,利率=利息÷本金÷時間,時間=利息÷本金÷利率 13、稅后利息 計算方法:利息-利息×稅率 14、到期后可以取出的錢數 計算方法:本金+稅后利息 15、生活中的百分率: 出勤率、缺勤率、發芽率、優秀率、及格率、合格率、命中率、近視率、出粉率、出米率、成活率、出油率、入學率、升學率、森林覆蓋率、綠化覆蓋率、收視率、體育達標率、疫苗接種率、含糖率、含鹽率、正確率、錯誤率 達標率 = 達標學生人數 ÷ 學生總人數 發芽率 = 發芽種子數 ÷ 種子總數 出勤率 = 出勤人數 ÷ 學生總人數 合格率 = 合格的產品數 ÷ 產品總數 出粉率 = 粉的重量 ÷ 小麥的重量 出油率 = 油的重量 ÷ 花生的重量 出米率 = 米的重量 ÷ 稻谷的重量 成活率 = 成活的數量 ÷ 種植總數 命中率 = 命中的次數 ÷ 投籃總數 含鹽率 = 鹽的重量 ÷ 鹽水的重量 有關分數百分數應用題解題技巧與方法指導 一、解分數,百分數應用題的基本步驟: 1、找準單位1——并在題目的文字下面標注 二、找單位1的方法 1、部分數和總數 在同一整體中,部分數和總數作比較關系時,部分數通常作為比較量,而總數則作為標準量,那么總數就是單位“1”。例如我國人口約占世界人口的1/5,世界人口是總數,我國人口是部分數,所以,世界人口就是單位“1”。再如,食堂買來100千克白菜,吃了2/5,吃了多少千克?在這里,食堂一共買來的白菜是總數,吃掉的是部分數,所以100千克白菜就是單位“1”。解答這類分數應用題,只要找準總數和部分數,確定單位“1”就很容易了。 2、兩種數量比較 分數應用題中,兩種數量相比的關鍵句非常多。有的是“比”字句,有的則沒有“比”字,而是帶有指向性特征的“占”、“是”、“相當于”。在含有“比”字的關鍵句中,比后面的那個數量通常就作為標準量,也就是單位“1”。例如:六(2)班男生比女生多1/2。就是以女生人數為標準(單位“1”),男生比女生多的人數作為比較量。在另外一種沒有比字的兩種量相比的時候,我們通常找到分 率,看“占” 誰的,“相當于”誰的,“是”誰的幾分之幾。這個“占”,“相當于”,“是”后面的數量——誰就是單位“1”。例如,一個長方形的寬是長的5/12。在這關鍵句中,很明顯是以長作為標準,寬和長相比較,也就是說長是單位“1”。又如,今年的產量相當于去年的4/3倍。那么相當于后面的去年的產量就是標準量,也就是單位“1”。 3、原數量與現數量 有的關鍵句中不是很明顯地帶有一些指向性特征的詞語,也不是部分數和總數的關系。這類分數應用題的單位“1”比較難找。例如,水結成冰后體積增加了1/10,冰融化成水后,體積減少了1/12。象這樣的水和冰兩種數量到底誰作為單位“1”?兩句關鍵句的單位“1”是不是相同?用上面講過的兩種方法不容易找出單位“1”。其實我們只要看,原來的數量是誰?這個原來的數量就是單位“1”!比如水結成冰,原來的數量就是水,那么水就是單位“1”。冰融化成水,原來的數量是冰,所以冰的體積就是單位“1”。 四、百分數題型分類及解題方法 百分數應用題三種類型 第一大類求分率用除法:求一個數是另一個數的百分之幾 1.直接求一個數是另一個數的百分之幾 一個數÷另一個數 2.求一個數比另一個數多百分之幾 多的部分÷單位1 3.求一個數比另一個數少百分之幾 少的部分÷單位1 例:(1)男生有25人,女生有20人,女生是男生的百分之幾?(2)男生有25人,女生有20人,男生比女生多百分之幾?(3)男生有25人,女生有20人,女生比男生少百分之幾? 第二大類單位1已知用乘法:求一個數的百分之幾是多少 1.直接求一個數的百分之幾是多少 單位1×分率 2.求比一個數多百分之幾的數是多少 單位1×(1+分率)3.求比一個數少百分之幾的數是多少 單位1×(1-分率)例:(1)男生有25人,女生是男生的80%,女生有多少人?(2)女生有20人,男生比女生多25%,女生有多少人?(3)男生有25人,女生比男生少20%,女生有多少人? 第三大類單位1未知用除法:已知一個數的百分之幾是多少,求這個數。1.已知一個數的百分之幾是多少,求這個數。已知量÷分率=單位1 2.已知比一個數多百分之幾的數是多少,求這個數 已知量÷(1+多的分率)=單位1 3.已知比一個數少百分之幾的數是多少,求這個數 已知量÷(1-少的分率)=單位1 例:(1)女生有25人,是男生的80%,男生有多少人?(2)男生有25人,比女生多25%,女生有多少人?(3)女生有20人,比男生少20%,男生有多少人? 四、比的認識 (一)、比的意義 1、比的意義:兩個數相除又叫做兩個數的比。 2、在兩個數的比中,比號前面的數叫做比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。(比值通常用分數表示,也可以用小數或整數表示) 比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例: 路程÷速度=時間。 3、區分比和比值 比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。 比值:相當于商,是一個數,可以是整數,分數,也可以是小數。 5、根據分數與除法的關系,兩個數的比也可以寫成分數形式。 6、比和除法、分數的聯系: 7、比和除法、分數的區別:除法是一種運算,分數是一個數,比表示兩個數的關系。 8、根據比與除法、分數的關系,可以理解比的后項不能為0。 體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。 (二)、比的基本性質 1、根據比、除法、分數的關系: 商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。 分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。 比的基本性質:比的前項和后項同時乘或除以相同的數(0除外),比值不變。 2、最簡整數比:比的前項和后項都是整數,并且是互質數,這樣的比就是最簡整數比。 3、根據比的基本性質,可以把比化成最簡單的整數比。 4、化簡比: 5、按比例分配:把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。 6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4) 工作總量一定,工作效率和工作時間成反比。(如:工作總量相同,工作時間比是3:2,工作效率比則是2:3) (三)和比的應用題有關的概念 1、求每份數的方法 和÷分數和=每份數 相差數÷相差份數=每份數 部分數÷對應份數=每份數 2、圖形求比的常見公式 長方體:(長+寬+高)的和=棱長和÷4 長方形:(長+寬)的和=周長÷2 3、相遇問題 速度和 = 路程÷相遇時間 (四)比的應用 ★知識體系 1、在工農業生產和生活中,常常需要把一個數量按照一定的比來進行分配。這種分配方法通常叫按比例分配。 按比例分配應用題分為三種情況,看下面的三個例子: 例(1)一年級與二年級共有學生130人,一年級與二年級人數比是5︰8,兩個年級各有學生多少人? 例(2)二年級比一年級多30人,一年級與二年級人數比是5︰8,兩個年級各有多少人? 例(3)二年級有80人,一年級與二年級人數比是5︰8,一年級有多少人? ★解題方法總結: 在解決“比的應用”的有關問題時,要抓住解題關鍵,用所給的數量除以對應的份數,求出每份數,然后用每份數分別乘所求數量的份數,從而求出所求數量。類型不同的題要用不同的方法求出每份數: (1)“已知兩數的和與兩數的比,求兩數分別是多少?” 每份數=兩數的和÷比各項的和 (2)“已知兩數的差與兩數的比,求兩數分別是多少?”每份數=兩數的差÷比各項的差 (3)“已知其中一項與兩數的比,求另一個數是多少?” 每份數=其中一項÷對應的份數 題型體系 ●己知總數和比。 解題方法: (1)每份數=兩數的和÷比中各項的和(2)用各部分數占的份數×每份數 求出每部分量。 3、答題并檢驗。 ●已知一個量和比。 解題方法: 1、每份數=其中一項÷對應的份數 2、用各部分數占的份數×每份數 求出每部分量。 3、答題并檢驗。 ●已知相差數和比。 解題方法: 1、每份數=兩數的差÷比中各項的差 2、用各部分數占的份數×每份數 求出每部分量。 3、答題并檢驗。 五、數據處理 六、常用的數量關系 1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2、速度×時間=路程 路程÷速度=時間 路程÷時間=速度 3、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 4、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 5、加數+加數=和 和-一個加數=另一個加數 6、被減數-減數=差 被減數-差=減數 差+減數=被減數 7、因數×因數=積 積÷一個因數=另一個因數 8、被除數÷除數=商 被除數÷商=除數 商×除數=被除數 七、常見的單位換算 【長度單位】 1千米=1000米=10000分米=100000厘米=1000000毫米 1米=10分米=100厘米 1厘米=10毫米 1分米=10厘米 【面積單位】 1平方千米=100公頃 1公頃=10000平方米 一平方千米=1000000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 相鄰面積單位間的進率是100。大單位轉化成小單位乘以進率,小單位轉化成大單位除以進率。【體積、容積單位】 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 相鄰體積間進率為1000。大單位轉化成小單位乘以進率,小單位轉化成大單位除 以進率。【質量單位】 1噸=1000千克 1千克=1000克 【人民幣單位換算】 1元=10角 1角=10分 1元=100分 【時間換算】 1世紀=100年 1年=12月 1日=24小時=60秒 例題 時=60分分 1 1 【人教版】小學數學六年級上冊知識點總結 【編者按】小學六年級數學是小學階段學習數學的最后一年,它是同學們進入中學學好數學的關鍵。在上冊中,同學們會學習到新的本領,比如:用兩個數據來確定物理的位置,分數計算,用圓、百分數的知識來解決生活中的問題等。 一、目標與要求 1.使學生能在方格紙上用數對確定位置。 2.使學生理解分數乘法的意義,掌握分數乘法的計算法則,并能熟練地進行計算。3.使學生理解倒數的意義,掌握求倒數的方法。 4.理解并掌握分數除法的計算方法,會進行分數除法計算。 5.理解比的意義,知道比與分數、除法的關系,并能類推出比的基本性質。能夠正確地化簡比和求比值。 6.使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握 圓周率的近似值。 7.使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。 二、重、難點 1.能用數對表示物體的位置,正確區分列和行的順序; 2.使學生理解分數乘整數的意義,掌握分數乘整數的計算方法; 3.掌握求倒數的方法; 4.圓的周長和圓周率的意義,圓周長公式的推導過程; 5.百分數的意義,求一個數是另一個數的百分之幾的應用題; 6.理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓; 7.理解比的意義。 三、知識點概念總結 1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。2.分數乘法的計算法則 分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數乘法意義 分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。4.分數乘整數:數形結合、轉化化歸 5.倒數:乘積是1的兩個數叫做互為倒數。6.分數的倒數 找一個分數的倒數,例如3/4 把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。7.整數的倒數 找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。8.小數的倒數 普通算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 9.用1計算法:也可以用1去除以這個數,例如0.25,1/0.25等于4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。10.分數除法:分數除法是分數乘法的逆運算。11.分數除法計算法則: 甲數除以乙數(0除外),等于甲數乘乙數的倒數。 12.分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。 13.分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例: 比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括: 比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值 相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。比的性質用于化簡比。 比表示兩個數相除;只有兩個項:比的前項和后項。 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。 16.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。 17.比和比例的區別 (1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b 這是比 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4 這是比例。 (2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質: 比的前項和后項都乘或除以一個不為零的數。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積相等。比例的性質用于解比例。聯系: 比例是由兩個相等的比組成。 18.比和比例的意義 比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義 而另一種形式,分數有括號的含義!19.比和比例的聯系: 比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發展,如果把比例式中右邊的比看成一個數,比和比例此時又可以統一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。 20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。 21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示 22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。 23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑決定圓的大小,圓心決定圓的位置。 24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。 圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。 26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π (4)圓周長的一半:1/2周長(曲線)(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr2(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)] 29.百分數與分數的區別 (1)意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數還可以表示兩數之間的倍數關系.(2)應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。 (3)書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。 而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數并不都具有百分數的意義.(4)百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。30.百分數應用 百分數一般有三種情況: ①100%以上,如:增長率、增產率等。②100%以下,如: 2發芽率、成長率等。③剛好100%,如:正確率,合格率等。31.百分數的意義 百分數只可以表示分率,而不能表示具體量,所以不能帶單位。百分數概念的形成應以學生實際生活中的事例或工農業生產中的事例引入。32.日常應用 每天在電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。知識點擴展 1.圓的定義 幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。 軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。 集合說:到定點的距離等于定長的點的集合叫做圓。 2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,半圓既不是優弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。 3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。 4.內心和外心:和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。 6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,0≤PO 8.百分數的由來 200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數,我們把它叫做分數。而后,人們在分數的基礎上又以100做基數,發明了百分數。 小學六年級數學知識點總結 1. 每份數×份數=總數總數÷每份數=份數總數÷份數=每份數2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、速度×時間=路程路程÷速度=時間路程÷時間=速度4、單價×數量=總價總價÷單價=數量總價÷數量=單價 5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數+加數=和和-一個加數=另一個加數、被減數-減數=差被減數-差=減數差+減數=被減數 8、因數×因數=積積÷一個因數=另一個因數 9、被除數÷除數=商被除數÷商=除數商×除數=被除數 小學數學圖形計算公式正方形 C周長 S面積 a邊長周長=邊長×4C=4a面積=邊長×邊長S=a×a2 正方體 V:體積 a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a3 長方形 C周長 S面積 a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab4 長方體V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)(2)體積=長×寬×高V=abh5 三角形 s面積 a底 h高面積=底×高÷2s=ah÷2三角形高=面積 ×2÷底三角形底=面積 ×2÷高6平行四邊形 s面積 a底 h高面積=底×高s=ah7 梯形 s面積 a上底 b下底 h高面積=(上底+下底)×高÷2s=(a+b)× h÷28 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r(2)面積=半徑×半徑×∏S=∏rr 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(1)側面積=底面周長×高(2)表面積=側面積+底面積×2 小學六年級數學知識點總結 1. 每份數×份數=總數總數÷每份數=份數總數÷份數=每份數2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、速度×時間=路程路程÷速度=時間路程÷時間=速度4、單價×數量=總價總價÷單價=數量總價÷數量=單價 5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率 6、加數+加數=和和-一個加數=另一個加數、被減數-減數=差被減數-差=減數差+減數=被減數 8、因數×因數=積積÷一個因數=另一個因數 9、被除數÷除數=商被除數÷商=除數商×除數=被除數小學數學圖形計算公式正方形 C周長 S面積 a邊長周長=邊長×4C=4a 面積=邊長×邊長S=a×a正方體 V:體積 a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a長方形 C周長 S面積 a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh) (2)體積=長×寬×高V=abh三角形 s面積 a底 h高面積=底×高÷2s=ah÷2 三角形高=面積 ×2÷底三角形底=面積 ×2÷高平行四邊形 s面積 a底 h高面積=底×高s=ah梯形 s面積 a上底 b下底 h高面積=(上底+下底)×高÷2s=(a+b)× h÷28 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r (2)面積=半徑×半徑×∏S=∏rr圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數(和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)差倍問題 差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)小學奧數公式和差問題的公式 (和+差)÷2=大數(和-差)÷2=小數 和倍問題的公式 和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數) 差倍問題的公式 差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數) 植樹問題的公式非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那么: 株數=段數+1=全長÷株距-1全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么: 株數=段數=全長÷株距全長=株距×株數株距=全長÷株數⑶如果在非封閉線路的兩端都不要植樹,那么: 株數=段數-1=全長÷株距-1全長=株距×(株數+1) 株距=全長÷(株數+1)封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距全長=株距×株數株距=全長÷株數盈虧問題的公式 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題的公式 相遇路程=速度和×相遇時間相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題的公式 追及距離=速度差×追及時間追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2水流速度=(順流速度-逆流速度)÷2濃度問題的公式 溶質的重量+溶劑的重量=溶液的重量溶質的重量÷濃度=溶液的重量 溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量利潤與折扣問題的公式 利潤=售出價-成本漲跌金額=本金×漲跌百分比 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅后利息=本金×利率×時間×(1-20%) (一)數的讀法和寫法 1.整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。 2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。 4、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。 6.分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。 7.百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 8.百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。 (二)數的改寫 一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。 1.準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。例如: 1302490015 省略億后面的尾數是 13 億。 3.四舍五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略 345900 萬后面的尾數約是 35 萬。省略 4725097420 億后面的尾數約是 47 億。 4.大小比較 1.比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。 2.比較小數的大小:先看它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大…… 3.比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 (三)數的互化 1.小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 2.分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。 3.一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。 4.小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。 5.百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 6.分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 7.百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。 (四)數的整除 1.把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 2.求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。 3.求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。 4.成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。 (五)約分和通分 1、約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。 2、通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。 小數、小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。 一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。 在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。 2、小數的分類 純小數:整數部分是零的小數,叫做純小數。例如: 0.25、0.368 都是純小數。帶小數:整數部分不是零的小數,叫做帶小數。例如: 3.25、5.26 都是帶小數。有限小數:小數部分的數位是有限的小數,叫做有限小數。例如: 41.7、25.3、0.23 都是有限小數。 無限小數:小數部分的數位是無限的小數,叫做無限小數。例如: 4.33 …… 3.1415926 …… 無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏ 循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如: 3.555 …… 0.0333 …… 12.109109 …… 一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如: 3.99 ……的循環節是“ 9 ”,0.5454 ……的循環節是“ 54 ”。純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如: 3.111 …… 0.5656 …… 混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 …… 寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,并在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作。 (六)分數分數的意義 把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。 在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小于1。 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。3 約分和通分 把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。分子分母是互質數的分數,叫做最簡分數。 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。 (七)百分數 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率或百分比。百分數通常用“%”來表示。百分號是表示百分數的符號。第二篇:六年級上冊數學知識點總結
第三篇:【人教版】小學數學六年級上冊知識點總結
第四篇:小學六年級數學知識點總結
第五篇:小學六年級數學知識點總結