比的基本性質說課稿15篇
比的基本性質說課稿1
《分數的基本性質》一課是學生在充分認識了分數的意義和簡單應用的基礎上進行教學的。本課的教學目標是:學生通過自己的觀察、操作等手段,理解并掌握分數的基本性質,并能根據分數的基本性質對分數進行正確改寫。同時,理解分數與除法的內在聯系,并能用除法中商不變規律來解釋分數的基本性質又是本課教學的一個難點。為了使學生能更好地理解并掌握分數的基本性質,達到本課的教學目標。同時又能為后面的約分、通分和分數的加減法等知識的學習打下扎實的基礎。我能根據教材的實際需要,按照新課程的要求精心設計。在實際教學中,我能努力做到以下幾點:
第一、以故事導入,培養學生的學習興趣。在進行備課時,我覺得如果根據教材的安排來導入,顯得有些平淡,也不容易激發學生的學習興趣。為此,我設計了一個阿凡提的故事,讓阿凡提給三個兒子分田地,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,這樣一來,學生學習數學的興趣必然提高,學習的積極性也會空前高漲。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數的基本性質后,學生就會恍然大捂。原來,三個兒子分得的田地實際上是一樣多的,只不過是平均分的分數不一樣的,其中表示的份數也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數的基本性質來解決實際問題的能力。
第二、發揮集體優勢,培養學生的合作能力。為了有效解決教學中“少數學生爭臺面,多數學生做陪客”的現象,我在教學中也引入了小組合作學習的形式,提高學生學習的主動性,使學生在獲取數學知識的同時,形成良好的人際關系,促進學生的全面發展。為此,在觀察等分數的變化規律時,我讓學生充分展開討論。大家你一言我一語,一點一滴,逐步發現從左往右,分數的分子分母分別依次乘2、乘4、乘8,而分數的大小不變的變化規律。從而慢慢地引出了分數的基本性質。另外,在故事導入時,我也充分讓學生進行討論,看看三個兒子有沒有吃虧。活躍了課堂氣氛,提高了學生學習數學的興趣,取得了不錯的教學效果。
第三、精心設計練習題,提高學生解題能力。數學教學,做題目是其中最重要的一個方面。但傳統教學教師往往進行所謂的題海戰役,讓學生反復做、重復做,這樣不僅做累了學生同時也做怕了學生,消磨了學生學習的積極性。所以如何使學生愿做、樂做,同時又能達到教學目標,提高學生的數學綜合能力,是擺在我們面前的一個重要課題。為此,在教學《分數的基本性質》時,我也精心設計練習題。首先是題型變化豐富。練習中,我除了安排一些基本根據分數的基本性質來填空外,我還安排了一些判斷題、口答題、填圖題、并要求學生不改變分數的大小,把分數改成分母是30的分數的題目。題型的豐富不僅提高了學生學習的興趣,也使學生更好地理解和應用分數的基本性質來解決實際問題的能力。其次是練習難度的層次性。數學題目經常出現有些學生吃不了,同時也有部分學生吃不飽的現象。為此,除了基本的練習題外,我還逐步加深難度,提高學生的思維能力,如:的分子加上10,要使分數的大小不變,分母應該加上幾?難度的加深,使學生的思維能力、解題能力等都有了明顯提高,真正把培優補差工作落到了實處。
最新的小學數學五年級下冊說課稿《分數的基本性質》:總之,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節數學課都能達到理想的教學效果。
比的基本性質說課稿2
一、說教材分析
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養學生觀察、分析和抽象概括能力。
過程與方法:
1、讓學生經歷分數基本性質的探究過程。
2、通過引導啟發,幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態度與價值觀:
1、體驗合作探究的樂趣,培養學生的團結協作精神。
2、滲透“事物間相互聯系”的辯證唯物主義觀點。
教學重點:理解分數基本性質。
教學難點:歸納分數的基本性質,并運用性質轉化分數。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片
三、說教學策略
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發生命活力”的指導思想,根據學生的認知規律,我采取以下教學策略:
1、采用了創設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節課學生學習的重要方式。
四、說教學流程
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環節。
(一)、創設情境,引發猜想
首先我為學生帶來一個《猴王分餅》的故事。
猴山上的小猴子最喜歡吃猴王做的餅了,有一天,猴王做了三塊大小一樣的餅分給小猴子吃。它先把第一塊餅平均切成4塊,分給猴1一塊;猴2見了說:“太少了,我要2塊。”猴王又把第二塊餅平均切成8塊,分給猴2兩塊;猴3更貪,它搶著說:“我要3塊,我要3塊……”猴王又把第三塊餅平均切成12塊,分給猴3兩。小朋友,你知道哪只猴子分得的餅多嗎?
“同學們,你們認為猴王分得公平嗎?”引發學生的猜想。
(這樣就激發了學生的學習興趣,為后面的學習做好了鋪墊。)
(二)自主探索,尋找規律
(下面這個環節是課堂教學的中心環節,新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)
1、小組合作 驗證猜想
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證---集體匯報交流----展示成果
2、既然三只小猴分得的餅同樣多,那么表示他們分得餅的三個分數是什么關系呢?這三個分數什么變了,什么沒變?
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
3、猴王把三張大小一樣的餅分給小猴一部分后,剩下的部分大小相等嗎?通過觀察演示得出3/4=6/8=9/12
4、我們班有64名同學,分成了四組,每組16人。那么,第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出1/2=2/4=32/64
(三)比較歸納 揭示規律
1、出示思考題
1/4=2/8=3/12
比較每組分數的分子和分母:
從左往右看,是按照什么規律變化的?
從右往左看,又是按照什么規律變化的?
通過觀察,你發現了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規律,找出性質中的關鍵詞,然后齊讀,注意關鍵的字詞要重讀。
4、現在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
(這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間是相互聯系”的辨證唯物主義觀點)
(四)自學例2
1、自學例2。
2/3 = 2×/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重點讓學生說說分母、分子是如何變化的?根據什么?
這樣設計的目的是學生學會的老師不包辦,從而培養了學生的自學能力。
(五)多層練習鞏固深化
1、填上合適的數,說說你填寫的根據
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通過這道題讓學生進一步加深對分數基本性質的形成過程的理解,從而培養學生的語言表達能力。
2、說一說下面各式運用分數的基本性質是否正確
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在這我設計了同學們在平時做題中容易混淆的問題,提醒同學們今后要注意。
3、想一想:(選擇你喜歡的一道題來做)
與1/2相等的分數有多少個?想像一下把手中的正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?
9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?
在這我讓同學們充分發揮想象,靈活運用分數的基本性質。為后面學習約分和通分的知識奠定基礎。
(六)本課小結
同學們,通過這節課,你有哪些收獲?
學生在交流收獲的過程中,培養學生的知識概括能力。
五、說教學評價
1、教學過程中采用自我、小組、集體等多種評價方式,激發起學生交流的興趣。
2、多媒體課件的應用,創設生動的教學情境。
3、學生在發現、體驗、合作、交流、歸納、總結中,自主參與整個學習過程,營造獨立、自主的學習空間,學生成為課堂的主人。
比的基本性質說課稿3
一、說教材
小學數學冀教版第十冊第單元《等式的基本性質》是學生已經掌握了方程的意義的基礎上學習的。《等式的基本性質》是本單元的重點,更是今后學習解方程的基礎。
我搜集了人教版的教材近行對比,發現:雖然版本不同,內容編排不同但是數學學習內容大體相同,都以學生的動手實踐,自主探究與合作交流為學生學習數學的主要方式。整個過程中,教師只是探究活動的組織者、引導者、合作者。在這里值得一提的就是我們現在的版本把等式的基本性質一和性質二都是以文字的內容具體的呈現了出來,而人教版教材是通過游戲的方式呈現的,具體的性質內容是在后來的解方程當中逐步體現的。我個人覺得現在的版本還是可取的。
二、說教學目標
根據大綱的要求和教材的特點,結合五年級學生的特點我制定了如下教學目標:
知識目標:
1、理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
能力目標:
1、在用算式表示試驗結果、討論、歸納等活動中,經歷探索等式基本性質的過程。
2、通過學習理解并能運用等式的基本性質解決簡單問題。
情感目標:培養學生討論歸納的意識和習慣,養成認真觀察、深入思考的良好思維品質。
結合學生的實際情況,我把教學重難點確定為:
教學重點:理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
教學難點:理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
教學具準備:天平,教學課件,學生導學案等材料
三、說學情分析
學生已經習慣進行高效課堂模式下的學習,具有一定的探究與合作交流能力。在學習了方程的意義的基礎上,再加上對天平已有知識的經驗積累,應該根據我的教學設計能夠一步步研究出等式的基本性質。當然由于學生的理解能力的差異,對于學困生還是應該照顧到。為了實現上述教學目標,我精心進行教學設計,引領學生課堂生成:
四、說教學過程(以學生的自主探究為主)
(一)、速算比賽:
6。6÷11= 128÷3。2= 250×12= 60×0。2=
36÷180= 2。6×10= 190×0。4= 74÷0。2=
這幾道題是一直以來堅持的口算訓練。不過在處理上采取了比賽的方式,時間是一分鐘,我公布答案后學生迅速自評,并由組長算出組內共算對了多少道題,以此作為標準評出優勝小組,并及時進行加分評價。
(二)、創設情境
教師導語:剛才的比賽中某某組表現的很棒,為他們組贏得了寶貴的2分,希望在接下來的學習中繼續發揚這種精神,同時老師更希望其他組能有出色的表現。上節課我們用了什么儀器了方程的意義呢?(學生肯定會異口同聲的說是天平)教師隨機出示天平。每組一臺。我們這節課還利用天平學習,學習什么呢?請大家看導學案并齊讀課題和目標。教師相機板書。
(三)、獨學導學一
導學一:
小實驗1、根據圖片演示實驗。列式為()
實驗2、在天平左邊的托盤里再放入20克的砝碼,這時天平出現什么情況?接著再天平右邊的托盤里放入20克砝碼。根據這時天平的情況列式()
實驗3接著再在天平左右兩邊同時放入100克砝碼,天平會怎么樣?可以列出等式()
實驗4接著在天平左邊的托盤里再拿走20克的砝碼,在天平右邊的托盤里再拿走20克的砝碼。天平會怎樣可以列出等式()?
總結:通過上面的實驗:觀察上面的4個等式,你發現了什么?
學生根據我的設計大多數同學根據已有經驗會很快列出算式,可能有同學會利用我給出的天平驗證,獨學充分后教師要做好評價。
(四)、對學、群學。
學生充分獨學后,對子之間交流進入對學階段。對子之間交流,交流完后組長組織組內組內總結展示。小組長要根據情況確定待展同學。教師巡視觀察那個組利用天平利用的效果好準備接下來的精英展示。教師要關注學困生。特別是雙差生。教師還要做評價。
(五)、精英展示
我這個環節準備一組或兩組展示。展示的方式可以是一人也可以是多名同學一塊展示。教師要做好規律的總結提升和及時的評價,特別是聽展。教師利用課件出示學生列出的每個等式。
五、完成導學二。
導學二(1)根據圖片寫等式
(2)根據圖片寫等式:
比較上面兩組等式,你發現了什么規律?
有了學習經驗,這個環節應該很順利。還是按照高效模式進行,在教學中注意利用教學課件突破學生理解上的難點。有的小組可能還會出現加減的情況,教師要適當引導到倍數關系。
達標訓練:(1)30+x=100(2)x — 71=4
30+ x—30=100()x–71+()=4()
x=()x=()
(3)21 x=105(4)x ÷21=3
21x÷()=105()x÷21×()=3()
x=()x=()
學生理解了等式的基本性質理論,我覺得由理論到實踐應該給學生一個過渡空間,所以我設計了這一環節。學生獨立完成后挑選組長進行展示,此時教師重點強調學生填空的依據,這樣就更好的鞏固了剛學完的理論。完成后教師小結。引導學生談收獲。
最后是達標測評。我選的是教材42頁的第一題。學生做完后教師公布答案,學生互評。教師要做好評價。
比的基本性質說課稿4
一、說教材
1、教學內容:九年義務教育六年制小學數學(人教版)第十一冊第48頁。
2、教材所處的地位和作用:
比的基本性質是在學生學習商不變性質、分數的基本性質、比的意義、比和除法的關系、比和分數的關系后接著學習的內容。比的基本性質是一節概念課的教學,它跟分數的基本性質、商不變性質實際上是同一道理的。所以本節課主要是處理新舊知識間的聯系,在鞏固舊知識的基礎上進入到學習新知識。教材內容滲透著事物之間是普遍聯系和互相轉化的辯證唯物主義觀點。學生理解并掌握比的基本性質,不但能加深對商不變性質、分數的基本性質、比的意義、比和分數、比和除法等知識的理解與掌握,而且也為以后學習比的應用,比例知識,正、反比例打好基礎。
3、教學目標:
①知識目標:使學生領悟并理解比的基本性質。
②能力目標:運用比的基本性質,讓學生通過嘗試來化簡并探討出不同類型比的多種化簡方法,從而培養學生的應用能力和創新能力。 ③情感目標:感受生活中處處有數學,數學就在我們身邊。培養學生積極、自主的學習探究興趣,使每個學生都嘗到成功的喜悅。
4、教學重難點:
重點:掌握比的基本性質。
難點:運用比的基本性質化簡比。
二、說學情
六年級學生能夠在老師的指導下展開課堂活動。他們對周圍的各種事物也有一定的認知能力,實踐能力。小孩子的好奇心較強,就一個問題、一道題能夠從多角度去思考,大膽探索。
三、說教法
1、激趣設疑法。
本課一開始我便創設情境,留下懸念,吸引學生,使教學達到“課開始,趣即生”的效果。
2、從學生已有知識背景出發,化難為易。
比的基本性質是在學生已有的比的意義、商不變性質和分數的基本性質等舊知識的基礎上學習的。因此,在學習比的基本性質前,首先引導學生回憶商不變性質及分數的基本性質,有利于同化新知,化新為舊。
3、營造民主環境,采用啟發式、討論式教學。
為了達到新課標指出的新教學理念,在探究化簡比的方法時,我組織學生分組展開交流、討論并及時的點拔、啟發,使課堂進入師生互動、生生互動的學習氛圍。
四、說學法
1、探究法。
本堂課我讓學生在思、講、聽、議、看并存的多種學習方式中去探究比的基本性質,鼓勵學生多思、愛講、善聽。在嘗試練、啟發練、板演練中去探究不同類型的比的多種化簡方法。使學生腦、眼、手等多種感官參與學習的全過程,從而培養學生的創新能力。
2、游戲操作法。
好動是兒童的天性,利用學生喜歡做游戲與好勝的心理,本節課插入一個“摘智慧果”的游戲,再次激活學生的學習興趣,讓學生在游戲操作中鞏固新知。
五、說教學程序
(一)創境激趣 設疑引思
師:大家知道我們班的男女生各是多少人?男生與女生人數的比是多少?
當學生說出男生12人,女生24人,男生與女生人數的比是12:24時,教師接著解釋說他們的比也可以說是1:2。
師:你們想知道老師的說法是否正確嗎?下面老師與你們共同學習驗證好不好?
【設計意圖:從學生熟悉的生活情景入手,把學生引入到現實情景中學數學,有利于讓學生感到數學就在身邊,對數學產生濃厚興趣和親切感,體現了“數學源于生活,又用于生活”的理念。】
(二)整理舊知 輕松學新知
師:出示三個算式:1÷2、2÷4、4÷8,提問:這幾個算式之間有什么聯系?為什么?運用了什么規律?(引出商不變性質) 如果把除法改寫成分數,相應地就可以得到三個分數 ,請同學們想一想這三個分數之間有什么關系?為什么?運用了什么性質?(引出分數的基本性質)如果再把除法改成比,就可以得到三個比:1:2、2:4、4:8,請同學們猜想一下這三個比之間有什么關系?你是怎樣驗證的?
1、讓學生分組展開討論、交流。
2、教師啟發學生從比同除法和分數的關系、比的意義或通過求比值等多角度去驗證。
3、檢查小組交流結果,盡量讓多位同學發言,其他同學專心聽,教師注意引導學生把語言說通順。
4、根據學生的交流結果板書:1:2=2:4=4:8
5、師生共同觀察以上式子,著重引導學生觀察比的前項、后項及比值。(先從左到右,再從右到左)。
6、同學們通過探索,發現了其中的規律,要求同學對照商不變的性質和分數的基本性質,總結比的基本性質。
7、板書課題:比的基本性質。提問:為什么必須零除外?
8、學生齊讀比的基本性質。
【設計意圖:建構主義認為,學習不是簡單的信息積累,更重要的是新舊知識經驗的相互作用以及由此而引發的認知結構的重組。因此在教學的過程中我抓住新舊知識之間的關系,幫助學生主動去建構新知。促使新舊知識的結合,化新為舊。】
(三)巧用習題 求異創新
1、理解“最簡單的整數比”。
師:利用商不變性質,我們可以進行除法的簡算,根據分數的基本性質,我們可以把分數化成最簡分數,那么應用比的基本性質,我們可以做什么呢?
①學生自學課本第48頁找答案。
②師:你怎樣理解“最簡單的整數比”這個概念?
③檢查學生理解程度,根據學生的回答加以解釋這個概念。
④師:大家想知道自己掌握的程度嗎?想表現一下自己嗎?
【設計意圖:自然過渡,滲透學以致用的數學理念,使學生產生想用的念頭,想表現自己的心理,使教學達到“課進行,趣更濃”的效果,為下面學習營造良好氛圍。】
2、出示例題。
例1:把下面各比化成最簡單的整數比。
14:21 : 1.25:2
①學生自己嘗試練習,教師巡視。
②引導學生從多方面去思考化簡方法。
③學生上黑板演練,盡量讓有不同解法的學生演練。
④集體歸納解題方法。并說明化簡比的最后形式。以便學生把化簡比和求比值進行區分。
⑤師:通過以上的學習,你知道為什么我們班男生與女生的比可以說成1:2嗎?
【設計意圖:這部分的教學,我善于挖掘蘊涵在教材中豐富的創造性因素,充分利用教材中一題多變,一題多解,引導學生從多方面去思考,培養學生思維的靈活性、多向性以及創新能力,實現“數學算法多樣化”新理念。】
(四)檢測評價, 總結收獲
1629
1、化簡下列各比:
24:28 :
2、判斷:
(1) 0.48:0、6化簡后是24:3;
(2) : 化簡后是1;
(3) 1:0、4化簡后是 ;
(4) 比的前項和后項同時乘以或除以相同的數,比值不變。
【設計意圖:變化習題形式,進一步鞏固運用比的基本性質化簡比,以及區分化簡比與求比值的不同處。】
3、摘智慧果
以分組的形式,要求學生在規定的時間內動手摘下“智慧果”。摘得又快又對的組獲勝。最后展示學習成果。
(用硬紙制成下表,把“智慧果”剪成蘋果形,每小組一份。)
【設計意圖:在這里,通過一個小小的游戲,使學生眼、手、腦等多種感官參與學習的全過程。通過小組競爭的操作活動,又能培養學生合作精神和競爭意識,把課堂再一次推向高潮,學生的學習興趣再一次得到激發,使教學達到“課雖盡,趣猶存”的效果。】
(五)總 結
1、誰能說說學了這節課后有什么收獲?
2、用比的基本性質能解決什么問題?
比的基本性質說課稿5
一、教材簡析和教材處理
1.教材簡析
《分數的基本性質》是九年義務教育六年制小學數學課本(西師大版)第十冊第15-16頁的內容。在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2.教材處理
以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。
二、教學課件設計意圖
場景一:故事引人,揭示課題。
有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的三分之一,老二分到了這塊地的六分之二。老三分到了這塊的九分之三。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
讓學生發表自己的意見,教師出示三塊大小一樣的紙,通過師生折、觀察和驗證,得出結論:三兄弟分得的一樣多。
一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
場景二:發現問題,突出質疑。
既然三兄弟分得的一樣多,那么表示它們分得土地的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
3.引入新課:下面算式有什么共同的特點?學生回答后
它們各是按照什么規律變化的呢?場景三:比較歸納,揭示規律。
1.出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由1/4到2/8,分子、分母是怎么變化的?引導學生回答出:把1/4的分子、分母都乘以2,就得到2/8。原來把單位“1”平均分成4份,表示這樣的1份,現在把分的份數和表示份數都擴大2倍,就得到2/8。
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。
(6)對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
出示的思考題是學生探求新知、獨立思考的指南,教師環緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。]
3.出示例2:把3/4和15/24化成分母是8而大小不變的分數。
思考:要把3/4和15/24化成分母是8而大小不變的分數,分子怎么不變?變化的依據是什么?
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:
[有助于學生順利地運用分數與除法的關系,以及整數除法中商不變性質說明分數的基本性質,實現新知化歸舊知。]
場景四:多層練習,鞏固深化。
1.口答。
學生口答后,要求說出是怎樣想的?
2.判斷對錯,并說明理由。
運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。
3.在下面內填上合適的數。
練習設計由易到難,由淺入深,既鞏固新知,又發展思維,其間還自然地滲透思想品德教育。師生對出數做題,能夠創設民主和諧的學習氣氛。通過舉例,還滲透了函數思想。
比的基本性質說課稿6
《分數的基本性質》一課是學生在充分認識了分數的意義和簡單應用的基礎上進行教學的。
各位老師,同學:
大家上午好!
我說課的內容是:人教版小學數學課標教材五年級下冊75頁—76頁《分數基本性質》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
一、說教材分析
本節內容屬于概念教學。《分數基本性質》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
二、說學情分析
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發現規律,掌握新知識。
三、說教學目標
綜合分析課程標準要求及學生實際,我確定本節教學目標如下:
1.理解與掌握分數的基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2.初步養成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識與理解變與不變的辯證關系。
3.受到數學思想的熏陶,養成樂于探究的學習態度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發現與歸納分數的基本性質,以及應用它解決相關的問題。
四、說教法學法
根據本節課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合教材內容,本課我主要采用猜想驗證與探索發現的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用,激發學生學習興趣,同時讓學生獲得成功體驗。
五、說教學過程
本節課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創設問題情境,揭示本節課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發現規律。主要的是學生找出規律,并利用規律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發現規律”可以細化為三個環節:
環節一:動手操作,進行比較
這一環節是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環節的設計主要是培養學生的比較能力。
環節二:呈現問題,引導觀察
這一環節主要呈現給學生這樣一個問題,“第一環節中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環節的設計主要是培養學生的觀察能力。
環節三:交流匯報,得出規律
這一環節主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環節的設計主要是培養學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結與確認是不可缺少的。
以上是我對《分數基本性質》一節的教學設計意圖,有不當之處,請各位批評指導。
比的基本性質說課稿7
一、教學內容分析
《函數的增減性》是中職數學第二章第三節內容,是函數這一章的重要組成部分,函數這一章是中職數學的重點,并且有一定的難度,因此學好函數的性質顯得十分重要。
二、學生情況分析
知識結構
學生已經學習過一次函數,二次函數,反比例函數,函數的概念及函數的表示,能畫出一些簡單函數的圖象,能從圖象的直觀變化,學生能得到函數增減性。
能力結構
通過初中對函數的學習,學生已具備了一定的觀察事物能力,抽象歸納的能力和語言轉換能力。
學習心理
函數的單調性是學生從已經學習的函數中比較容易發現的一個性質,學生渴望進一步學習,這種積極心態是學生學好本節課的情感基礎。
本班學生特點
本班為蘋果園中學高一1班,為理科實驗班,學生數學素養較好。
三、教學目標分析
根據本課教材特點、課程標準對本節課的教學要求以及學生的認知水平,教學目標確定為:
1.知識與技能:
(1)從形與數兩方面理解單調性的概念。
(2)初步掌握利用函數圖象和單調性定義判斷。
(3)通過對函數單調性定義的探究,提高觀察、歸納、抽象的能力和語言表達能力;通過對函數單調性的證明,提高推理論證能力。
2.過程與方法:
(1)通過對函數單調性定義的探究,滲透數形結合思想方法
(2)經歷觀察發現、抽象概括,自主建構單調性概念的過程,體會從具體到抽象,從特殊到一般,從感性到理性的認知過程。
3.情感態度價值觀:
通過知識的探究過程培養細心觀察、認真分析、嚴謹論證的良好思維習慣;領會用運動的觀點去觀察分析事物的方法。
四、教學重難點分析
根據上述教學目標,本節課的教學重點是函數單調性的概念形成和初步運用。雖然高一學生已經有一定的抽象思維能力,但是要用準確的符號語言去刻畫圖象的增減性,從感性上升到理性對高一的學生來說比較困難。因此,本節課的教學難點是函數單調性描述性概念的形成。
五、教學方法分析
因此,根據教學內容和學生的認知、能力水平,本節課主要采取教師啟發式教學法和學生探究式教學法。以設置情境、設問和疑問進行層層引導,激發學生積極思考,逐步將感性認識提升到理性認識,培養和發展學生的抽象思維能力。引導學生提出疑問,進行思考,從而創造性的解決問題,最終形成概念,培養學生的創造性思維和批判精神。
六、教學過程
1.創設情境、引入新課
上山與下山的路線分析(上升、下降)
學生:分析路線曲線的特點(學生描述)
展示函數圖象
學生:觀察圖像、描述圖像特征。
教師:總結學生答案,糾正錯誤。
據此,學生已經對單調性有了直觀認識,緊接著,我提出問題二:能否用自己的理解說說什么是增函數,什么是減函數?
結合增減性是局部性質,學生會用直觀描述回答:在一個區間里,y隨x增大而增大,則是增函數;y隨x增大而減小就是減函數。
學生用圖象的感性認識初步描述了單調性,下面進一步將學生從感性向理性進行引導。
(二)初步探索、形成概念
學生在老師的指導下得出:
表征變化性態上的這種區別,是函數增減性.設函數y=f(x)在[a,b]上有定義.若隨著在[a,b]上的x增加時函數值y也增加,那么把y=f(x)叫做是[a,b]上單調增加函數;反之,若隨著在[a,b]上的x增加時函數值y反而減小,那么把y=f(x)叫做是[a,b]上單調減小函數.
在[a,b]上單調增加函數或單調減小函數,通稱[a,b]上的單調函數,區間[a,b]叫做單調區間.
在此過程中要復習一下之前學習的區間的知識。
求函數的單調區間,主要通過觀察描述。
我們來看圖表示的函數.在整個區間[0,2]上函數并不是單調的,但在[0,π/2],[π/2,3π/2],[3π/2,2π]上,函數卻依次是單調增加、單調減小、單調增加的,即這三個區間是圖給函數的單調區間.
在例題一的處理上要強調第三幅圖函數在定義域內不是單調的,但是在“小區間”內是單調的。注意部分與整體的關系。同時在此回顧區間的概念。
在有些問題上可以適當降低難度,比如例二的第三小題:
y=1/x2.學生對于這一題的解決有很大的難度,本著從學生實際出發這一點,我們可以對它適當刪減。其他題目注意區間的“閉”與“開”,以及與圖像對應的關系。
在學生板書是應該注意促進學習成績稍差的學生學習積極性,這樣還能是大家更好的發現不足,及時彌補,不再犯同樣的錯誤。
課堂小結可以讓學生來完成,同時板書設計不宜太過復雜,要簡潔明了,這樣更有利于學生記憶,掌握所學知識。作業要盡量簡單基礎,不能讓學生對于作業有種負擔感,這樣才能促使學生獨立完成,減少學生抄襲作業的情況。
總之這節課主要還是以學生的認知結構,和學習現況出發,堅持“學生為主題、教師為主導、訓練為主線”的思想。
比的基本性質說課稿8
把單位“1”平均分成若干份,表示這樣的一份或其中幾份的數叫分數。表示這樣的一份的數叫分數單位。分數的基本性質數學說課稿,我們來看看。
分數的基本性質
1.使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題。
2.培養學生觀察、分析、思考和抽象、概括的能力。
3.滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育。
教學過程
一、談話我們已經學習了分數的意義,認識了真分數、假分數和帶分數,掌握了假分數與帶分數、整數的互化方法。今天我們繼續學習分數的有關知識。
二、導入新課例
1.用分數表示下面各圖中的陰影部分,并比較它們的大小。
1、分別出示每一個圓,讓學生說出表示陰影部分的分數。
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數表示是多少?
2、觀察比較陰影部分的大小:
(1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等。)
(2)陰影部分的大小相等,可以用等號連接起來。
3、分析、推導出表示陰影部分的分數的大小也相等:
(1)4 幅圖中陰影部分的大小相等。那么,表示這4 幅圖的4個分數的大小怎么樣呢?(這4個分數的大小也相等)
(2)它們的大小相等,也可以用等號連接起來(把4個分數用等號連起來)。
4、觀察、分析相等的分數之間有什么關系?
(1)觀察 轉化成 , 的分子、分母發生了什么變化? ( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍。)
(2)觀察 例2.比較 的大小。
1、出示圖:我們在三條同樣的數軸上分別表示這三個分數。
2、觀察數軸上三個點的位置,比較三個分數的大小:從數軸上可以看出:
3、觀察、分析形式不同而大小相等的三個分數之間有什么聯系和變化規律。(1)這三個分數從形式上看不同,但是它們實質上又都相等。(教師板書: )(2)你們分析一下, 、各用什么樣的方法就都可以轉化成 了呢?
三、抽象概括出分數的基本性質
1、觀察前面兩道例題,你們從中發現了什么變化規律? 分數的分子分母都乘上或都除以相同的數(零除外),分數的大小不變。
2、為什么要零除外?
3、教師小結:這就是今天這節課我們學習的內容:分數的基本性質 (板書:基本性質)
4、誰再說一遍什么叫分數的基本性質?教師板書字母公式:
四、應用分數基本性質解決實際問題
1、請同學們回憶,分數的基本性質和我們以前學過的哪一個知識相類似? (和除法中商不變的性質相類似。)
(1)商不變的性質是什么? (除法中,被除數和除數都乘上或都除以相同的數(零除外),商的大小不變。)
(2)應用商不變的性質可以進行除法簡便運算,可以解決小數除法的運算。 2、分數基本性質的應用:我們學習分數的基本性質目的是加深對分數的認識,更主要的是應用這一知識去解決一些有關分數的問題。例3 把 和 化成分母是12而大小不變的分數。
板書:
教師提問:
(1) ?為什么?依據什么道理?( ,因為分母2乘上6等于12,要使分數的大小不變,分子1也要乘上6.所以, )
(2)這個6是怎么想出來的?(這樣想:2?=12,26=12,也可以看12是2的幾倍:122=6,那么分子1也擴大6倍)
(3) ?為什么?依據的什么道理?( ,因為分母24除以2等于12,要使分數的大小不變,分子10也得除以2,所以, )
(4)這個2是怎么想出來的?(這樣想:24?=12,242=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是102=5)
五。課堂練習
1、把下面各分數化成分母是60,而大小不變的分數。
2、把下面的分數化成分子是1,而大小不變的分數。
3、在( )里填上適當的數。
4、的分子增加2,要使分數 的大小不變,分母應該增加幾?你是怎樣想的?
5、請同學們想出與 相等的分數。規律:這個分數的值是 ,然后只要按自然數的順序說出分子是1、2、3、4、分母是分子的4倍為:4、8、12、16無數個。
六、課堂總結今天這節課我們學習了什么知識?懂得了一個什么道理?分數的基本性質是什么?這是學習分數四則運算的基礎,一定要掌握好。
七、課后作業
1、指出下面每組中的兩個分數是相等的還是不相等的。
2、在下面的括號里填上適當的數。
分數的基本性質(說課稿)
理解了分數的意義,認識真分數、假分數和帶分數,掌握了假分數和帶分數、整數的互化方法之后,就要學習分數的基本性質。
分數的基本性質在分數教學中占有十分重要的地位,它是約分、通分的理論依據,而約分、通分又是分數四則運算的重要基礎。只有理解和掌握分數的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數四則運算。因此,分數的基本性質是分數的意義和性質這一單元的教學重點之一。掌握分數與除法的關系,以及除法中被除數、除數同時擴大或同時縮小相同的倍數商不變的規律,是學好分數基本性質的基礎。
學生在學習和掌握分數的基本性質過程中,敘述性質內容時常常把分子、分母同時乘上或者除以相同的數(零除外)中的同時零除外丟掉。出現這類問題的原因是:對分數的基本性質沒有真正的理解;對零為什么要除外的道理也不太清楚。分數基本性質是建立在:分數的意義、商不變的性質的基礎上學習的,由于學生進入高年級,抽象思維有了一定的基礎,在培養學生探索規律、應用一些數學方法進行遷移類推、思維的嚴密性以及思維的靈活性等方面,都應該進一步予以加強。這種思想方法以及能力的培養,對今后研究統計知識及其學生的終身學習都具有非常重要的作用。
分數的基本性質是以分數大小相等這一概念為基礎展開研究的,由于學生在中年級已經對商不變的性質有了較深入的理解,所以在教學實踐中要有意識的加強分數與除法之間的聯系,以便把舊知識遷移到新的知識中來。
在教學中,采用小組合作學習的辦法,通過給3張紙涂色、折疊、觀察、探索進行規律性的總結。在進行小組匯報時,教師揭示了知識間的聯系,鼓勵學生用不同的理解方法、不同角度進行匯報分數基本性質的可行性,為學生的思維留下了創造空間。在學生總結規律后,為了加深對分數的性質的理解,還可以讓同學舉一些符合規律的例子進行說明。教學實踐中,要注重培養學生揭示知識間的聯系、探索規律、總結規律的能力。
比的基本性質說課稿9
一、說教材
1、教學內容:
《比例的意義和基本性質》是人教版第十二冊第三單元第一二課時的內容。比例的知識在工農業生產和日常生活中有廣泛的應用。這部分知識是在學習了比的知識和除法、分數等得基礎上教學的。而本節課內容是這個單元的第一節課,主要屬于概念教學,是為以后解比例,講解正、反比例做準備的。學生學好這部分知識,不僅可以初步接觸函數的思想,而且可以用來解決日常生活中一些具體的問題。
2、教學目標:
根據新課標要求和教材的特點,結合六年級學生的實際水平,可以確定以下教學目標:
(1)通過計算、觀察、比較,讓學生概括、理解比例的意義和比例的基本性質。
(2)認識比例的各部分名稱。
(3)學會用比例的意義或比例的基本性質,判斷兩個比能不能組成比例,并寫出比例。
3、教學重、難點:
理解比例的意義和基本性質,會用比例的意義和基本性質判斷兩個比能不能組成比例,并寫出比例。
4、教法、學法:
根據本節教材內容和編排特點,為了更好地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,主要讓學生在“計算——觀察、比較——概括——應用”的學習過程中掌握知識。
二、說程序設計
課堂教學是學生學習數學知識的獲得,能力發展的重要途徑。基于此,我設計了如下的教學設計。
(一)復習導入
讓學生根據所給信息寫出兩個比。目的就是為新授進行鋪墊,搭建腳手架,同時也為學生后面區分比例和比打下基礎。
(二)教學新課
分成兩部分:第一部分,教學比例的意義;第二部分,教學比例的基本性質。
第一部分:先出示幾個比,讓學生計算它們的比值,然后通過觀察、比較,給這些比分類。通過學生自己的觀察、發現,根據比值是否相等來分類。接著追問:“兩個比的比值相等,那他們之間可以用什么符號連接呢?”是讓學生深刻地了解到,只要兩個比的比值相等,就可以說兩個比相等。運用黑板上的幾個比例式,告訴學生象這樣的式子就叫做比例,給學生直觀的印象,然后列舉一個反例,讓學生對比觀察,引導學生發現他們之間的共同特點,抽象概括出比例的意義。教學比例的意義后,及時組織練習。第一個是判斷導入部分的四個比能否組成比例,并說明理由。第二個練習是,判斷兩個比是否能組成比例,在這個過程中,不僅運用了比例的意義,而且對比的性質也有一定的運用,以培養學生從多種角度解決問題的能力。第三個練習是寫出比值是4的兩個比,并組成比例。三個練習,每一個都在逐步的延伸,意在達到熟練運用比例的意義解決問題的能力。
第二部分:在認識比例的各部分名稱時,我讓學生看課件自學,然后讓他們自己說說比例里各部分的名稱。
在揭示比例的基本性質時,我先讓學生計算,然后觀察發現規律,進一步驗證規律,最后概括出比例的基本性質。
(三)鞏固練習
在鞏固練習環節中,第1題是三個判斷題,是對基本概念的鞏固。第2題是根據比例的基本性質寫出比例,這里需要從學生逆向思維的角度去解決問題。第3題是用四個數組比例,這題學生在組的過程中沒有方法和順序,那么在交流過程中就需要教師去引導學生發現方法,總結規律,使學生不僅把題做對,而且指導自己更好解決問題。第4題是拓展題,讓學生根據當前所學的知識猜數,一方面鞏固比例的意義和基本性質的知識,另一方面,為下節課“解比例”做鋪墊:根據比例的基本性質,如果知道了比例中的任何三項,就可以求出另外一項,這是下節課要研究的內容“解比例”。
教學反思
有意義的數學學習必須建立在學生的主觀愿望和知識經驗的基礎之上,有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在教學中,我對教材進行了有效的處理,讓學生在算一算、想一想、說一說中理解了比例的意義,探究出了比例的'基本性質,知道了比例從生活中來,從而進一步認識到了數學在生活中有著廣泛的應用,激發了學生學好數學的信心和積極情感。
一、創設探究空間,經歷探索過程
我大膽地組織學生探究比例的基本性質,沒有根據教材上所提供的現成問題“分別算一算比例的兩個外項和兩個內項的積,你發現了什么?”機械地執行,而是大膽放手,用四個數組成等式這一開放練習產生新鮮有用的教學資源,我通過引導讓學生展開討論,進行有效的探究,體驗了探究的成功。
二、找準知識與生活的契合點,學以致用
為了充分體現數學知識與現實生活的聯系,在課的最后我安排了與生活聯系的數學問題,讓學生來測測我們學校的旗桿的高度,把數學和實際緊密地聯系起來,這樣既滲透了學數學用數學的教學思想,同時也潛移默化的幫助學生樹立了學好文化知識有利于社會發展的意識
比的基本性質說課稿10
尊敬的各位評委,各位老師:
大家好!我說課的內容是《分數的基本性質》。這課選自北師大版小學數學五年級上冊第三單元的學習內容,這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據本單元的教學要求和本課的特點,我設計本課的教學目標有三點:
1、(認知目標)理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、(認知目標)理解和掌握分數的基本性質。
3、(能力、情感目標)培養學生觀察、分析、推理的能力。
教學重點:理解和掌握分數的基本性質。
教學難點:讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
《數學課程標準》提出:把現代信息技術作為學生學習數學和解決問題的強有力工具,致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現實的、探索性的數學活動中去。如何充分發揮、凸顯現代信息技術的優越性和有效性而又省時省力呢?
本課依托網絡平臺,為學生創設一種大問題背景下的探索活動,以游戲這個學生感興趣的明線下,借助網絡實驗室,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會數學的科學性。創設“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生大膽猜想——驗證猜想——完善猜想等,從而一步步使分數的基本性質趨于完善。
我設計的具體教學過程如下:
第一環節:激趣引入,凸顯信息技術的趣味性。
“好的開始是成功的一半”,本課運用學生感興趣的電腦游戲和卡通人物導入新課,有效地開啟學生思維的閘門,激起猜測探究的興趣,通過比較三個分數的大小,凸顯矛盾沖突。(我在教學比較這三個分數大小時,學生們各抒己見,堅持著自己的觀點不放,使得不同觀點的矛盾激化,激發了學生的好奇心和爭強好勝的心理,為后面的發現規律埋下伏筆。)
第二環節:探索規律,凸顯信息技術的直觀性和時效性。
1、提出猜想。
學生進入國外網站,通過操作,直觀的觀察情境中三個分數的涂色部分,發現這三個分數的大小是相等的。
再引導學生觀察這組分數中“什么變了,什么沒變”,從變了的分母、分子入手去觀察它們是怎么變的,得到初步的猜想,“分數的分子、分母都乘或除以2,分數的大小不變”。
(“學起于思,思起于疑”。這個環節中,當學生猜測三個分數誰大誰小,運用網絡實驗室用比平時更少的時間、更直觀的得出三個分數大小相等,為后面猜想的提出提供了更多觀察、交流的時間)
2、完善猜想。
在得到初步猜想后,在游戲的大背景下,再出示一組分數:三分之二和十五分之十。學生猜測大小、進入網絡實驗室驗證,發現這兩個分數也是相等的。
這一部分的主要目的則在于完善初步猜想,使學生感受到分子、分母不僅可以乘或除以2,分數大小不變,還可以乘或除以像5這樣更大的數,從而得到進一步的猜想:“分數的分子、分母都乘或除以同一個數,分數的大小不變”。
(在這一環節中,網絡實驗室再次起到了快速、直觀知道分數大小的作用,唯一不同的是,這次使用了紙條這個不同的表現形式,通過不同的表現形式來表達分數的意義)
3、驗證猜想,得出規律。
學生把符合猜想的三組分數記錄在學習卡上,(用圖片方式呈現)再到網絡實驗室里進行驗證,看看是否也都具有一定的規律。通過大量的例子顯示這不僅僅是學生的猜想,而是具有一定規律的。
最后運用分數與除法的關系和商不變的性質,從舊知遷移解釋、理解新知,得到“同一個數”不能為0,從而確定了最后規律,得到本課課題:分數的基本性質。(平時的教學中能驗證的分數少之又少,而學生通過猜想可以得到的分子、分母較大的相同大小的分數——如二分之一和百分之五十這樣的分數就很難驗證,通過我們的網絡實驗室就能很好地解決這個問題,充分體現了網絡實驗室的重要性和必要性。這樣,在平常教學中最花費時間的環節——驗證上節省了不少時間)
第三環節:游戲鞏固,思維提升,凸顯信息技術的交互性。
學生已經理解了分數的基本性質后,再次進入網絡實驗室,以玩游戲的形式鞏固所學的規律。(教師也從這個過程了解學生的掌握情況。有的學生在玩這個游戲的時候甚至發現了兩個分數之間的分子、分母分別不具備倍數關系,如十二分之六和十八分之九,還發現通過找中間數也能運用分數的基本性質解釋這個現象。)
接著再通過回到第一組分數,利用分數的基本性質寫出與第一組分數相等的分數來提升學生的思維,初步感知與第一組分數相等的分數還有很多很多。讓學生感受到分數的基本性質應用非常廣泛,還需要他們進一步的學習和探索。
第四環節:提煉方法,積累基本的數學活動經驗。
師生共同回顧學習過程,總結并提煉出探索規律的方法:猜想→驗證→得出結論,為學生今后的學習提供科學的學習方法。
第五環節:網上交流,課內向課外延伸。
一節課的結束不僅僅是解決了幾個問題,更重要的引發學生新的思考和新的探究行為,但一節課的時間是非常有限的。所以在課的最后,教師在課件上給學生提供了課堂上所用網絡實驗室的網址和老師的博客,讓學生通過網絡實驗室這個平臺及博客這個載體,在網絡上回饋所學、發表言論。記得我公布博客地址不久就得到了學生的反饋,甚至聽課老師也參與其中,給我提出許多的意見和建議。這樣能讓學生感受了網絡資源豐富的同時,也使這節課不僅僅局限在課堂上,還拓寬到了網絡以及今后的生活、學習中,真真正正的利用、發揚網絡資源,把一些常規課堂無法實現的交流,都一一實現,體現了信息技術的人性化、學生主體性以及網絡的延遲性和廣泛性。
最后我以一句話結束我今天的說課“兒童是知識的創造者而不是被動接受者,他們主動地建構屬于他們自己的知識和對事物的理解。當孩子們在經歷數學、體驗數學時,課堂才是充滿活力的!”,謝謝大家!
比的基本性質說課稿11
各位老師:
下午好!我今天說課的內容是北師大版小學數學第九冊《分數基本性質》首先,對教材進行分析。
一、教材分析
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
二、學情分析
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
根據教材分析和學生情況,制定如下教學目標
三、教學目標
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
依據教學目標,確定教學重難點
四、教學重難點
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數
理解分數基本性質的含義,掌握分數基本性質的推導過程。
五、教學方法
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
六、教具學具準備
準備大小相等的圓形紙片,水彩筆等。
七、教學過程:分六個環節
(一)故事設疑,揭示課題。我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的14,沙和尚吃第二塊餅的28,悟空吃第三塊餅的416,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出14,28,416,用彩筆在折的圓上涂出14,28,416,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
(二)合作探索,尋找規律。請同學們觀察14,28,416 ; 3|4,68,1216這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
(三)鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母 ( );23=18621=2()等這樣的題,進行練習。
(四)梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
(五)多層練習,鞏固深化。
我將設計從鞏固到思維拓展三個層次的練習。
1.
2. (1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
3.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上( )。
(六)全課小結
現在讓我們看板書,回憶這節課學到了什么知識,比上眼睛想一想,覺得把內容記下了,就微笑一下,是不是覺得學習是件快樂的是呢?
比的基本性質說課稿12
一、說教材結構與內容簡析
本章是九年義務教育數學六年級第一冊第三章比和比例,之前已經學習了分數,通過本章的繼續探討將為今后學習正比例函數和反比例函數等打下必要的基礎。我講的是第三章第二節比的基本性質,這一節分兩課時,我主要說的是第一課。這一課是在學生已經掌握了比的意義,比和分數、比和除法的關系以及分數的基本性質和除法的商不變性質的基礎上進行教學的,因此在比和比例這章中起承上啟下的作用。
二、說教學目標:
根據本節課知識在教材中的地位和作用以及學生的認識發展規律,我確定了本節課的教學目標:
知識與能力:
1、讓學生經歷發現、總結比的基本性質的過程,在感受和理解比的基本性質的發生和發展的過程中培養學生的創新精神;
2、使學生在小組探究中掌握運用比的基本性質把一個比化成最簡單的整數比的方法,培養學生解決簡單實際問題的能力;
3、尊重學生的個性,注重算法多樣化,使學生在交流、爭論中培養學生的獨立思考能力和創造能力。
過程與方法:
1、經歷比的基本性質的探索過程,引導學生初步認識從“特殊”到“一般”的規律,將未知轉化為已知,合理運用歸納思想、整體思想,發展學生的逆向思維,滲透探索問題的思想與方法;
2、在形成猜想與作出決策的過程中,形成解決問題的一些基本策略,發展實踐能力。
情感態度與價值觀:
1、本節課突出學生的主體地位,讓學生高高興興地進入數學世界,在探索中激發興趣,從發現中尋找快樂;
2、培養學生做事、待人應具體問題具體分析的良好習慣;
3、由舊知識引入新知識,培養學生應用數學的意識,并激發學生學習數學的興趣;
4、通過由舊到新、由新到舊的訓練發展學生主動探索,合作交流的意識。
三、說教學重點、難點:
重點:比的基本性質及運用比的基本性質進行化簡,通過同學們自主探究,突出重點;
難點:運用比的基本性質計算,通過師生交流互動突破難點。
四、說教法與學法:
教法:在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過程。基于本節課的特點:有分數的基本性質作為基礎,我采用自主探究,合作交流的教學方法。
學法:從猜想——合作交流驗證——發現,即在教學過程中創設教學情景,注重教師的導向作用和學生的主體作用。
五、說教學過程與設計意圖:
1、創設生活情境,以激發學生的探索欲望
上課開始,我詢問學生:“同學們喜歡喝菓珍嗎?”大部分同學會說愿意并會表示他們愿意喝更甜一些的。這時我會適時的向學生說明其實小明同學和大家一樣也喜歡喝甜的菓珍,這不小明的媽媽給小明準備了三杯菓珍,但只能選擇其中的一杯,哪杯甜呢?這下難壞了小明,聰明的同學們,你們愿意幫助他嗎?多媒體課件演示:第一杯100毫升的水,10克菓珍;第二杯200毫升的水,20克菓珍;第三杯400毫升的水,40克菓珍、同時我也以此在講臺上做了這個實驗,同學們會興致盎然,想盡各種辦法幫助小明。
(這樣的設計意圖是因為每一個學生都是熱情的,都是樂于助人的,尤其是愿意幫助同學解決問題,因此一聽說幫助同學,學生會產生極大的興趣,興趣就是學生思維的原動力,只要有興趣,就會產生創造性的源泉。另外小明的困難又是學生熟悉的生活情境,這有利于學生憑借生活經驗主動探索,實現生活經驗數學化,同時又感受到“數學源于生活”。)
2、引導學生發現規律,總結比的基本性質
同學們幫助小明解決問題,有的利用商不變性質,有的利用分數的基本性質。學生在師生互動中說出商不變性質,分數的基本性質的內容。屏幕出示文字內容。我接著詢問在分數的基本性質里,有哪些關鍵詞?在商不變的性質里,有哪些關鍵詞?缺少他們行嗎?為什么?通過類比讓學生想到比的基本性質,從而引出課題。
(這樣的設計意圖是先通過學生回憶已學舊知,進而猜想比的基本性質從而引出課題,放飛了學生思維,讓他們自主地依據已有知識經驗,在觀察、合作、猜想、交流中展開合理的想象與多角度思考。)
接下來,讓學生觀察商不變性質與分數的基本性質,猜一猜,想一想,比的基本性質應該是怎樣的呢?小組討論,學生根據討論結果發表意見,師生共同總結比的基本性質的內容。最后強調學習了比的基本性質,哪些詞語是很重要,提醒同學們注意“同時、相同、0除外”這些關鍵詞。
(這樣的設計意圖是讓學生體會到充分利用已有知識自學新知的學習方法,進一步弄清了比、除法、分數之間的聯系與區別。然后通過引導學生用語言描述,共同完善比的基本性質,使學生在這一過程中,領悟了利用舊知學習新知的學習方法,溝通了知識間的聯系,又培養了學生初步的類比推理能力。)
3、理解最簡整數比
通過類比讓學生明白利用商不變性質,我們可以進行除法的簡算;根據分數的基本性質,我們可以把分數約分成最簡分數。同樣應用比的基本性質,可以把比化成最簡單的整數比。小組討論怎么理解“最簡單的整數比”這個概念?然后達成共識:
(1)是一個比;
(2)前項、后項必須是整數,不能是分數或小數;
(3)前項與后項互素。
(這樣的設計意圖是“最簡單的整數比”是本節課教學的難點,所以先類比然后讓學生討論最后對這個概念產生共識的方法,讓學生在獨立思考、互動交流中自發地嘗試利用已有的知識來解讀新概念。)
4、教學例題,加深對知識的理解
例1 化簡下列各比:
(1)(2) 0.65:1.3 (3) :(4)1.25升:375毫升
化簡之后讓學生小結
(1)分數的化簡,用約分方法就可以;
(2)兩個小數的比,通常先化成整數,再化簡;
(3)帶分數與分數的比,先將帶分數化成假分數,然后再化簡;
(4)兩個同類量的比,單位不統一時,先化單位一致,再化簡。
(這樣的設計意圖是試圖通過對較簡單的整數比的化簡,給學生一個運用性質解決具體問題的范例,讓每個學生充分展示自己的思維方法及過程,相互討論分析,提示知識規律和解決問題的方法,在合作中學生互相幫助,實現學生互補,增強合作意識,提高交往能力。)
5、實踐練習,鞏固知識
練習1 小蝸牛找家(口答)
六個家分別是6:30, 0.1:0.4, 2:6, 2:8, 16:20
五個蝸牛分別是4:5, 1:3, 1:4, 1:5, 2:3找到后連接起來。
(這樣的設計意圖是使原來枯燥乏味的數學題有了“趣味性”,使學生對數學產生濃厚的興趣和親切感,從而調動課堂氣氛。)
練習2 填空
1、3:8=(3×2):(8×□)
2、15:10=(15÷□):(10÷5)
3、5:3=(5×□):(3×□)
(這一部分的設計意圖是使學生加深對比的基本性質的理解,尤其是最后一題使學生在填空過程中體會到可以填“除0以外的所有相同的數”,培養學生的開放性思維。)
練習3判斷下列各題
(1) 16 ︰4的最簡比是4。 ( )
(2) 5︰2、5 的比值是2。 ( )
(3) 6 ︰0、3 的最簡比是20 ︰1。 ( )
(4)比的前項和后項都乘或都除以相同的數,比值不變。 ( )
(這一部分的設計意圖是題目的多樣性使學生更加深刻的理解比的基本性質的概念。)
練習4化簡下列各比
(1)48:64 ; (2)4、6:6、9 ; (3)220cm:1、1m ; (4)1、5升:720毫升
(這一部分的設計意圖是進一步鞏固知識,使學生清楚化簡比它是為了得到一個最簡單的整數比,結果可以寫成比的形式,也可以寫成分數的形式,但不能寫成帶分數、小數或整數的形式。求比值是為了得到一個數,結果可以寫成分數、小數,也可以是整數。)
拓展練習:
為迎世博完成一批紀念品制作,甲單獨作20天完成,乙單獨作30天完成。
(1)寫出甲、乙完成這批紀念品制作所用的時間比,并化簡。
(2)寫出甲、乙完成這批紀念品制作的工作效率比,并化簡。
(這一部分的設計意圖是讓學生從實際出發,根據解決問題的條件作全面分析,周密思考,提高了學生全面分析及解決實際問題的能力,目的是培養學生辯證地看問題,培養學生創新精神。)
6、課堂小結,回顧所學知識
比的基本性質,是同學們通過自己主動探索,合作研究發現的,并能根據這一性質解決實際問題,回顧我們的學習過程,誰來談談你的收獲和感受。
(這一部分是對學生學習的一種激勵評價,使學生體驗到主動探索,獲取知識的喜悅,激發了學習興趣,樹立學習自信心。)
以上就是我對本節課的教學設計,如有不當之處敬請各們老師批評指正。
比的基本性質說課稿13
一、教材分析
1、教材內容
《分數的基本性質》這一課是課改版小學數學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種變與不變中發現規律。
2、知識間的聯系:
七冊:商不變性質 十冊:分數的基本性質 十二冊:比的基本性質
同時《分數的基本性質》也是學生學習分數加減法的基礎。所以,本節課的教學內容具有比較重要的地位。
二、指導思想與設計理念
新的課程標準提出:教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。
根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,本課讓學生經歷:舊知喚醒(復習商不變性質與分數與除法的關系)新知猜想(分數中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數學建模(用字母來表示分數的基本性質)建立聯系(分數的基本性質與商不變性質的聯系)。讓學生對于分數的基本性質能在數學的層面上有一個較為完整、清晰與明確的掌握。
三、學情分析
前測:(問卷形式)
問題1:你知道分數的基本性質嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大小:
4/7○2/7 1/2○2/4 3/5○9/15
分析:暫無
結論:暫無
四、教學目標及重難點
教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(0除外),最終:分數的大小不變。
教學難點:
理解和掌握分數的基本性質。
解決策略:通過初步建立數學模型,使學生對分數的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
五、教法學法:
教法:樹立以以學生發展為本、以學定教的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程
一、遷移舊知.提出猜想
1回憶舊知
活動:猜信封。通過猜信封中的數或算式,引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數除數=
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
二、驗證猜想,建構新知
環節1、看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現盲目行動,同時也是為學生探究方法的多元化創造條件。
環節2、討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規律
第一層:師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數
得到的分數
研究對象與得到的分數相等嗎?
相等( )不相等
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數基本性質的關鍵詞,滲透變與不變的數學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、6/21=2/( )、3/5=21/( )、27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
環節4、質疑完善
3/4 = 3( )/ 4( )
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4= 3X/ 4X(X0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環節的練習,進行第一次數學建構。
三、練習升華
通過以下練習進一步鞏固分數的基本性質,使學生初步利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
1、5/7=( )/35 、3/4=9/( )、3/( )=12/20、16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和 哪一個分數大,你能講出判斷的依據嗎?
四、總結延伸
師:這節課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)
在這個環節中,數學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數學化地表示數學也是高年級學生所必備的。
五、作業p87-1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
68
34
1216
比的基本性質說課稿14
一、說教學內容的創新處理
《分數的基本性質》是九年義務教育六年制小學數學第十冊第四單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系以及整數除法中商不變的規律這些知識為基礎的。原教材先通過直觀使學生了解1/2、2/4、3/6三個分數的分子、分母雖然不同,但是分數的大小是相等的。接著進一步研究這三個分數的分子和分母,思考它們是按照什么規律變化的。最后歸納出分數的基本性質。這樣安排教學內容,學生的主體地位不能得到充分體現,不利于培養學生的問題意識。為此,我打算通過“折、畫、想、問、用”五個環節對教學內容作如下處理。
1.折--用三張同樣大小的長方形紙條分別折出二等分、四等、八等分。
2.畫--讓學生用色筆在長方形紙條上分別涂出它們的一半,并用分數來表示。
3.想--1/2、2/4、4/8這些分數有什么關系?你還能說出和“1/2”大小相等的其他分數吧?你還能說出和“2/3”大小相等的分數吧?
4.問--ww“1/2=2/4=/4/8”中,你發現什么?
5.用--用已學過的“分數的基本性質”解決有關的數學問題。這樣安排教學有以下幾點好處:
(1)有利于知識的遷移。
讓學生通過動手折、涂,再用分數表示,這樣既幫助學生復習了分數的意義,又為學習新知識作了準備。
(2)能發揮學生學習的主動性。
通過學生找和“1/2”大小相等的分數,以及和“2/3”大小相等的分數,發揮學生學習的主動性,體現自主學習的精神。
(3)提高了學生的學習能力。
通過交流,培養學生敢于發表自己的意見,積極思考問題,積極探問題,培養學生概括問題的能力和解決問題的能力。
二、說教學模式
本節課起打算采用“創設情境,復習遷移--設疑激思,獲取新知--深化概念,及時反饋”的教學模式進行教學。
1.創設情境,復習遷移。
為了發揮學生學習的主動性,使舊知識起到正向遷移的作用,首先創設了動手操作的情境:起發給每位學生三張同樣大小的長方形紙條,讓學生折一折。把第一張紙條對折(也就是把這張紙條平均分成2份),把第二張紙條對折再對折(也就是把紙條平均分成4份),再把第三張3次對折(也就是把紙條平均分成8份)。接著,讓學生畫一畫,用彩筆在等分后的紙條上分別涂出它們的一半。告訴學生,如果把每張紙條都看作單位“1”,問學生:你能把涂色的部分用分數表示嗎?(電腦顯示三張涂色的紙條,學生分別用分數1/2、2/4、4/8表示。)
這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,激活課堂氣氛,營造良好的學習開端。
2.設疑激思,獲取新知。
“疑是思之始,學之端”。學,就是學習問題,學怎樣問問題。為此,我在上面教學的基上,引導學生逐一討論以下問題:
(1)1/2、2/4、4/8這些分數有什么關系?
(學生會說這三個分數的大小相等。)
(2)你能說出與“1/2”大小相等的其他分數嗎?你還能說出與“2/3”大小相等的分數嗎?
(如果學生寫錯或寫不出,待得出分數基本性質后再寫)
(3)從“1/2=2/4=4/8”中,你發現了什么?
(讓學生分組討論,充分發表自己的意見,經過歸納,最后得出:分數的分子和分母同時乘以或者除以相同的數,分數的大小不變。并把這句話顯示出來。)
(4)你對上面這句話覺得有什么問題嗎?
(學生可能會提出地“相同的數”中“0”必須除外。如果學生提出不出,就由教師提出問題:相同的數是不是任何數都行?為什么?)
最后,讓學生完整地概括出分數的基本性質。(老師揭示課題)
這樣教有利于培養學生的問題意識,師生情感交融、和諧,學生積極參與,思維活躍,學習主動,為學生創設一個良好的學習氛圍。
3.深化概念,及時反饋。
為了加深學生對分數基本性質的理解,激發學生的學習興趣,起設計了如下練習:
1.下面各式對嗎?為什么?(讓學生用手勢表示對錯)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合適的數。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分線是12而大小不變的分數。
4.把下面大小相等的兩個分數用線連接起來。
4/51/64/94/612/16
3/42/320/256/368/18
三、說教學目標
以上各個教學環節的設計體現如下幾點教學目標:
1.知識技能性目標:讓學生親身經歷“分數基本性質”抽象概括的全過程,正確理解和掌握分數的基本性質,使學生能運用分數的基本性質解決有關的數學問題。
2.發展性目標:培養學生觀察--探索--抽象--概括的能力以及遷移類推能力,滲透事物是相互聯系、發展變化的辯證唯物主義觀點,培養學生的數學意識、問題意識、合作意識以及應用意識。
3.創新性目標:讓學生在學習的過程中發現問題、解決問題,提高學生探索問題的能力和研究問題的能力。
比的基本性質說課稿15
各位老師:下午好!我今天說課的內容是北師大版小學數學第九冊《分數基本性質》首先,對教材進行分析。
教材分析:
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學情分析:
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發現規律,掌握新知識。
教學目標:
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養學生熱愛數學的情感。
教學重點:
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數理解分數基本性質的含義,掌握分數基本性質的推導過程。
教學方法:
根據本節課的教學內容和教學目標采用講授法,小組合作學習。
教具準備:
準備大小相等的圓形紙片,水彩筆等。
教學過程:
一、故事設疑,揭示課題。
我將以唐僧師徒分餅的故事創設問題情景。八戒吃第一塊餅的1/4,沙和尚吃第二塊餅的2/8,悟空吃第三塊餅的4/16,他們誰吃的多呢?以此引入新課,激發學生思考的興趣,積極參與到課堂教學中來。并在這個環節設計學生動手折、畫、標等活動,折出1/4,2/8,4/16,用彩筆在折的圓上涂出1/4,2/8,4/16,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
二、合作探索,尋找規律。
請同學們觀察1/4,2/8,4/16;3/4,6/8,12/16這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的數(0除外),分數的大小不變。
三、鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母 ( );2/3=??( )/186/21=2/( )等這樣的題,進行練習。
四、梳理知識,溝通聯系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
然后比較這兩個性質的聯系。這樣設計主要是為了共建知識之間的聯系,有助于學生靈活遷移應用,觸類旁通。
五、多層練習,鞏固深化。
1.(1)把5/6和1/4化為分母為12而大小不變的分數。
(2)把2/3和3/4化為分子為6而大小不變的分數。
2.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上( )。
六、全課小結
現在讓我們看板書,回憶這節課學到了什么知識,比上眼睛想一想,覺得把內容記下了,就微笑一下,是不是覺得學習是件快樂的是呢?
《比的基本性質》說課稿
《比的基本性質》說課稿1
一、說教學理念
1、以學生發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生帶給充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的構成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
二、說教材
1、教學資料
《分數的基本性質》一課是五年級下冊第四單元的一個資料。這部分資料是在學生學習了分數的好處、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。在講解這一知識點時,應注意加強整數商不變性質的回顧,這樣既幫忙學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析
學生在三年級上學期已經初步認識了分數,明白分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識資料概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)透過教學使學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括潛力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:
理解和掌握分數的基本性質
教學難點:
學習自主探索,發現和歸納分數基本性質,以及應用它解決相應的問題。
教具學具:
課件,三張同樣大小的長方形紙條、彩筆。
三、說教法
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在用心的思維中獲取新知。
四、說學法
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師透過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,到達檢驗自學的目的。
五、說教學過程
(一)、創設情境激趣引新
(二)、新知探索
動手操作、形象感知
觀察比較、探究規律
首尾照應、釋疑解惑
(三)、鞏固新知
判一判填一填找一找
(四)、擴展延伸
1、創設情境,激發興趣,揭示課題。
上課伊始我利用阿凡提為三兄弟分地的故事來激發學生的學習興趣,讓學生親自動手折一折、分一分、比一比,從直觀上讓學生感受到這幾個分數大小是相等的,而這幾個分數的分子和分母都不相等,這其中有什么規律呢?繼而揭示課題。
(設計意圖)好奇是學生的天性,透過分地故事能快抓住學生的好奇心,使他們在心理上產生懸念,帶著疑問迅速切入正題。
2、探索新知
(1)、動手操作、形象感知
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/3,2/6,4/8。觀察涂色部分,說說發現了什么?在學生匯報時,說出:涂色部分面積相等,也就說明這三個分數大小相等。然后透過電腦再進一步證實學生的發現:透過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。
(設計意圖)主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅僅復習了分數的好處,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
(2)、觀察比較,探究規律
首先,在學生折紙的基礎上,透過小組討論交流總結出分數的基本性質,讓學生理解“同時乘上或者除以”的好處,以及為什么要強調“0除外”這個條件。其次,總結出分數的基本性質后,要和以前學過的商不變規律進行比較,找出二者間的聯系,使學生更好的理解、運用性質。
(設計意圖)這一環節重在培養了學生大膽交流、語言表達的潛力,同時學生在匯報交流中使問題逐漸明朗化,最終驗證了自己的猜想。要充分放手,讓學生暢所欲言。
3、鞏固新知
在鞏固階段,我安排了三個不同層次的習題。其中“填一填”是基礎練習,但也包內含6/12=/()的發散題。“判一判”也是對“分數的基本性質”做進一步的詮釋。“說一說”是一種變換了形式的習題,難度不大,只但是說法不同,最后還安排了“想一想”環節,解決的方法已經蘊含在前面的“聽一聽”環節中。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養了學生創新意識和解決問題的潛力。
4、拓展延伸
透過質疑反思、步步深入的交流活動,學生對分數的基本性質探究更深入,理解更完善。此時學生的視野已不盡限于分數的基本性質,而是擴展到研究分數大小變化的規律;最后的拓展性提問,使學生思維發散,聯系實際,運用規律,并自然引出以后的學習資料,激發學生不斷探索新知的欲望。
六、板書設計
分數的基本性質
分數的分子、分母同時乘以或除以相同的數,
分數的大小不變。
《比的基本性質》說課稿2
今天我向大家介紹的是數學六年級新教材第一章“分數”中的第二課時“分數的基本性質”。在本堂課的教學設計中,試圖突出以下兩個特點:
(1)逐步引導學生實現學習方式的轉變:由學生習慣于課堂上聽教師講授為主的學習方式,轉變為學生自主學習探究的學習方式。教師為學生提供一個發展的空間,引導學生自己通過動手操作、觀察猜測、說理驗證等學習環節,運用自主探索、合作交流等學習方式,去探索,去發現,去體驗,教師作為指導者給予啟發、點撥。希望通過這樣的設計,能逐步引導學生形成并且正在逐步形成積極思考、自主探索、相互合作、嚴謹求實的品質。
(2)強調知識發生的過程,加強數學思想方法的滲透:由學生熟悉的給定理、做練習的數學課模式,轉變為突出知識發生過程,強調數學思想方法的數學學習過程。通過給學生設置一個具體的情境問題,激起學生的求知欲望,教師引導學生探索發現其中的數學規律,并用已經學過的知識和方法去嘗試說理驗證。通過這樣的數學學習過程,學生能親身體驗科學研究的一般過程,并從中體會科學探索的嚴謹品質,同時在要求學生說理驗證的過程中可以啟發學生建立新舊知識之間的聯系,實現知識點的增長和遷移的特點。
在前一年我曾執教過六年級數學,通過這次的備課,我發現:在“分數的基本性質”這一課的教學安排中,新老教材對知識的發生和形成過程的處理方法有較大的區別。據我個人的觀點,老教材在引入時有針對性的復習分數與除法的關系和除法中商不變的性質,之后通過類比來實現知識點的遷移和增長,這樣的設計安排學生能較好的體會到各知識點之間的內在聯系,學習的數學概念有較強的系統性;新教材則更強調學生通過自身的努力,經過動手操作實踐的過程,來獲得親身探究的直觀感受和體驗,之后再設法把感性認識上升到理性思考的高度,這樣的設計安排突出的特點是學生有更多的動手操作機會,能留下強烈的直觀感受,對培養學生逐步形成自主探究的良好的學習方式有很大的幫助。教學目標:在理解分數意義的基礎上,通過操作、觀察,探索分數的基本性質,體驗分數性質的“探究發現——說理檢驗”的學習過程,并會運用分數的基本性質將一個分數變化為分母(或分子)不同而大小保持不變的分數。學會面對新問題時,敢于面對、積極探索、發現規律,并能從原有知識中找到理論依據,體會新舊知識間的內在聯系,通過自身的努力,實現知識點的遷移和增長。通過數學課的學習活動,盡快熟悉新同學,逐步養成認真傾聽同學意見、相互合作、相互交流、積極探索的品質。
教學過程:
一創設情境,引出問題,引導探索,猜測規律提出問題:一張涂色的紙,涂色部分占這張紙的3/4。請同學們分別用這樣的紙折成不同等分的圖案,看看你們能發現什么結論呢?通過教師的引導,學生們可以發現:在這些大小相同、不同等分的紙中,涂色部分分別占紙的3/4、6/8、9/12、12/16,這些分數的大小是相等的,即:3/4=6/8=9/12=12/16。由分數3/4的分子、分母分別同乘以2、3、4可得分數6/8、9/12、12/16。而分數12/16、9/12、6/8的分子、分母分別同除以4、3、2可得分數3/4。鼓勵學生大膽猜測。由折紙這樣具體的情境問題來引發學生的思考,既能激發學生的學習興趣,學生又能真切的體會到數學就在我們身邊;安排動手操作的學習環節,之后通過觀察和找規律來進行探究性學習,符合六年級學生的認知程度,能讓他們體會到數學學習的樂趣。折紙這樣的操作雖然看似簡單,其實能反映出很多數學問題,例如通過折紙可以幫助學生體會圖形的翻折對稱中隱含的圖形特征和邊角的數量關系。我們應該盡量挖掘類似的簡單有效的方法,讓學生的數學學習過程手腦并用、輕松有趣。在探索過程中,教師的引導是非常重要的一個的環節,尤其是如何設問。
在此,我就提出幾個設問僅供大家參考。雙色紙上有幾個小長方形?綠色部分占這張紙的幾分之幾?你能將它折成幾個大小相同的小長方形?綠色部分分別占了幾分之幾?這些分數有什么關系?這些分數之間有什么規律?在本節課之前,學生對分數的意義、分數與除法的關系已經有了初步的認識,在說理過程中,會很自然的運用到分數和除法的關系,以及除法中商不變的性質。分數和除法的關系就是前一節課的學習內容,學生印象還比較深刻,較易聯想起來;除法中商不變的性質可能學生一時之間不容易回想起來,但它和分數的基本性質相似性極高。安排這樣的說理環節,可以使學生體會到新舊知識之間的內在聯系,體會到學習的過程就是知識點的遷移和增長過程。三運用性質,鞏固提高例題1試舉出幾個與分數18/48大小相等的分數。教材上是“試舉出三個與分數2/5相等的分數”。做改動的目的有兩個:一是學生可以從中體會分子、分母不但可以同乘一個數而且可以同除一個數;二是不明確寫幾個,來引發學生思考這樣的分數可以寫幾個?例題2把2/5和8/60分別化成分母是15且與原分數大小相等的分數。練習1在括號內填上適當的數,使等式成立:
(1)9/15=3×()/5×()
(2)2×()/9×()=8/()
(3)5×()/2×()=()/14
(4)15÷()/20÷()=()/42
試各寫出三個與下列分數分母不同而大小相等的分數:
(1)1/4
(2)5/7
(3)4/6
(4)10/43
分別用數軸上的點表示分數1/2,2/4,4/8,你能得到什么結論?4把2/3和8/30分別化成分母是15且大小相等的分數。5在括號中填上適當的數:
(1)1/4=()/12
(2)3/7=()/56
(3)6/5=30/()
(4)()/10=4/20
(5)36/24=()/8
(6)7/35=1/()
(7)18/()=6/12
(8)20/16=5/()
四、課堂小結
《比的基本性質》說課稿3
各位老師,大家好!今天我說課的內容是課程標準試驗教科書數學五年級下冊第四單元第三課時“分數的基本性質”。下面我從設計理念,教材,教法,學法,教學過程五個方面進行說課。
一、說設計理念
1、以學生的發展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態度。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
二、說教材
1、教學內容:
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。教材在講解這一知識點時,應注意加強整數商不變性質的內在聯系,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯系。
2、學情分析:
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使得學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規律解決簡單的實際問題。
(2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養學生的抽象概括能力。
(3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
4、教學重點:理解和掌握分數的基本性質。
5、教學難點:學習自主探索,發現和歸納分數的基本性質,以及應用它解決相應的問題。
6、教具學具:課件,三張同樣大小的長方形紙條、彩筆。
三、說教法
“將課堂還給學生,讓課堂煥發生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規律,我采用的教學方法主要有:
1、實際操作法
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法
先讓學生充分感知,發現規律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發式教學法
運用知識遷移規律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
四、說學法
1、學生在學習分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發現,在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,達到檢驗自學的目的。
五、說教學過程
1、復習提問,舊知鋪墊
新課開始,我先板書了一個除法算式 1÷2,然后讓學生不計算,說出一個除法算式和它的商相等,學生邊說我邊抽取兩個算式板書,比如2÷4,4÷8 ,3÷ 6等。然后讓學生說說是根據什么想到這些算式的(商不變的規律),商不變的規律的內容又是什么<被除數和除數同時擴大或縮小相同的倍數(0除外),商不變>。
第二步,我讓學生根據分數與除法的關系,把這三個算式寫成分數形式,根據三個算式商相等,推導出這三個分數的大小。也就是1/2=2/4=4/8。此時,引導學生:在除法中有商不變的性質,那么分數中又有什么規律呢?今天我們就共同來探討分數當中的這個問題。這樣設計的目的就是讓學生通過觀察算式和分數的特點,培養學生直覺觀察能力,激發學生利用舊知識商不變的規律,探求新知識的興趣,同時也使學生明確要解決的問題。
2、動手操作,初步感知
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/2,2/4,4/8。再觀察涂色部分,說說發現了什么?在學生匯報時,說出發現:涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發現:把一張紙條平均分成2份,涂其中1份,得到1/2;把一張紙條平均分成4份,涂其中2份,得到2/4;把一張紙條平均分成8份,涂其中4份,得到4/8;通過觀察,我們發現三個陰影部分大小相等,說明三個分數大小相等。這一過程的設置,主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
3、設疑促思,探究新知
“疑是思之始,學之端”。在教師板書1/2=2/4=4/8后,進一步引導學生觀察這三個分數,它們的分子分母都不相同,但是分數的大小卻相等,提出疑問:這里面隱藏著什么秘密,有什么規律?接著將發言權充分交給學生,完全開放空間,激發學生思索,并暢所欲言,說出自己發現的規律,(比如:將1/2的分子分母同時乘2得到2/4,將2/4的分子分母同時乘2得到4/8,將1/2的分子分母同時乘4得到4/8;將4/8的分子分母同時除以2得到2/4,將2/4的分子分母同時除以2得到1/2,將4/8的分子分母同時除以4得到1/2共6種)。
在學生自主探究的基礎上,逐步完善學生的說法,適時引導學生將發現的規律總結成一句話:分數的分子分母同時乘或者除以相同的數,分數的大小不變。
如果學生在此說出了0除外更好,如果沒有,在此基礎上,提出疑問:“同時”表示什么意思?這個相同的數是任何數都行嗎?為什么?那么同學們總結的規律該怎樣敘述更完整呢?在學生加上“0除外”完整敘述后,指出:分數的這種變化規律就是我們今天學習的“分數的基本性質”,并借此板書課題“分數的基本性質”。
這樣設計的目的就是培養學生發現問題,自主探究問題的能力,也培養學生的語言表達能力,抽象概括能力和初步的邏輯思維能力。
另外,我還安排了“聽一聽”,讓學生聽5句話并判斷對錯。
第一句:分數的分子分母同時乘相同的數(0除外),分數的大小不變。
第二句:分數的分子分母同時除以相同的數(0除外),分數的大小不變。
第三句:分數的分子分母同時加上相同的數(0除外),分數的大小不變。
第四句:分數的分子分母同時減去相同的數(0除外),分數的大小不變。
第五句:分數的分子分母同時乘或者除以相同的數(0除外),分數的大小不變。
除了進行“聽一聽”的練習,還有習題的判斷。這樣一次次地加深,強化學生對分數的基本性質的理解,反復錘煉學生,達到對知識的更深刻的掌握,也為后面例題的完成奠定厚實的基礎。
4、初步應用,深化新知
學習分數的基本性質,就是為了在生活中運用它。給你一個分數,能把它化成分母不同而大小相同的分數嗎?借此引出例2。讓學生讀題,并明白做題要求有兩個:一是分數大小不變,二是分母相同。在引導學生完成第一個分數后,第二個分數讓學生獨立完成在書上,然后全班學生交流自己的過程及結果。但是一個例2不足以讓學生達到鞏固的目的,所以再次安排了和例2題型完全一樣的“做一做”,讓學生獨立思考,寫在練習本上,并抽兩名學生板演,對出現的問題共同指正。這樣的安排是為了把“分數的基本性質”及時練習,反復應用,對學生鞏固新知、利用新知都達到好的效果。
5、多樣練習,鞏固知識
在初步應用“分數的基本性質”后,我安排了四個不同層次的習題。其中“填一填”是基礎練習,但也包含有6/12=( )/( )的發散題。“判一判”也是對“分數的基本性質”做進一步的詮釋。“說一說”是一種變換了形式的習題,難度不大,只不過說法不同,最后還安排了“想一想”環節,解決的方法已經蘊含在前面的“聽一聽”環節中。整個習題設計部分,題目呈現方式的多樣,吸引了學生的注意力,激發了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養了學生創新意識和解決問題的能力。
6 、全課小結,整理知識
讓學生回顧本節課,說一說自己的收獲,培養學生的知識概括能力。同時,教師也在此時進行總結:分數的基本性質和商不變的性質只是在說法上不同,在實質上是相同的,所謂“萬變不離其宗”正是如此。通過利用“分數的基本性質”填空,寫出許許多多分子分母不同但分數大小相等的分數,體會“以不變應萬變”的數學學習方法。最后告訴學生一個小秘密,以后還將學習比的基本性質,它是在“分數的基本性質”的基礎上學習的,這也是“用數學學數學”的學習方法。這樣安排會更加激發學生學習數學的興趣,以及探究數學問題的方法。
最后,我想說,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節數學課都能達到理想的教學效果。
《比的基本性質》說課稿4
一、說教材
小學數學冀教版第十冊第單元《等式的基本性質》是學生已經掌握了方程的意義的基礎上學習的。《等式的基本性質》是本單元的重點,更是今后學習解方程的基礎。
我搜集了人教版的教材近行對比,發現:雖然版本不同,內容編排不同但是數學學習內容大體相同,都以學生的動手實踐,自主探究與合作交流為學生學習數學的主要方式。整個過程中,教師只是探究活動的組織者、引導者、合作者。在這里值得一提的就是我們現在的版本把等式的基本性質一和性質二都是以文字的內容具體的呈現了出來,而人教版教材是通過游戲的方式呈現的,具體的性質內容是在后來的解方程當中逐步體現的。我個人覺得現在的版本還是可取的。
二、說教學目標
根據大綱的要求和教材的特點,結合五年級學生的特點我制定了如下教學目標:
知識目標:
1、理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
能力目標:
1、在用算式表示試驗結果、討論、歸納等活動中,經歷探索等式基本性質的過程。
2、通過學習理解并能運用等式的基本性質解決簡單問題。
情感目標:培養學生討論歸納的意識和習慣,養成認真觀察、深入思考的良好思維品質。
結合學生的實際情況,我把教學重難點確定為:
教學重點:理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
教學難點:理解并能用語言表述等式的基本性質,能用等式的基本性質解決簡單問題。
教學具準備:天平,教學課件,學生導學案等材料
三、說學情分析
學生已經習慣進行高效課堂模式下的學習,具有一定的探究與合作交流能力。在學習了方程的意義的基礎上,再加上對天平已有知識的.經驗積累,應該根據我的教學設計能夠一步步研究出等式的基本性質。當然由于學生的理解能力的差異,對于學困生還是應該照顧到。為了實現上述教學目標,我精心進行教學設計,引領學生課堂生成:
四、說教學過程(以學生的自主探究為主)
(一)、速算比賽:
6。6÷11= 128÷3。2= 250×12= 60×0。2=
36÷180= 2。6×10= 190×0。4= 74÷0。2=
這幾道題是一直以來堅持的口算訓練。不過在處理上采取了比賽的方式,時間是一分鐘,我公布答案后學生迅速自評,并由組長算出組內共算對了多少道題,以此作為標準評出優勝小組,并及時進行加分評價。
(二)、創設情境
教師導語:剛才的比賽中某某組表現的很棒,為他們組贏得了寶貴的2分,希望在接下來的學習中繼續發揚這種精神,同時老師更希望其他組能有出色的表現。上節課我們用了什么儀器了方程的意義呢?(學生肯定會異口同聲的說是天平)教師隨機出示天平。每組一臺。我們這節課還利用天平學習,學習什么呢?請大家看導學案并齊讀課題和目標。教師相機板書。
(三)、獨學導學一
導學一:
小實驗1、根據圖片演示實驗。列式為
實驗2、在天平左邊的托盤里再放入20克的砝碼,這時天平出現什么情況?接著再天平右邊的托盤里放入20克砝碼。根據這時天平的情況列式()
實驗3接著再在天平左右兩邊同時放入100克砝碼,天平會怎么樣?可以列出等式()
實驗4接著在天平左邊的托盤里再拿走20克的砝碼,在天平右邊的托盤里再拿走20克的砝碼。天平會怎樣可以列出等式()?
總結:通過上面的實驗:觀察上面的4個等式,你發現了什么?
學生根據我的設計大多數同學根據已有經驗會很快列出算式,可能有同學會利用我給出的天平驗證,獨學充分后教師要做好評價。
(四)、對學、群學。
學生充分獨學后,對子之間交流進入對學階段。對子之間交流,交流完后組長組織組內組內總結展示。小組長要根據情況確定待展同學。教師巡視觀察那個組利用天平利用的效果好準備接下來的精英展示。教師要關注學困生。特別是雙差生。教師還要做評價。
(五)、精英展示
我這個環節準備一組或兩組展示。展示的方式可以是一人也可以是多名同學一塊展示。教師要做好規律的總結提升和及時的評價,特別是聽展。教師利用課件出示學生列出的每個等式。
五、完成導學二。
導學二(1)根據圖片寫等式
(2)根據圖片寫等式:
比較上面兩組等式,你發現了什么規律?
有了學習經驗,這個環節應該很順利。還是按照高效模式進行,在教學中注意利用教學課件突破學生理解上的難點。有的小組可能還會出現加減的情況,教師要適當引導到倍數關系。
達標訓練:(1)30+x=100(2)x — 71=4
30+ x—30=100()x–71+()=4()
x=()x=()
(3)21 x=105(4)x ÷21=3
21x÷()=105()x÷21×()=3()
x=()x=()
學生理解了等式的基本性質理論,我覺得由理論到實踐應該給學生一個過渡空間,所以我設計了這一環節。學生獨立完成后挑選組長進行展示,此時教師重點強調學生填空的依據,這樣就更好的鞏固了剛學完的理論。完成后教師小結。引導學生談收獲。
最后是達標測評。我選的是教材42頁的第一題。學生做完后教師公布答案,學生互評。教師要做好評價。
《比的基本性質》說課稿5
今天我說課的內容是《分數的基本性質》。下面我將從“說教學理念、說教材、說教法、說學法、說教學程序、說板書設計”六個方面來說課。
一、本課的教學理念有:
1、以學生發展為本,著力強化主體意識。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會,變“學數學”為“做數學”。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化等數學思想方法。
二、說教材
《分數的基本性質》一課是義務教材六年制數學第十冊第四單元的一個內容。這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據教材內容和學生的認識知規律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養學生觀察、比較及動手實踐的能力,進一步發展學生的思維。
2、情感、態度:激發學生積極主動的情感狀態,養成注意傾聽的習慣。
本課的教學重點和難點:理解和掌握分數的基本性質,會運用分數的基本性質。
三、說教法
樹立以“以學生發展為本”、“以學定教”、“教為學服務”的思想,因此在教學中,我采用引導自學、合作探索相結合法,讓學會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,有效地提高了教學效率。在知識的鞏固階段,我還采用組織練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優化組合,以達到促進學生學習方式的轉變,實現教學目標的目的。
四、說學法
1、學生在運用分數的基本性質時,引導學生采用自主發現法、操作體驗法,學生在折紙上畫出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發現。之后老師通過啟發學生運用分數的基本性質,證明那三個分數大小相等,讓嘗試中發現,在實踐中體驗。從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發法,再采用自自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。
五、說教學程序
一、設疑激趣,引入新課
教育學家布朗曾提出:“情境通過活動來合成知識,興趣最好的老師”。
首先我通過多媒體為學生帶來一個和尚分餅的故事。從前有座山,山里有座廟,廟里有個老和尚和三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?
這樣通過故事激發學生的學習興趣,為后面的學習做好了鋪墊。
二、自主探索,學習新知
新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。
1、小組合作,讓學生用一張紙代替餅,試著分分看。經歷驗證猜想——學生操作驗證——集體匯報交流——展示成果四個過程。
2、引導提問:既然三個和尚分得的餅同樣多,那么表示他們分得餅的三個分數什么關系呢?這三個分數什么變了,什么沒變?
學生得出:這三個分數相等關系,分數的分子和分母變化了,但分數的大小不變。
3、引導學生從左到右觀察等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變的?
師:誰能用一句話把這個變化規律敘述出來呢?
生:從左往右看,分數的分子、分母同時擴大了,也就分子分母都乘了一個相同的數,但三個分數的大小沒有變。
師:你們觀察的真仔細!請大家給點掌聲好嗎?(出示課件)老師這樣敘述的“分數的分子、分母都乘上同一個數,分數大小不變”。
4、讓學生從右到左觀察等式分子和分母又如何變化的呢?誰能用一句話把這個變化規律敘述出來?小組討論后,同樣的方法讓學生小結規律,并請同學給予評價,讓學生抒發自己的見解,體現課堂教學的民主化。然后教師在課件中補充“或者除以”四個字,小結分數的基本性質。
5、接著讓學生四人小組一起做游戲,運用分數的基本性質,由一位同學說一個分數,然后其他同學依次說出相等的分數,不能重復,看看誰又快又準。
結束游戲,教師提問,現在我們知道分數的分子、分母都乘上或除以同一個數,分數大小不變。剛剛大家做游戲,有沒有人使用了0呢?大家想一想0可以不可以呢?讓學生回答:分數的分母不能為零。我在課件中填上“零除外”三個紅色的字,以便引起學生的注意。
6、教師引導:“學了分數的基本性質到底有什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。”接著讓學生練習課本例題2,兩名學生上臺演板,其他學生點評。學生自己小結方法。
教育家波利亞指出:學習任何新知的最佳途徑由學生自己去發現,因為這種發現理解最深,也最容易掌握內在規律和聯系。教學中給學生提供自主探究、合作交流的天地,積極為學生創設主動學習的機會,提供嘗試探索的空間,學生能主動從不同方面,不同角度思考問題,尋求解決途徑。同時還培養學生的合作意識,使不同的想法得到交流,實現知識的學習、互補。
三、分層練習,鞏固深化
只有通過相應的練習,才能更好地鞏固新知,形成技能。在練習的安排上我注重層次性,滲透多樣性,讓學生理解用所學的知識可以解決不同類型的問題,進一步提高解題能力。
1、涂一涂練習14,第1、7題。
因為要給空格上色,所以答案并不唯一,通過這兩題不僅能讓學生回憶探究發現規律的過程,充分體現了“玩中學,學中玩”的新課程理念。
2、說一說完成練習14,第8題
我想通過這道題讓學生進一步加深對分數基本性質的形成過程的理解,從而培養學生的語言表達能力。
3、想一想:第5、9、10題(選擇一題做為作業)
在這我讓同學們充分發揮想象,靈活運用分數的基本性質。為后面學習約分和通分的知識奠定基礎。
四、暢談收獲,小結全課
讓學生自己總結所學內容,暢談收獲和感受,培養學生的概括能力和語言表達能力。
整節課中,我力求做到始終引導學生主動觀察、充分體驗、動手實踐、積極創新,努力做到既注重學生的獨立思考,又注重合作交流,既重視知識與能力的共進,又關注情感和體驗的提高,讓學生全面、深刻地理解分數的基本性質。
《比的基本性質》說課稿6
尊敬的各位評委,各位老師:
大家好!我說課的內容是《分數的基本性質》。這課選自北師大版小學數學五年級上冊第三單元的學習內容,這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據本單元的教學要求和本課的特點,我設計本課的教學目標有三點:
1、(認知目標)理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、(認知目標)理解和掌握分數的基本性質。
3、(能力、情感目標)培養學生觀察、分析、推理的能力。
教學重點:理解和掌握分數的基本性質。
教學難點:讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
《數學課程標準》提出:把現代信息技術作為學生學習數學和解決問題的強有力工具,致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現實的、探索性的數學活動中去。如何充分發揮、凸顯現代信息技術的優越性和有效性而又省時省力呢?
本課依托網絡平臺,為學生創設一種大問題背景下的探索活動,以游戲這個學生感興趣的明線下,借助網絡實驗室,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會數學的科學性。創設“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生大膽猜想——驗證猜想——完善猜想等,從而一步步使分數的基本性質趨于完善。
我設計的具體教學過程如下:
第一環節:激趣引入,凸顯信息技術的趣味性。
“好的開始是成功的一半”,本課運用學生感興趣的電腦游戲和卡通人物導入新課,有效地開啟學生思維的閘門,激起猜測探究的興趣,通過比較三個分數的大小,凸顯矛盾沖突。(我在教學比較這三個分數大小時,學生們各抒己見,堅持著自己的觀點不放,使得不同觀點的矛盾激化,激發了學生的好奇心和爭強好勝的心理,為后面的發現規律埋下伏筆。)
第二環節:探索規律,凸顯信息技術的直觀性和時效性。
1、提出猜想。
學生進入國外網站,通過操作,直觀的觀察情境中三個分數的涂色部分,發現這三個分數的大小是相等的。
再引導學生觀察這組分數中“什么變了,什么沒變”,從變了的分母、分子入手去觀察它們是怎么變的,得到初步的猜想,“分數的分子、分母都乘或除以2,分數的大小不變”。
(“學起于思,思起于疑”。這個環節中,當學生猜測三個分數誰大誰小,運用網絡實驗室用比平時更少的時間、更直觀的得出三個分數大小相等,為后面猜想的提出提供了更多觀察、交流的時間)
2、完善猜想。
在得到初步猜想后,在游戲的大背景下,再出示一組分數:三分之二和十五分之十。學生猜測大小、進入網絡實驗室驗證,發現這兩個分數也是相等的。
這一部分的主要目的則在于完善初步猜想,使學生感受到分子、分母不僅可以乘或除以2,分數大小不變,還可以乘或除以像5這樣更大的數,從而得到進一步的猜想:“分數的分子、分母都乘或除以同一個數,分數的大小不變”。
(在這一環節中,網絡實驗室再次起到了快速、直觀知道分數大小的作用,唯一不同的是,這次使用了紙條這個不同的表現形式,通過不同的表現形式來表達分數的意義)
3、驗證猜想,得出規律。
學生把符合猜想的三組分數記錄在學習卡上,(用圖片方式呈現)再到網絡實驗室里進行驗證,看看是否也都具有一定的規律。通過大量的例子顯示這不僅僅是學生的猜想,而是具有一定規律的。
最后運用分數與除法的關系和商不變的性質,從舊知遷移解釋、理解新知,得到“同一個數”不能為0,從而確定了最后規律,得到本課課題:分數的基本性質。(平時的教學中能驗證的分數少之又少,而學生通過猜想可以得到的分子、分母較大的相同大小的分數——如二分之一和百分之五十這樣的分數就很難驗證,通過我們的網絡實驗室就能很好地解決這個問題,充分體現了網絡實驗室的重要性和必要性。這樣,在平常教學中最花費時間的環節——驗證上節省了不少時間)
第三環節:游戲鞏固,思維提升,凸顯信息技術的交互性。
學生已經理解了分數的基本性質后,再次進入網絡實驗室,以玩游戲的形式鞏固所學的規律。(教師也從這個過程了解學生的掌握情況。有的學生在玩這個游戲的時候甚至發現了兩個分數之間的分子、分母分別不具備倍數關系,如十二分之六和十八分之九,還發現通過找中間數也能運用分數的基本性質解釋這個現象。)
接著再通過回到第一組分數,利用分數的基本性質寫出與第一組分數相等的分數來提升學生的思維,初步感知與第一組分數相等的分數還有很多很多。讓學生感受到分數的基本性質應用非常廣泛,還需要他們進一步的學習和探索。
第四環節:提煉方法,積累基本的數學活動經驗。
師生共同回顧學習過程,總結并提煉出探索規律的方法:猜想→驗證→得出結論,為學生今后的學習提供科學的學習方法。
第五環節:網上交流,課內向課外延伸。
一節課的結束不僅僅是解決了幾個問題,更重要的引發學生新的思考和新的探究行為,但一節課的時間是非常有限的。所以在課的最后,教師在課件上給學生提供了課堂上所用網絡實驗室的網址和老師的博客,讓學生通過網絡實驗室這個平臺及博客這個載體,在網絡上回饋所學、發表言論。記得我公布博客地址不久就得到了學生的反饋,甚至聽課老師也參與其中,給我提出許多的意見和建議。這樣能讓學生感受了網絡資源豐富的同時,也使這節課不僅僅局限在課堂上,還拓寬到了網絡以及今后的生活、學習中,真真正正的利用、發揚網絡資源,把一些常規課堂無法實現的交流,都一一實現,體現了信息技術的人性化、學生主體性以及網絡的延遲性和廣泛性。
最后我以一句話結束我今天的說課“兒童是知識的創造者而不是被動接受者,他們主動地建構屬于他們自己的知識和對事物的理解。當孩子們在經歷數學、體驗數學時,課堂才是充滿活力的!”,謝謝大家!
《比的基本性質》說課稿7
對于本節課,我將以教什么,怎樣教,為什么這樣教為思路,從教學背景、教法學法、教學過程、教學設計說明四個方面具體闡述我對這節課的理解和設計。
1、教材的地位和作用
本節內容分兩課時完成。我設計的是第一課時的教學,主要內容是分式概念、掌握分式有意義,值為0的條件。因為它是在學生學習了分數、整式及因式分解的基礎上,又一代數學習的基本內容,是小學所學分數的延伸和擴展,而學好本節課,為今后繼續學習分式、函數、方程等知識作好鋪墊,特別是對“分式有無意義的討論”為以后學習反比例函數作了鋪墊。因此它起著承上啟下的作用。
2、教學目標
一節課的教學目標準確與否,直接關系到這節課的整體設計,關系到學生發展的水平和教學效果的好壞,因此預設教學目標時,我力求準確。依據新課程的要求,我將本節課的教學目標確定為以下3個方面:
(1)知識與技能目標:讓學生經歷用分式表示現實情境中數量關系的過程,從而了解分式概念,學會判別分式何時有意義,進一步培養學生代數表達能力和分析問題、解決問題的能力、以及創新能力。
(2)過程與方法目標:經歷分式概念的自我建構過程及用分式描述數量關系的過程,學會與人合作,并獲得代數學習的一些常用方法:類比轉化、合情推理、抽象概括等。
(3)情感與態度目標:通過豐富的數學活動,使學生獲得成功的經驗,體驗數學活動充滿探索和創造,體會分式的模型思想,培養學生的辯證唯物主義觀點。
3、教學重難點及關鍵:
分式概念是《分式》這一章學習的起點和基礎,因此我把理解分式的概念確定為本節課的教學重點。又由于初中學生的認知結構中存在著這樣的障礙:不善于概括數學材料、缺乏對字母及其他數學符號用于運算的能力,所以判定分式有意義、分式的值為0時的條件,自然就成了本節課的教學難點。而部分學生容易忽視分式的分母值不能為0這個條件,因此我認為突破這個難點的關鍵是通過類比分數的意義,加強對分式分母值不能為0的理解。
一、教法學法分析
1、學情分析
由于我校八年級學生,基礎比較扎實,學習能力較強。通過小學分數的學習,學生頭腦中已經形成了分數的相關知識。學生可能會用學習分數的思維去認識、理解分式。但是分式的分母不再是具體的數,而是抽象的含字母的整式,會隨著字母的取值的變化而變化。為了幫助學生確實掌握所學內容,我在教學過程中特別設置了鞏固性練習,對于教材中的例題和習題將作適當的延伸和拓展及變式處理.
2.教學方法:
針對本班學生情況,為了適合學生已有的認識水平和認知規律,更好地突出重點、化解難點,在教學過程中,我采用“引導——發現式教學法”,引導學生運用類比的思維方法進行自主探究. 在實施教學的過程中注意學生分析問題、解決問題等能力的培養。讓學生全面地掌握分式的意義,體會到數學不是一門枯燥的學科,對學習數學充滿信心。為了提高課堂效果,適當的輔以多媒體技術, 激發學生的學習興趣,同時也增大教學容量,提高教學效率。
3.學法指導
觀察、概括、總結、歸納、類比、聯想是學法指導的重點。
在課堂教學中,不是老師單純的傳授知識,而是在老師指引下讓學生自己學。要把教法融于學法中,在學法中體現教法。在活動過程中,我將引導學生體會用類比的方法,擴展知識的過程,培養他們學習的主動性和積極性。讓學生通過對問題的討論歸納,在與老師的交流中學習知識,從而達到 “學會”和 “會學”的目的。
二、教學過程(多媒體教學)
《數學課程標準》明確指出:“數學教學是數學活動的教學,學生是數學學習的主人。”在教學過程中,我充分考慮到如何更多地向學生提供從事數學活動的機會,堅持以知識為載體,思維為主線,能力為目標的設計原則, 所以我將本節課的教學過程設為以下六個環節:
第一環節是“創設情景、提出問題 ”:為了引導學生從自己熟悉的生活背景中發現、掌握和運用數學,在現實情境中進一步理解用字母表示數的意義,在這一環節里我設計一道有關四川汶川特大地震捐款的事例,并設置了6個問題。從學生熟悉的整式及其運算入手,引導學生從舊知中去發現分式,找到新知的“生長點”和學生思維的“最近發展區”,從而更好地進行分式概念的建構活動。落實教學目標。
針對學生的發現,在第二個環節 “類比聯想 形成概念”
我將采用“議一議”的方式引導學生繼續觀察新式子的特征,類比分數,合理聯想。從而使學生水到渠成地概括出分式的概念及一般表示形式。
第三環節“指導運用 鞏固概念”
通過小組內互舉例子,互說判定過程,鼓勵學生積極參與活動,在活動過程中強化分式概念,并及時糾正學生可能因分數負遷移所造成的認知障礙,注意辨析 與 的本質區別和 不是分式的問題,指出判斷一個代數式是不是分式,不是決定于這個式子里是否含分數線,關鍵要看分母中是否含有字母。最后指出“整式和分式統稱為有理式”。同時還讓學生明白:分數線具有 (1)表示括號;(2)表示除號雙重意義。
到此學生對分式的概念有了初步的認識,但并不完整。接下來如何識別分式有意義,是本節課的難點,也是探究學習的好素材。課本中分式有意義的條件是直接給出的,而我在以往的教學中發現學生往往忽視這個條件或是對分母整體不為零認識模糊,為了更好地突破難點,
我在第四環節“循序漸進 再探新知”
創設了以下活動供學生自主探究分式有意義的條件:
首先是組織學生獨立填寫表格:
表格的設計,是為了讓學生通過對分式中的字母賦值,將“代數化”了的分式還原為他們熟悉的分數。通過填表,不同層次學生的發現將會有差異,此時正是傾聽與交流的好時機,通過互相說服和推廣,他們最終會達成共識:分式的值與字母取值有關,分式并不都有意義。繼而引導學生通過再次類比分數,將陌生問題向熟悉問題轉化,自主得出“分式有意義”的條件,建立完整的分式概念,同時滲透從特殊到一般的數學思想。
我抓住這一契機,給出:
(2)、概括分式在什么條件下有意義(對一般表達式 里的分母B作出取值限定:B不能等于零)為了能讓學生對剛獲得的新知識進行最基本的應用,在這一環節我安排了例題1是一個有關分式求值及判別分式何時有意義的問題,比較簡單,可以由學生在自主完成的基礎上同桌交流,然后師生評述,使全體學生特別是學有困難的學生都能達到基本的學習目標,獲得成功感。
我又順水推舟,再給出以下分式,讓學生討論,(實踐練習1):當x取什么值時,下列分式有意義?你知道嗎?(采用組內合作然后組間搶答的形式。)(1)、(2)、(3)、接下來,我又乘勝追擊,問學生:(變式練習):那么以上各分式,當 取什么值時,分式無意義?
幾個問題由淺入深、由易到難,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,消化知識。
(五)、變式延伸,進行重構
在掌握了如何求當未知數取什么值時,分式是有意義還是無意義以后,我將帶領學生進入本節課的另一個難點,對學生來講思維又將象每個跳動的音符一樣活躍起來了。我問學生:例2:同樣的,以上各分式,當 取什么值時,分式的值為零?
由于學生對新概念的理解在本質方面還是膚淺的,很多學生可能只考慮滿足分子為零即可,所以我給學生幾分鐘的討論時間,這時就有考慮問題較周到的學生通過(2)(3)兩個題發現問題并不是那么簡單,找出了癥結。這樣我就能及時的對癥下藥,指出“分式的值為零必須在分式有意義的前提下進行的。因此,分式的值為零必須滿足兩個條件:
(1)、分子的值為零;(2)、同時分母的值不等于零。從而進一步改善學生原有的認知結構
為了使這堂課所學到的知識與技能,順利地納入他們已有的知識結構中,
所以在接下來的第(六)環節“ 鞏固深化 分層作業”里,我將引導學生反思:我們是如何得到分式概念的?分式和我們以前學過的什么知識有聯系?我們用了哪些方法進一步揭示了分式意義的本質?在以上的學習過程中你的收獲有哪些?最后教師整理學生的發言,歸納小結:
A、分式是兩個整式相除的商,分數線可以理解為除號,并含有括號的作用.
B、分式的分子可以含有字母,也可以不含有字母,但分母必須含有字母.
C、分式分母的值不能為0,否則分式無意義.
D、分式的值要為0,需滿足的條件是:分子的值等于0且分母值不為0
E、有理數的分類(有理數包括整式和分式)。
(2)、作業布置
(設計意圖)考慮到學生的個體差異,以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。其中有一題自編涉及用分式表示數量關系的實際問題的題型。這樣設計對學生是個挑戰,可以激發他們的思維和興趣,通過這樣的逆向思維,可以更好地發展學生的數感、符號感,同時培養學生的創新意識。
以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態。
三、教學設計說明
回顧整節課的設計,我主要著力于以下三個方面:
(一)、關于教材處理:認真處理教材,目的只有一個——為我的學生盡可能多地提供參與活動的機會,在本節課中主要體現在以下幾點:
1、通過創設情景、引導學生觀察、類比;聯想已有知識經驗;分析新的問題等活動,讓學生充分感受知識的產生和發展過程,讓學生始終處于積極思維狀態之中。
2、通過分式概念、分式有意義的條件等探究活動,讓學生親歷發現事物特征、規律的過程,激發學生的學習興趣,增強自信心,引發自行學習的內在動機。
3、在學生學習了分式的概念后,通過一組由淺入深、由易到難的題組(例題及變式訓練),逐題遞進,落實本節課的教學難點。在教學形式上采用學生“互舉例子、組內合作、組間搶答等多種方式,激活學生的思維,營造良好的課堂氛圍。
4、問題設計注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現的機會,培養其自信心,激發其學習熱情。有效地開發各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發展
5、小結部分通過師生共同反思,目的是為了更好地促進新舊知識之間的聯系,使新知識與學生頭腦中原有的舊知識建立邏輯性的穩固聯系,從而形成新的認知結構。
6、通過創設開放性問題發展學生的創造性思維能力。根據學生的個性差異,遵循因材施教的原則,設計分層作業,使不同層次的學生都能通過作業有所收獲。
(二)、關于教與學方法的選擇:我在設計中始終關注:如何精心組織,讓學生在豐富的活動中探索、交流與創新,因此我選擇了“引導—發現教學法”,具體做法如下:
(1)、應用數、式通性的思想,類比分數,引導學生獨立思考、小組協作,完成對分式概念及意義的自主建構,突出數學合情推理能力的養成;
(2)、加強應用性,通過再探新知、變式延伸兩個環節,發展數學應用意識,突出分式的模型思想。
(三)、關于評價:學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情.我在活動中注重運用態勢、語言對學生進行即興評價,肯定成績,使其具有成就感,提高他們學習的興趣和學習的積極性。
總之,在本節教學中,我始終堅持以學生為主體,教師為主導,致力啟用學生已掌握的知識,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學過程中我以啟發學生,挖掘學生潛力,讓他們展開聯想的思維,培養其能力為主旨而發展的。
《比的基本性質》說課稿8
一、教材
1、教學內容:這是義務教育課程標準實驗教科書數學人教版五年級下冊第四單元P75的內容《分數的基本性質》。
2、教材與前后知識間的聯系:《分數的基本性質》是以分數的意義、分數與除法的關系以及整數除法中商不變的規律這些知識為基礎的。同時又是后面學習約分和通分的理論依據,而約分、通分又是分數四則運算的重要基礎,因此這部分內容不僅在單元中具有承前啟后的作用,對學生的后繼學習也有重要影響。
3、教材重點:探究分數的基本性質的過程。理解分數的基本性質,能運用分數的基本性質。
難點:自主探究出分數的基本性質。
4、知識與技能目標:理解和掌握分數的基本性質,經歷探索分數基本性質的過程,培養學生觀察、比較、抽象、概括、類推及動手實踐能力,進一步發展學生的思維。
過程與方法目標:是學生經歷觀察、操作、討論中,以自主探究、合作分享的教學方式,讓學生在交流中進一步完善對分數基本性質的理解。
情感態度,價值觀目標:讓學生在主動探索新知的過程中獲得成功的體驗,體驗數學學習的樂趣。
二、說教學理念:
1、以學生發展為本,著力強化主體意識。
2、從學生已有的認知發展水平和知識經驗出發,為學生提供充分從事數學活動的機會,變學數學為做數學。
3、改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受猜想、驗證、轉化等數學思想方法
三、說教法
主要采用創設情境,引導探究,引導自學,合作探索相結合等教法。
四、說學法
學生主要的學習方法是自主發現、操作體驗、合作交流,有順序的觀察題、對比分析、概括總結。
五、說教學過程
我將創設情境,動手體驗、自主探索的教學方式,指導學生運用“操作――發現法”、“觀察、歸納”法進行探究。為此,我設計了四個教學環節:
第一個環節是創設故事情境,激發學生興趣《分數的基本性質》說課稿《分數的基本性質》說課稿。我覺得如果根據教材的安排來導入,顯得有些平淡,也不容易激發學生的學習興趣。因此我設計了一個媽媽給三個兒子分蘋果的故事。媽媽分別給三個兒子分得蘋果的1/2、2/4、4/8,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,看誰分的多,媽媽是不是偏心。這樣一來,學生學習數學的興趣就會提高,學習的積極性也調動起來了。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數的基本性質后,學生就會恍然大捂。原來,三個兒子分得的蘋果實際上是一樣多的,只不過是平均分的份數不一樣的,其中表示的份數也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數的基本性質來解決實際問題的能力。
第二個環節是動手體驗,形象感知。分數的基本性質,是以分數的大小相等這一概念為基礎的。因此我讓學生用三張同樣大小的長方形紙代替蘋果分別折出1/2、2/4、4/8,并用彩色筆涂上顏色。這樣既幫助學生復習了分數的意義,又為學習新知識作了準備。接著讓學生觀察比較涂色部分的大小,再請學生交流,匯報實驗過程及結果,使1/2=2/4=4/8這個結論讓學生自己“做出來”,而不是老師講出來。這充分體現以學生為主體,自主探索的教學理念。
這種教學方式能有效地改變學生原有的一個整數對應一個大小的習慣性思維,初步體會到分數“形變值不變”的獨特之處,提高學生的認知能力。
第三個環節是深入探究,得出規律。這一節環節我提出問題讓學生討論:既然這三個分數大小相等,那這三個分子、分母都不相同的分數之間藏著什么秘密呢?你們能找出它們分子分母各自按照什么規律變化嗎?首先,讓學生自己觀察,把自己的發現在小組內討論交流,引導學生觀察:從左往右得出什么規律,反過來從右往左又得出什么規律。然后請學生再舉幾個這樣的例子,進行交流,有了這些較為豐富的感性認識,再總結出規律。最后學生們會概括得出:分數的分子和分母同時乘或者除以相同的數,分數的大小不變。(老師板書)預計學生不會把相同的數中的0除外,因此我會問同時乘和除以0也可以嗎?讓學生思考并得出0不能作為分母不能作為除數,所以0要除外,最后讓學生重新完整的敘述一遍,老師揭示課題。最后提出問題,我們剛才是借助圖聯系分數的意義來說明分數的基本性質,這個性質能不能根據分數與除法的關系和商不變的性質來說明呢?啟發學生用商不變的性質來說明分數的基本性質,溝通新舊知識的聯系,從而培養了學生遷移能力。最后師生共同總結本節課的學習方法。
最后一個環節是鞏固新知,拓展延伸。學以致用是探究學習的又一個基本特征《分數的基本性質》說課稿教學反思。因此我精心設計了練習題。首先是題型變化豐富
練習中,我除了安排一些基本根據分數的基本性質來填空外,我還安排了一些判斷題、口答題、填圖題、并要求學生不改變分數的大小,把分數改成分母是30的分數的題目。題型的豐富不僅提高了學生學習的興趣,也使學生更好地理解和應用分數的基本性質來解決實際問題的能力。其次是練習難度的層次性。數學題目經常出現有些學生吃不了,同時也有部分學生吃不飽的現象。為此,除了基本的練習題外,我還逐步加深難度,提高學生的思維能力,如:分數的分子加上10,要使分數的大小不變,分母應該加上幾?難度的加深,使學生的思維能力、解題能力等都有了明顯提高,真正把培優補差工作落到了實處。
《比的基本性質》說課稿9
一、說教材
(1)地位與作用
《比例的基本性質》是人教版六年級下冊第四單元第一節的內容,屬于數與代數的知識。本節課主要介紹了比例的基本性質,是在學生已經認識了比和比例的意義,掌握了一些常見的數量關系的基礎上來學習的,為學生接下來學習正比例、反比例以及比例的應用打下了良好的基礎。
(2)教學目標
1、知識與技能目標:掌握比例各部分的名稱,并理解比例的基本性質。
2、過程與方法目標:通過自主探究、小組合作,培養學生的參與、體驗意識,發展學生的運算能力及數感;
3、情感態度與價值觀目標:激發學生讀書熱情,并且喜歡學習數學。
(3)重點、難點
理解比例的基本性質,根據乘法算式寫出正確的比例。
二、說學情
學生已經初步認識了比和比例的意義,具備一定的數感和運算能力。六年級的學生思維活躍、好奇心強,正從具體形象思維向抽象邏輯思維過渡。
三、說教法和學法
在教學中我將采用實踐探究法為主,提問法和講授法為輔的教學方法,引導學生自主探究、同桌交流和小組合作。
四、說教學過程
(一)圖片導入,引入新課(5分鐘)
首先投影出示不同長寬比的故事書、科學書,請學生根據書本下方的長寬比數據寫出比例,順勢揭題。
(二)交流討論,探求新知(20分鐘)
1、教師講授,認識比例各部分名稱
多媒體課件出示比例:2、4:1、6=60:40,然后向學生講解:組成比例的四個數,叫做比例的項,兩端的兩項叫做比例的外項,中間的兩項叫做比例的內向。
2、小組合作,探究比例的基本性質
先獨立思考,再小組合作,探究問題“你能發現內項和外項之間的關系嗎?”,在比例里,兩個外項的積等于兩個內項的積。進一步幫助學生明確:這就是比例的性質。
3、同桌交流,掌握比例的基本性質的字母表示形式
思考:如果用字母表示比例的四個項即a:b=c:d,比例的基本性質可以表示成什么?
(三)鞏固提升,深化知識(7分鐘)
基礎題:判斷課件顯現的數據中哪組可以組成比例。
提高題:根據乘法算式:2*4=1*8寫出盡可能多的比例。
(四)課堂小結,體驗收獲(5分鐘)
師生互動共同總結,培養學生的核心素養。
(五)布置作業,拓展延伸(3分鐘)
為了幫助學生鞏固所學知識,密切課程內容與日常生活的聯系,我將布置以下兩項作業:
1、分層作業
2、實踐作業
五、說板書設計
比例的基本性質
2、4:1、6 = 60 : 40
外項 內項 內項 外項
寫成分數形式:2、4/1、6=60/40
比例的基本性質:在比例里,兩個外項的積等于兩個內項的積。
ad=cd或cd=ad
圖文搜集網絡,如有侵權請聯系刪除。
《比的基本性質》說課稿10
一、說教材
《分數的基本性質》在分數教學中占有重要的地位,在小學數學學習中起著承前啟后的作用。它既以分數的意義、分數的大小比較為基礎,又與整數除法及商不變的性質有著內在的聯系,更分數的約分、通分的依據,也進一步學習分數加減法計算、比的基本性質的基礎。因此,分數的基本性質該單元的教學重點之一。
二、說學情
學生在三年級上學期已經初步認識了分數,以及同分母分數的大小。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。五年級學生已經養成了合作學習的習慣,并且已經具有了一定的分析和解決問題的能力,再加上他們所具有的一定的生活經驗,因此能夠在教師的引導下完成“質疑——探索——釋疑——應用”這一完整的學習過程。
三、說教學目標
依據新的《數學課程標準》,為了更好地體現數學學習對學生在數學思考、解決問題以及情感與態度等方面的要求。根據本節課的具體內容并結合學生的實際情況,我制定了以下教學目標:
知識與技能:讓學生親身經歷“分數基本性質”抽象概括的過程,理解和掌握分數的基本性質,并能初步運用分數的基本性質解決簡單的數學問題。
過程與方法:讓學生經歷發現問題、探究問題、解決問題的全過程,在觀察、猜想、驗證等探索活動中,培養學生觀察--探索--抽象--概括的能力以及合情推理能力,體驗解決問題策略的多樣性。
情感與態度:使學生在分數基本性質的探究活動中,獲得成功的體驗,建立自信心,感受到數學的嚴謹性,及滲透事物相互聯系、發展變化的辯證唯物主義觀點。
教學重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點:讓學生經歷自主探索,發現和歸納分數的基本性質,并會應用分數的基本性質解決相關問題。
教學準備:三張同樣大小的長方形紙張,彩色筆
四、說教學方法
樹立以“以學生發展為本”、“以學定教”的思想,為實現教學目標,有效地突出重點、突破難點,我遵循學生的認知規律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發現法組織教學。創設了一種“情境導入、動手體驗、自主探索”的課堂教學形式,以“自主探究”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。
五、學法
有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,自主探究法,合作交流的學習方式,讓學生通過獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發揮學生主體參與作用、激發學生學習愛好,同時讓學生獲得成功體驗。
六、說教學過程
為了全面、準確地引導學生探索發現分數的基本性質,實現教學目標,我努力抓住學生的思維生長點組織教學,設計了以下五步教學環節:
1、創境設疑: 回顧舊知,引發思考
2、自主探究: 動手實踐,發現規律
3、交流歸納:揭示規律,鞏固深化
4、分層精練:多層練習,多元評價
5、感悟延伸:課堂小結,加深理解
第一環節:創境設疑
結合六一兒童節的到來,創設分蛋糕的情景,媽媽分得公平嗎?課始便迅速地抓住了學生的好奇心,使課堂教學有了一個好的開始。鼓勵學生當小法官,則極大地調動了學生的積極性,使他們在心理上產生懸念,進一步激發學生的學習興趣,為后面的學習做好了鋪墊。這樣設計也從學生已有的經驗和情感出發,找準新知的最佳切入點,為學生后面的聯想和猜想巧設“孕伏”。
第二環節:自主探究
通過折紙、涂色的動手操作活動,使學生親身經歷并獲得非常具體、真切的感知,為探究分子、分母的變化規律提供認知基礎。教師通過五個有層次的問題,分層質疑,分層提問,分層評價,盡量地關注到了每一個層次的學生,引導學生逐步在自主探索、合作互助的學習方式中初步理解并能簡單概括出分數的基本性質,并及時強調了0除外的意義,使學生體驗到解決問題策略的多樣性,發展學生的實踐能力和創新精神,培養學生的合作意識。
第三環節:交流歸納
在這一環節,教師引導學生在觀察與分析、探索與思考分數的基本性質的基礎上不斷生成新問題,通過質疑,借助知識的遷移,溝通分數的基本性質與商不變性質之間的聯系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。這樣的設計就讓學生感受到了數學知識的內在聯系,同時滲透“事物之間相互聯系”的辨證唯物主義觀點,培養學生觀察--探索--抽象--概括的能力。
第四環節:分層精練
這個環節讓學生對分數的基本性質再一次的體驗,感受,研究,同時也整節課的亮點之一,練習分層,評價分層,通過分層練習,關注到每一個層次的學生,讓每一個學生都有發展。教師結合本班學生的學習特點,設計了由淺入深,由易到難的練習,基本練習讓90%的同學體驗到了學習的快樂,綜合練習讓80%的同學品嘗到了成功的喜悅,拓展練習則留到課后,讓學生在自主探究中、討論交流中、知識的沉淀中進一步加深對知識的理解和掌握。
第五環節:感悟延伸
通過小結、反思,查漏補缺,學生在交流收獲、互相幫助的過程中,使學生對知識有個系統的回顧和認識,從而進一步培養學生的知識概括能力。
總之,本節課教學堅持了“學生探索的主體”這一教學原則,面向全體學生,充分的引導學生動手實驗,自主探索,質疑延伸,合作交流,讓每一個學生在探索的過程中感受數學和日常生活的緊密聯系,體驗學習數學的快樂,培養了創新精神和實踐能力。
《比的基本性質》說課稿11
教材簡析
本節課要求學生參與多向思維,通過不同角度的探索,自己去獲取、鞏固和深化知識。培養學生獨立思考、敢于猜想、大膽表現、主動探索的學習精神和創新意識,真正體現以“人的發展”為本的精神。
比的基本性質是在學生已經掌握了比的意義,比和分數、比和除法的關系的基礎上學習的,有舊知識分數的基本性質和除法的商不變性質的基礎。本單元與比的基本性質有關的知識有:化簡比、求比值、寫比例、實際問題等。這就要求學生牢固掌握知識,并對其進行深入理解,直到熟練掌握。通過本章的繼續探討將為今后學習正比例函數和反比例函數等打下必要的基礎。因此在比和比例這章中起承上啟下的作用。
學情分析:
與其他教材相比,本知識放在最后一個學期,是學生在思想、心理、知識等方面更成熟時學習,達到的效果會更好。比的基本性質的學習是學生在以前的學習中,已經掌握了商不變的性質和分數基本性質,六年級的學生有一定的推理概括能力,他們完全可以根據比與分數、除法的關系,推導出比的基本性質,在此可以采用自學、小組討論、個人展示等方式,以此來促進學生積極思考、主動學習的積極性。教學時,要學生感受知識形成的過程,學會發現問題、解決問題的,使學生進一步受到事物是相互聯系的、對立統一的辯證唯物主義觀點的啟蒙教育,初步接觸函數思想。但由于所學的相關知識的時間有些久遠,部分學生已經淡忘。
教學目標:
根據本節課知識在教材中的地位和作用以及學生的認識發展規律,我確定了本節課的教學目標:
知識與能力:
1、讓學生經歷發現、總結比的基本性質的過程,在感受和理解比的基本性質的發生和發展的過程中培養學生的創新精神;
2、使學生在小組探究中掌握運用比的基本性質把一個比化成最簡單的整數比的方法,培養學生解決簡單實際問題的能力;
3、尊重學生的個性,注重算法多樣化,使學生在交流、爭論中培養學生的獨立思考能力和創造能力以及合作交流的意識。
教學重點、難點:
小組合作中自主探索出比的基本性質化簡比
教學過程與設計意圖:
(一)復習鋪墊:
1、填空并思考運用了什么知識?(課件出示)
(1) ÷ =(×4)÷(× )=……(學生自己接說)
思考:你運用了什么知識?
(2) = ==
思考:你運用了什么知識?
2、根據表格說出比、除法、分數之間的關系。
設計意圖:奧蘇伯爾指出:“影響學習的唯一最重要的因素,就是學習者已經知道了什么,要探明這一點,并應據此進行教學”。此處教學設計的目的是喚醒學生的已有知識基礎,并在此基礎上讓學生依據已掌握的知識,去探究新知識,揭示新舊知識的共同本質,使舊知順利遷移到新知學習中來。
(二)猜想驗證,得出結論
1、根據商不變的規律、分數的基本性質和比與除法、分數之間的關系,你能提出什么問題?你認為比應該有什么樣的性質?
2、小組討論,討論后匯報
預設:
方案一:學生由商不變的性質、分數的基本性質、比與它們的聯系總結得出:比的前項和后項同時乘上或者除以相同的數(0除外),比值不變。
方案二、舉例說明:
6:8=(6×2):(8×2)=12:16
6:8=(6÷2):(8÷2)=3:4
結論:比的前項和后項同時乘上或者除以相同的數(0除外),比值不變。
方案三、學生可以舉一些其他的例子
3、給我們發現的結論起個名字?
4、出示:比的基本性質
問:你認為哪些字詞是關鍵字詞?(要求學生說出“同時”、“相同的數”、“零除外”,教師重點強調并用紅色粉筆畫好.)
5、指導學生自主驗證所說的性質。
(三)嘗試練習,理解比的基本性質
1、教師說一個比,學生搶答出和它比值相等的比。如2:8=( ):16,( )6:( )=3:4等。
2、同桌互說。
為了使數量間的關系更加簡明,并使計算簡便,我們經常要應用比的基本性質,把比化成最簡單的整數比.
什么是最簡單的整數比?請你說出幾個最簡整數比。
3、說說化簡比與求比值的異同:
一般方法
結 果
求
比值
根據比值的意義,用前項除以后項。
是一個數。可以是分 數、小 數或整 數。
化簡比
根據比的基本性質,把比的前項和后項都乘或除以相同的數(零除外)。
是一個比。它的前項和后項都是整數,并且是互質數。公約數只有1
設計意圖:
給學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗”。在這一環節的教學設計,就是要給學生營造一個積極思考、踴躍交流的寬松的氛圍,充分放手讓學生自主學習、探究學習、合作學習,讓學生成為自主探究的主人。
《比的基本性質》說課稿12
教材分析:
一、教材的地位及作用
“分式的基本性質(第1課時)”是人教版八年級數學下冊第十五章第一節“分式” 的重點內容之一,是在小學學習了分數的基本性質的基礎上進行的,是分式變形的依據,也是進一步學習分式的通分、約分及四則運算的基礎,使學生掌握本節內容是學好本章及以后學習方程、函數等問題的關鍵。
二、教學重點、難點的分析
重點:理解并掌握分式的基本性質。
難點:靈活運用分式的基本性質,進行分式恒等變形、變號。
三、教材的處理
1)通過小組合作探究分式的基本性質,利用問題引導學生回憶分數的基本性質,再用類比的方法得出分式的基本性質。
2)引導學生用語言和式子表示分式的基本性質并通過針對練習使學生對其有更深的理解。
3)通過例題的講解,讓學生初步理解“性質”,再通過不同類型的練習,使其掌握“性質”的運用。
4)引導學生對本節課進行小結,使學生的知識結構更合理、更完善。
學情分析:
眾所周知,關注學情是教學內在的需要。我們的學校剛剛建校2周年,學生的基礎相對比較薄弱,在數學知識點運用方面問題較多。此外,學生的課外學習幾乎無人督促,而學生又缺少自主學習的能力,所以班里的學生在學習成績上都存在著嚴重的兩級分化。同時體現出及格率低、優秀率低等問題。且升本教育模式在我校沒有大面積推廣,因此我們數學組在本學期內進行小專題實驗:如何提高課堂實效性? 在教學中我們應該多注重基礎知識的應用,讓學生多練多想,同時注重激發學生的學習興趣,從多方面吸引學生的注意力。
目標分析
1、知識與技能
(1)了解分式的基本性質
(2)靈活運用“性質”進行分式的變形。
2、數學思考
通過類比分數的基本性質,探索分式的基本性質,初步掌握類比的思想方法。
3、解決問題:通過探索分式的基本性質,積累數學活動經驗。
4、情感態度價值觀
通過研究解決問題的過程,培養學生合作交流意識與探究精神。
教法分析:
一、教學方法
基于本節課的特點:
課堂教學采用了“問題—觀察—思考—提高”的步驟,使學生初步體驗到數
學是一個充滿著觀察、思考、歸納、類比和猜測的探索過程。
根據教材分析和目標分析,確定本節課主要采用啟發引導探索的教學方法。學生在教師營造的“可探索”的環境里,積極參與,互相討論,一步步地理解分式的基本性質,并通過應用此性質進行不同的練習,讓學生得到更深刻的體會,實現教學目標。有方法就要有手段進行依托,我所采用的教學手段是:多媒體輔助教學通過課件演示,創設問題,讓學討論、交流、總結。教師耐心引導、分析、講解和提問,并及時對學生的意見進行肯定與評議,從而突出教師是學生獲取知識的啟發者、引導者、幫助者和參與者的形象。
二、學法指導
現代新教育理念認為,學習數學不應只是單調刻板的簡單模仿、機械背誦與操練,而應該采用有意義的,富有挑戰性的學習內容來引起學生的興趣。要達到學生主動學習的目的,本節課采用學生小組合作交流自主探索,觀察發現,師生互動的學習方式。學生通過自主探究-自主總結-自主提高,突出學生是學習的主體,他們在感知知識的過程中,無疑提高了探索-發現-實踐-總結的能力。同時強化了學生以舊知識類比得出新知識的能力。
教學過程:
一、小組合作,探索新知:
二、分式基本性質的應用
三、基礎訓練,鞏固新知
四、知識拓展,深化提高
1、如果把分式abab,字母a,b的值分別擴大為原來的2倍,則分式的值為
A.擴大為原來的2倍
B.縮小到原來的
C.不變
D.縮小到原來
板書設計:
《比的基本性質》說課稿13
各位評委、老師:
你們好!我是尚市鎮中心小學的王方。我說課的課題是《分數的基本性質》,接下來我將從說學生、說教材、說教法學法、說教學程序、說板書設計、說反思等幾個方面來進行說課。
一、說學生
學生在學習本內容之前已經理解了分數的意義,明確了分數與除法之間的關系、商不變的性質等知識,這些為本課學習作了鋪墊。而五年級的學生已具有一定的分析和解決問題的能力,能在教師的引導下完成“質疑—探索—釋疑—應用”這一完整的學習過程。
二、說教材
1、教材分析:
《分數的基本性質》是人教版小學數學五年級下冊第四單元中的內容,在小學數學中起著承前啟后的作用。它既與整數除法商不變的性質有著內在聯系,也是后面學習約分、通分、分數計算的基礎,在整個分數教學中也占有非常重要的地位。
2、教學目標:
結合對教材的分析,我確定了以下教學目標:
知識與技能目標:
理解和掌握分數的基本性質,能運用分數的基本性質改變分數的分母與分子,而使分數的大小不變。
過程與方法目標:
讓學生經歷分數基本性質的發現、歸納過程,培養學生小組合作的意識和能力,滲透遷移的教學思想。
情感態度與價值觀目標:
讓學生在主動探索新知識的過程中獲得成功的體驗,體會分數的基本性質在生活中的應用。
3、教學重點和難點:
重點:理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
難點:學生通過猜想和動手驗證,抽象概括出分數的基本性質。
4、教學準備:
學生準備三張形狀大小一樣的紙片、彩筆,老師準備課件、分數卡片。
三、說教法學法
教法:
本著 “以學定教”的思想,我以自主探究為主線,以發展創新為宗旨,主要采用創設情境、引導探究、引導發現、組織討論、組織練習等教法,讓學生全程、全面、全心地參與到每一個教學環節中。
學法:
新課標指出:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。基于這樣的理念,本課學生的學法主要有:自主發現法、操作體驗法、合作交流法、自學嘗試法等。當然,由于學生思維方式的不同,教師要尊重學生的選擇,允許學生用自己喜歡的方式學習數學。
四、說教學過程
為實現教學目標,我將本課的教學程序設計了以下四個環節:
(一)創設情境,引發猜想
首先我為學生帶來一個《猴王分餅》的故事:猴王做了三個大小一樣的餅,它先把第一個餅平均切成兩塊,分給猴1一塊;又把第二個餅平均切成四塊,分給猴2兩塊;接著又把第三個餅平均切成八塊,分給猴3四塊。聽完故事,我問道:“同學們,哪只小猴分的餅最多?”來引發學生的猜想。
設計意圖:“疑是思之始,學之端”。這樣設計,旨在把枯燥的數學知識貫穿于學生喜愛的故事情境中。引發學生的學習興趣,激發他們學習的欲望。
(二)自主探究,尋找規律
活動一:動手實踐,驗證猜想
讓學生動手折一折(將每張紙分別平均折成兩份四份和八份)、涂一涂(用筆將其中的一份兩份和四份涂上色)、比一比(比較涂色部分的大小),發現三只小猴分的餅是一樣多的。同時得到三個相等的分數: = =
活動二:觀察比較,發現規律
引導學生帶著問題觀察這三個分數,并在小組內展開討論:這三個分數的分子和分母都不相同,他們的大小卻相等,你們能找出它們的變化規律嗎?
活動三:對比歸納,提示規律
1、運用課件引導學生分別從左往右看,從右往左看:分數的分子和分母是怎樣變化的?
2、小組合作,歸納出分數的基本性質。
3、自學教材,對比分析,并舉例說明,著重理解為什么要“0除外”?
活動四:應用鞏固,體會規律
我以學生為主角,把全班學生平均分成了兩大組,請其中一組起立。站起來的學生人數占全班人數的幾分之幾?引導學生用不同的分數來表示。
設計意圖:通過四組活動,使學生養成自主學習的習慣和分析問題的能力。在活動中,通過多種評價方式,及時肯定并促進學生的學習。
(三)多層練習,鞏固深化
1、例2:讓學生運用分數的基本性質把 和 化成分母是12而大小不變的分數。
2、明確《猴王分餅》的道理,并拓展延伸:如果小猴子要五塊、六塊、十塊……又該怎么分呢?
3、考慮到學生素質的差異,我設計了四組分層闖關訓練。
我的設計意圖是:讓學生運用所學的知識解決實際問題,實現預定的目標。還能使學有余力的學生有所提高,從而達到拔尖和減負的目的。
(四)課堂小結,加深理解
讓學生暢談收獲,并用分數來表示本節課所體驗到的收獲與快樂。這樣設計,不僅是對自己在課堂上知識獲取的一個回顧,同時也評價了自己在課堂上的表現,對教師的教學行為與課堂的教學效果也給出了評價。
五、說板書設計:
板書設計突出了重點,有助于學生歸納、整理知識,形成知識網絡。
六、說反思
反思本節課的教學,我認為教學設計體現了“趣”、“實”、“活”三個特點。故事引入,激發了學生的學習興趣;通過折、涂、比等多種活動,為學生搭建了一個自主探究的活動平臺;課上得富有實效,學生體驗到了成功的樂趣。
各位領導、老師們,我的說課到此結束,謝謝大家!
《比的基本性質》說課稿14
尊敬的各位評委老師:
大家好!
我是xx號考生,今天我說課的內容是義務教育課程標準實驗教科書青島版小學數學五年級下冊第二單元信息窗3的教學內容—分數的基本性質(板書)。
一、說教材
分數的基本性質是學生在學習了分數的初步認識,掌握了分數的意義,分數與除法的關系,真分數,假分數,帶分數的基礎上進行學習的。本節課通過設計科普展板的情境學習分數的基本性質,為今后學習分數四則運算和解決有關分數的問題打下基礎。
二、說教學目標
(1)知識與技能目標:結合具體情境,理解和掌握分數的基本性質,能運用分數的基本性質找出與一個分數大小相等的分數。
(2)過程與方法目標:在探索分數的基本性質的過程中,培養學生觀察、概括的能力,進一步發展學生的數感及合情推理能力。
(3)情感態度與價值觀目標:運用分數的基本性質解決實際問題的過程中,使學生感受到數學與生活的密切聯系,激發學生的學習興趣,增強學生的自信心,培養學生的應用意識。
三、說教學重難點:
根據對教材的分析以及學生的特點,本節課我確定的教學重點是:理解和掌握分數的基本性質。
教學難點是:自主探索,發現,歸納分數的基本性質,運用分數的基本性質解決實際問題。
四、說教學方法
新課標指出教師是學習的組織者、引導者、合作者。根據這一理念,本節課我主要采用了情境教學法、引導發現法(實踐操作法),這些方法能充分調動學生的積極性,激發學生的求知欲,培養學生的創新精神。
自主探究,合作交流、動手操作是本節課學生學習新知識的主要方法。學生在具體情境中從數學角度發現問題,提出問題,感受數學來自生活的道理。通過動手操作、動腦思考、合作交流使其獲得成功的體驗,加深對知識的理解和掌握。
五、說教學過程:
教育家布魯納說過:“認識是一種過程,而不是一種產品”。根據這一思想,本節課我以學生為立足點,設計如下教學過程:
(一)創設情境,提出問題
新課標提倡要創設情境,激發學生的積極性。課開始,我跟學生交流,你們參加科技活動時都設計過哪些科普展報呢?學生討論交流后,我利用多媒體課件出示學校科教活動中同學們設計的科普展板的情境圖,引導學生仔細觀察每塊展板文字與圖片所占比例,從數學角度提出問題。學生觀察思考后可能提出:“每塊展板的圖片部分占整個版面的幾分之幾?”等有價值的數學信息。
愛因斯坦說過:提出一個問題往往比解決一個問題更重要。通過生動形象的情境,讓學生從數學角度提出問題,使學生產生認知的興趣,調動學生自主探索解決問題的熱情,從而有效開展數學學習活動。
(二)研究素材,猜想規律
一、教學第一個紅點,學習分數的基本性質
教師出示問題:“每塊展板圖片部分占整個版面的幾分之幾?”,讓學生獨立解決。通過思考后學生得出:“把每塊展板看作單位“1”,圖片部分分別占展板的1/2,2/4,4/8。教師追問學生這三個分數有什么大小關系?學生通過自己的認識猜測大小后,教師讓學生利用彩筆和紙條涂一涂,畫一畫分別表示出這三個分數,通過涂一涂,畫一畫,讓學生展示交流,學生直觀的發現這三個分數是相等1/2=2/4=4/8。這時,教師抓住時機提出問題:“分數大小不變,但分子,分母是按照什么規律變化的呢?“先讓學生獨立思考,小組交流,然后全班匯報。有的學生發現:“1/2的分子分母同時乘2就得到了2/4,分子分母同時乘以4就得到了4/8。而有的學生發現4/8的分子分母同時除以2就得到了2/4,同時除以4就得到了1/2(板書)。教師再寫出一組分數2/5=6/15=12/30,讓學生舉這樣的例子。請同學仔細觀察這三組相等的分數,發現了什么?通過觀察、討論交流。學生發現:分子和分母同時乘以或除以相同的數,分數大小不變。教師隨即向學生揭示,像這樣一個分數的分子和分母同時乘以或除以相同的數,分數的大小不變;這就是分數的基本性質。教師引導學生質疑“為什么0除外”學生進行討論,回答:分數的分子分母同時乘以或除以0,分數就沒有意義。我對學生的回答進行肯定,進一步強調分數的基本性質。
數學學習特別關注學生的體驗。這樣的設計,讓學生通過自主探索,動手操作,涂一涂,畫一畫真正體驗分數的基本性質的形成,逐步理解分數基本性質的含義,使學生對所學知識有認同感。同時培養學生的動手操作、獨立解決問題的能力。
二、教學綠點,對分數的基本性質進行鞏固和應用
出示問題:“根據分數的基本性質,你能寫出幾個相等的分數”?學生可能寫出2/3=8/12=10/15,也可能寫出48/64=24/32=6/8讓學生進行小組交流,說出自己寫相等分數的依據和方法。學生交流后得出:“一個分數根據分數的基本性質,把分子分母同時乘以或除以同一個數,分數大小不變。
通過讓學生寫出幾個相等的分數,使學生能初步應用分數的基本性質,加深對分數進本性質的理解和掌握。
三、討論交流、驗證規律
我引導學生回顧分數基本性質的學習過程,讓學生根據規律驗證是不是所有的分數經過這樣的變化,大小都不變呢?學生對畫有12個小正方形的長方形卡片上進行涂一涂、畫一畫,找出這些小正方形的4/12,1/3,通過涂一涂、畫一畫學生得出:4/12=1/3,從而進一步驗證了分數的基本性質。
這樣的設計,讓學生通過動手操作,舉例驗證分數的基本性質,加強對分數基本性質的理解和鞏固,培養學生的應用意識。
四、鞏固拓展、應用規律
為了使學生掌握新知,鍛煉能力,發展思維,我設計了如下練習題:
1、基礎練習
自主練習1:先涂色,在比較大小。學生獨立完成,使學生加深對分數基本性質的直觀認識。
自主練習2、在里填上合適的數。通過填合適的數,加深學生對分數基本性質的理解。
2、綜合練習
自主練習3:通過這道題,使學生將所學的知識應用到實際中去,感受數學來自于生活的道理。
3、新舊對比,溝通聯系
讓學生回憶商不變的性質,并與本節課學習的分數的基本性質進行比較,使學生發現利用商不變的性質也能解釋分數基本性質的存在,培養了學生初步的演繹推理能力,同時加深了學生對知識的理解。
五、總結反思,深化規律。
我帶領學生總結本次課堂:同學們通過這節課你有什么收獲?讓學生從知識、方法、感受三個方面進行交流。
六、板書設計
x2 = 2/4 = x4
= x2 = 1/2
分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。
好的板書是一節課的精華,本節課我采用重點式的板書設計,將教材中最為重要的內容加以歸納概括,力求用簡潔的文字表達清楚,層次明確,重點一目了然。
我的說課內容到此結束,誠心期待各位評委老師的批評指導,謝謝大家!
《比的基本性質》說課稿15
本節課我采用從生活中創設問題情景的方法激發學生學習興趣,采用類比等式性質創設問題情景的方法,引導學生的自主探究活動,教給學生類比,猜想,驗證的問題研究方法,培養學生善于動手、善于觀察、善于思考的學習習慣。利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節課的內容。力求在整個探究學習的過程充滿師生之間,生生之間的交流和互動,體現教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
課堂開始通過回顧舊知識,抓住新知識的切入點,使學生進入一種“心求通而未得,口欲言而未能”的境界,使他們有興趣的進入數學課堂,為學習新知識做好準備。在這一環節上,留給學生思考的時間有點少。
接下來出示的問題1從學生的生活經驗出發,讓學生感受生活中數學的存在,不僅激發學生學習興趣,而且可以讓學生直觀地體會到在不等關系中存在的一些性質。這一環節上展現給學生一個實物,使學生獲得直觀感受。
問題2、3的設計是為了類比等式的基本性質,研究不等式的性質,讓學生體會數學思想方法中類比思想的應用,并訓練學生從類比到猜想到驗證的研究問題的方法,讓學生在合作交流中完成任務,體會合作學習的樂趣。在這個環節上,我講得有點多,在體現學生主體上把握得不是很好,在引導學生探究的過程中時間控制的不緊湊,有點浪費時間。還有就是給他們時間先記一下不等式的基本性質,便于后面的練習。
通過問題四讓學生比較不等式基本性質與等式基本性質的異同,這樣不僅有利于學生認識不等式,而且可以使學生體會知識之間的內在聯系,整體上把握知識、發展學生的辨證思維。
在運用符號語言的過程中,學生會出現各種各樣的問題與錯誤,因此在課堂上,我特別重視對學生的表現及時做出評價,給予鼓勵。這樣既調動了學生的學習興趣,也培養了學生的符號語言表達能力。
在練習的設計上兩道練習以別開生面的形式出現,給學生一個充分展示自我的舞臺,在情感兩道練習以別開生面的形式出現,給學生一個充分展示自我的舞臺,在情感態度和一般能力方面都得到充分發展,并從中了解數學的價值,增進了對數學的理解。在這一環節,讓學生起來回答問題的時候有點耽誤時間。
讓學生通過總結反思,一是進一步引導學生反思自己的學習方式,有利于培養歸納,總結的習慣,讓學生自主構建知識體系;二也是為了激起學生感受成功的喜悅,力爭用成功蘊育成功,用自信蘊育自信,激勵學生以更大的熱情投入到以后的學習中去。
本節課,我覺得基本上達到了教學目標,在重點的把握,難點的突破上也基本上把握得不錯。在教學過程中,學生參與的積極性較高,課堂氣氛比較活躍。其中還存在不少問題,我會在以后的教學中,努力提高教學技巧,逐步的完善自己的課堂。