第一篇:因數和倍數單元學習評價量規
因數和倍數單元學習評價量規
評價等級及分值
得分
評價 指標 A(10)
參與 積極舉手發言,積極程度
參與討論與交流。
團結合作,在小組中
合作 起領導作用,吸收接
納并能給出建議,并
情況
幫助其它小組成員,貢獻大。
B(8)
能舉手發言,有參
與討論與交流。
幫助協調,推動整
個小組的工作,鼓
勵其他成員。工作
至最后一刻,對最
終成果有一定的所貢獻。
C(6)
少有舉手發
言,較少參與
討論與交流。
參與了討論、工作,并對最終成果進行了評價,對評價過程只是旁觀。
師
D(4)
自評
互評
評
不舉手、不
發言,不參
與討論和交
流。不參與討論,不進行評價,對評價過程只是旁觀。
第二篇:主題單元學習評價量規
主題單元學習評價量規
主要指標
評價要素
(權重)
評價標準描述
(4分)
(3分)
非常合適
合適
一般
(2分
參與程度
圍繞目標,積極參與探
目標明確,圍繞目標圍繞目標,較積極參目標不太明
主題單元學習過
程評價
20%
合作情況 20%
創新意識 20% 收集資料,內容較全完成規定任務,具有
合作精神。
信息處理能力較強,動手能力較強,有較強的操作能力和創新
精神。
究,在探究活動中運用多種方法主動收集資料。
積極參與小組探究,在小
組學習中,積極發言,收
集資料,整理資料,有較
強的合作意識和能力。認真聽取別人的意見
在學習中,能前后聯系所
學知識,并結合所學知
識,深入思考,具有創新
性。
與探究,在探究活動中主動收集資料。
較積極參與小組探
究,在小組學習中,能夠主動發言,幫助
收集資料,整理資料,有一定的合作意識和
能力。在學習中,能前后聯
系所學知識,理解新
知。
參與程度不
在小組學習
能夠積極發
收集資料,資料,有合識但不太積
在學習中,主動學習,不太積極
第三篇:因數和倍數
成功之舉:
創設有效的數學學習情境,數形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數和倍數的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數學到數學,讓學生自主體驗數與形的結合,進而形成因數與倍數的意義.使學生初步建立了“因數與倍數”的概念。這樣,充分學習、利用、挖掘教材,用學生已有的數學知識引出了新知識,減緩難度,效果較好。
敗筆之處:
找一個數因數的方法是本節課的難點,如何做到既不重復又不遺漏地找36的因數對于剛剛對倍數因數有個感性認識的學生來說有一定困難。
問題發現:
整個教學過程中力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,教師始終為學生創造寬松的學習氛圍,讓學生自主探索,學習理解倍數和因數的意義,探索并掌握找一個數的倍數和因數的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
教學機智:
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。
再教設計:
要注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養,并及時讓學生感受到學習成功的喜悅,享受數學,感悟文化魅力。
第四篇:倍數和因數
倍數和因數
【教學內容】第70-72頁的例題和相應的試一試,想想做做1-3 【教學目標】 【基礎性目標】
1.讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。【提高性目標】
2.讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養學生的觀察、分析和抽象概括能力,體會數學內容的奇妙、有趣,產生對數學的好奇心。【教學重點】
理解倍數和因數的意義,掌握找一個數的倍數和因數的方法。【教學難點】
理解倍數和因數的意義,掌握找一個數的倍數和因數的方法。【教學準備】教學光盤 【教學過程】 板塊一:
(一)教學內容:教學倍數的意義,找一個數的倍數
(二)教學目標:目標
(三)教學過程:
一、導入 談話:回憶一下,我們學過了哪些數?(學生自由發言)剛才有的同學談到我們學習了自然數,你能舉例說一說哪些數是自然數嗎?(指名回答)對,o、l、2、3、4……都是自然數。這個單元我們將從一個特定的角度來對除了0之外的自然數進行研究,研究這些數的特征和相互關系,這個單元的題目就是倍數和因數。(板書課題)
二、教學倍數和因數的意義
1.那么什么是倍數和因數呢?我們還要從最熟悉的事只有一個自然數是兩個自然數的乘積的時候,才能談上它們之間具有倍數和因數的關系。
2.做“想想做做”第1題。(1)指名讀題。
(2)指名口答,共同評議。
3.板書:24÷4=6。談話:我能說24是4和6的倍數,4和6都是24的因數嗎?(學生自由發言,可能引起爭論,最后統一到根據24÷4=6,可以得到4×6=24,實際上24是6和4的乘積,所以24是4和6的倍數,4和6都是24的因數)
三、教學找一個數的倍數
1.談話:下面我們研究如何找一個數的倍數。請大家找3的倍數。想想用什么辦法找,能找多少個?在小組內討論找的方法,然后動手找。2.談話:誰來說一下你是怎樣找3的倍數的?你找到了多少個? 學生發言時教師板書:3×1=3 3×2=6 3×3=9 3的倍數有3、6、9、12、15、18…… 提問:能寫完嗎?為什么? 3.提問:誰能總結一下找一個數的倍數的方法?(用這個數分別與1、2、3……相乘)4.談話:你能不列式計算直接寫出2的倍數和5的倍數嗎? 學生獨立書寫。
指名回答,教師板書:2的倍數有2、4、6、8、10、12…… 5的倍數有5、10、15、20、25、30……
5.提問:觀察上面的三個例子,你有什么發現?在小組內討論。指名匯報,相機出示以下結論:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。【設計意圖】
找一個數的倍數相對比較容易,在比較中讓學生感受有順序的找可以避免重復遺漏,強化數學思維有序性的培養。為下面找一個數的因數打下比較好的伏筆。板塊二:
(一)教學內容:教學找一個數的因數
(二)教學目標:目標1、2
(三)教學過程:
1.談話:下面我們研究如何找一個數的因數。你能找出36的所有因數嗎?邊想邊寫出來。
指名說出自己找的結果,學生很可能找不全.或順序很亂。
2.談話:剛才同學們找到了36的一些因數,感覺到往往找不全,而且小一個大一個地沒有規律。那么怎樣找才能不重復、不遺漏呢?我們一起研究。
先這樣想,根據因數的意義,我們知道()×()=36,括號內的數就是36的因數。
如果第一個括號里填1,那么怎樣算出第二個括號里的數(指名回答,板書:36÷1=36)這樣一次找到了36的幾個因數?是哪兩個?
如果第一個括號里填2,那么怎樣算出第二個括號里的數?(指名回答,板書:36÷2—18)這樣又找到了36的哪兩個因數? 你能接著寫出幾個這樣的除法算式嗎?(學生回答后教師板書:36÷3=1236÷4=936÷6=6)從36÷6這道除法算式中找到了36的幾個因數? 還要再寫除法算式嗎?為什么? 現在你能按從小到大的順序說出36的所有因數了嗎?指名到黑板前指著算式中的數說答案,教師板書:36的因數有1、2、3、4、6、9、12、18、36。
3.談話:在小組里討論一下,我們可以用什么辦法找一個數的因數。4.談話:你能找出15的因數和16的因數嗎?如果用除法找,算式可以寫出來,也可以想在心里,不寫出來。學生獨立做題后,指名回答,教師板書:
15的因數有:l、3、5、15。16的因數有:1、2、4、8、16。
5.提問:觀察上面的三個例子,你有什么發現? 學生自由發言,教師相機出示以下結論:
一個數最小的因數是1,最大的因數是它本身。一個數的因數的個數是有限的。【設計意圖】
教學的開始主要是對找一個數因數的方法進行指導,無論是乘法還是除法算式都能找到一個數的兩個因數。然后以小組的形式,引導象找倍數一樣有順序的去找一個數的因數,盡可能找全。教學的層次有坡度,能照顧到絕大多數學生。板塊三:
(一)教學內容:鞏固練習
(二)教學目標:目標2、3
(三)教學過程:
一、組織練習
1.做“想想做做”第2題。(1)讓學生自己讀題填表。(2)提問:表中的“應付元數”都是4的倍數嗎?為什么? 2.做“想想做做”第3題。(1)讓學生自己讀題填表。
(2)提問:題中的排數都是24的因數嗎?每排人數呢?為什么排數和每排人數都是總人數的因數?(3)提問:通過以上兩題的練習,你對倍數和斟數有什么新的認識?(倍數和因數在生活中被廣泛應用)3.做“想想做做”第4題。(1)學生各自在書上填寫。
(2)展示部分學生的答案,全班共同校對、評議。(3)發現做錯的學生,找出錯誤原因。
4.游戲每人發一張卡片,標有1—30的數。(正好30名同學)a.要求:全體活動起來:7的倍數站起來。30的因數站起來。1的倍數站起來。
得出:任何非0的自然數都是1的倍數,反過來1是任何非0的自然數的因數。
b.小組內說說數與數之間的倍數和因數關系。
c.這里要注意了,我們在研究倍數和因數時,都是指非0的自然數。
二、全課總結
提問:這節課你學到了哪些知識?掌握了哪些方法?你理解了哪些結論? 【設計意圖】
這節課的容量比較大,所以后面的練習我沒有選擇都做,主要是后面的游戲需要花一定的時間。這個游戲的設計主要想通過幾的倍數、幾的因數站起來這樣一個全體同學互動活動,充分調動學生參與學習、主動學習的積極性。并滲透了任何非0的自然數都是1的倍數,1也是任何非0的自然數的因數。【課堂練習設計與布置】
【必做題】課本第72頁“想想做做”第1題。【選做題】《補充習題》第53頁 【板書設計】 倍數和因數
4*3=123*1=3()*()=36 2*6=123*2=636÷1=36 1*12=123*3=936÷2=18 一個數最小的倍數是它本身36÷3=12 沒有最大的倍數36÷4=9 一個數倍數的個數是無限的36÷6=6 一個數最小的因數是1最大的……
因數是它本身,一個數因數的個數是無限的。
第五篇:2、第二單元 〈因數和倍數〉
第二單元 因數和倍數
課題:因數和倍數
教學目標:
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
教學重點:掌握找一個數的因數和倍數的方法。教學難點:能熟練地找一個數的因數和倍數。教學過程:
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式? 出示:因為2×6=12 所以2是12的因數,6也是12的因數; 12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)
齊讀p12的注意。
二、新授:
(一)找因數:
1、出示例1:18的因數有哪幾個?
從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些? 學生嘗試完成:匯報
(18的因數有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些? 匯報36的因數有: 1,2,3,4,6,9,12,18,36 師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾? 看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如
18的因數
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉? 從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、…… 師:為什么找不完? 你是怎么找到這些倍數的?
(生:只要用2去乘
1、乘
2、乘
3、乘
4、…)那么2的倍數最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數。匯報
3的倍數有:3,6,9,1
2師:這樣寫可以嗎?為什么?應該怎么改呢? 改寫成:3的倍數有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數有:5,10,15,20,……
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示
2的倍數
3的倍數
5的倍數
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)
三、課堂小結:
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業: 完成練習二1~4題 教學反思:
第二課時
課題:
2、5的倍數的特征 教學目標:
1、掌握 2、5 倍數的特征
2、理解并掌握奇數和偶數的概念。
3、能運用這些特征進行判斷。
4、培養學生的概括能力。
教學重點和難點:
1、是2、5 倍數的數的特征。
2、奇數和偶數的概念。
教學用具:投影片。教學過程:
一、復習準備
1、提問。
① 說出 20 的全部因數。② 說出 5 個 8 的倍數。
③ 26 的最小因數是幾?最大因數是幾?最小的倍數是幾?
2、按要求在集合圈里填上數。
二、學習新課:
(一)2 的倍數的特征。
1、教師:(練習2)右邊集合圈里的數與左邊圈里的數是什么關系? 教師:請觀察右邊圈里的數,它們的個位數有什么特點?(個位上是 0,2,4,6,8。)教師:請再舉出幾個2的倍數,看看符不符合這個特點? 學生隨口舉例。
教師:誰能說一說是2的倍數的數的特征?
學生口答后老師板書:個位上是 0,2,4,6,8的數,都是2的倍數。
2、口答練習:(投影片)請把下面的數按要求填在圈內(是2的倍數,不是2的倍數)1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。學生口答完后,老師介紹:奇數和偶數的定義 板書:上面兩個集合圈上補寫出 “ 偶數 ”,“ 奇數 ”。教師:上面兩個集合圈里該不該打省略號?為什么? 學生討論后老師說明:
在本題所列的有限個數里,奇數、偶數都是有限的,但是自然數是無限的,奇數、偶數也是無限的,所以集合圈里要寫上省略號。教師:奇數、偶數在我們日常生活中你遇到過嗎?習慣上稱它們為什么數?(單數、雙數。)
3、練習:(先分小組小說,再全班統一回答。)① 說出5個2的倍數。(要求:兩位數。)② 說出3個不是2的倍數的三位數。③ 說出 15 ~ 35 以內的偶數。
④ 50以內的偶數有多少個?奇數有多少個?
(二)5 的倍數的特征。
1、教師先在黑板上畫出兩個集合圈,然后提出要求:你們能不能用與研究2的倍數的特征的相同方法,找出 5 的倍數的特征?
學生自己動手填數、觀察、討論。老師巡視過程中選一位同學板書填空。
教師:說一說5的倍數的特征? 教師:請舉幾個多位數驗證。
教師:再說一說什么樣的數是5的倍數。
板書:個位上是0或者5的數,都是5的倍數。
2、練習:
① 按從小到大的順序,說出50以內5的倍數。②(投影片)下面哪些數是5的倍數?
240,345,431,490,545,543,709,725,815,922,986,990。③(投影片)從下面的數中挑出既是2的倍數,又是5的倍數的數。這些數有什么特點?
12,25,40,80,275,320,694,720,886,3100,3125,3004。
學生口答后教師板書:個位數字是 0。
④ 教師隨口說出數,請立即說出這個數是2的倍數還是5的倍數,或者同時是2和5的倍數,并說明判斷的依據。
三、鞏固反饋: 1、在1~100的自然數中,2的倍數有()個,5的倍數數有()個。、比75小,比50大的奇數有()。、個位是()的數同時是2和5的倍數。4、用 0,7,4,5,9 五個數字組成 2的倍數;5的倍數;同時是 2 和 5 的倍數的數。
四、全課總結:這節課你學會了什么?有什么收獲? 教學反思:
第三課時
課題:3的倍數的特征 教學目標:
1、經歷在100以內的自然數表中找3的倍數的活動,在活動的基礎上感悟3的倍數的特征,并嘗試用自己的語言總結特征。
2、在探索活動中,感受數學的奧妙;在運用規律中,體驗數學的價值。
教學重、難點:是3的倍數的數的特征。教學過程:
一、提出課題,尋找3的特征。
師:同學們,我們已經知道了2、5的倍數的特征,那么3的倍數會有什么特征呢?誰能猜測一下?
生1:個位上是3、6、9的數是3的倍數。
生2:不對,個位上是3、6、9的數不定是3的倍數,如l
3、l 6、19都不是3的倍數。
生3:另外,像60、12、24、27、18等數個位上不是3、6、9,但這些數都是3的倍數。
師:看來只觀察個位不能確定是不是3的倍數,那么3的倍數到底有什么特征呢?今天我們共同來研究。(揭示課題)師:先請在下表中找出3的倍數,并做上記號。(教師出示百以內數表,學生人手一張。在學生的活動后,教師組織學生進行交流,并呈現學生已圈出3的倍數的百以內的數表。)(如下圖)
二、自主探索,總結3的特征師:
先請在下表中找出3的倍數,并做上記號。(教師出示百以內數表,學生利用p18的表。在學生的活動后,教師組織學生進行交流,并呈現學生已圈出3的倍數的百以內的數表。)(如下圖)
師:請觀察這個表格,你發現3的倍數什么特征呢?把你的發現與同桌交流一下。學生同桌交流后,再組織全班交流。
生1:我發現10以內的數只有3、6、9是3的倍數。
生2:我發現不管橫的看或豎的看,3的倍數都是隔兩個數出現一次。生3:我全部看了一下,剛才前面這位同學的猜想是不對的,3的倍數個位上0~9這十個數字都有可能。
師:個位上的數字沒有什么規律,那么十位上的數有規律嗎? 生:也沒有規律,1~9這些數字都出現了。師:其他同學還有什么發現嗎?
生:我發現3的倍數按一條一條斜線排列很有規律。
師:你觀察的角度與其他同學不同,那么每條斜線上的數有規律嗎? 生:從上往下觀察,連續兩數都是十位數增加1,而個位數減少1。師:十位數加
1、個位數減1組成的數與原來的數有什么相同的地方? 生:我發現“3”的那條斜線,另外兩個數12和21的十位和個位上的數字加起來都等于3。
師:這是一個重大發現,其他斜線呢? 生1:我發現“6”的那條斜線上的數,兩個數字加起來的和都等于6。生2:“9”的那條斜線上的數,兩個數字加起來的和都等于9。
生3:我發現另外幾列,除了邊上的30、60、90兩個數字的和是3、6、9,另外的數兩個數字的和是12、15、18。師:現在誰能歸納一下3的倍數有什么特征呢?
生:一個數各個數位上數字之和等于3、6、9、12、15、18等,這個數就一定是3的倍數。
師:實際上3、6、9、12、15、18等數都是3的倍數,所以這句還可以怎么說呢?
生:一個數各個數位上數字之和是3的倍數,這個數就一定是3的倍數。
師:剛才是從100以內數中發現了規律,得出了3的倍數的特征,如果是三位數甚至更大的數,3的倍數的特征是否也相同呢?請大家再找幾個數來驗證一下。
學生先自己寫數并驗證,然后小組交流,得出了同樣的結論。全班齊讀書上的結論。
三、鞏固練習: 完成p19做一做
四、課堂小結:
這節課你有什么收獲 教學反思:
第四課時
課題:質數和合數 教學目標:
1、理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
2、培養學生自主探索、獨立思考、合作交流的能力。
3、培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。教學重點:
1、理解掌握質數、合數的概念。
2、初步學會準確判斷一個數是質數還是合數。教學難點:區分奇數、質數、偶數、合數。教學過程:
一、探究發現,總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形? 學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形? 學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形? 師:我看到許多同學不用畫就已經知道了。(指名說一說)
4、師:同學們,如果給出的正方形的個數越多,那拼出的不同的長方形的個數——,你覺得會怎么樣?
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數是什么數的時候,只能拼一種? 什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據學生的回答板書。
師:同學們,像上面這些數(板書的3、13、7、5、11等數),在數學上我們把它們叫做質數,下面的這些數(4、6、8、9、10、12、14、15等數)我們把它們叫做合數。那究竟什么樣的數叫質數,什么樣的數叫合數呢? 學生獨立思考后,在小組內進行交流,然后再全班交流。
引導學生總結質數和合數的概念,結合學生回答,教師板書:(略)
6、讓學生舉例說說哪些數是質數,哪些數是合數,并說出理由。
7、師:那你們認為“1”是什么數? 讓學生獨立思考,后展開討論。
二、動手操作,制質數表。
1、師出示:73。讓學生思考著它是不是質數。
師:要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢?(教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)
2、讓學生動手制作質數表。
3、集體交流方法。
三、練習鞏固: 完成練習四第1、2題。
四、課題小結:
這節課你在激烈的討論中有什么收獲?