第一篇:基于PSAT的電力系統潮流計算仿真
`電力系統潮流計算
一、原始資料
1、系統圖:IEEE14節點。
G23GG154G87G6121110913
2、原始資料:見IEEE14節點標準數據庫
二、設計基本內容 系統潮流圖
1、系統潮流計算方法和優化調整措施
⑴ 簡述計算計算法原理并比較NR法和PQ分解法計算潮流的特點: ①電力系統潮流計算的計算機方法原理
電力系統是由發電機、變壓器、輸電線路及負荷等組成,其中發電機及負荷是非線性元件,但在進行潮流計算時,一般可以用接在相應節點上的一個電流注入量來代表。因此潮流計算所用的電力網絡是由變壓器、輸電線路、電容器、電抗器等靜止線性元件所構成,并用集中參數表示的串聯或并聯等值支路來模擬。結合電力系統的特點,對這樣的線性網絡進行分析,普通采用的是節點法,節點電壓與節點電流之間的關系
??YV? I
(1-1)
展開式為
???YV?,2,3,?,n)
(1-2)Iiijj(i?1j?1n在工程實際中,已知的節點注入量往往不是節點電流而是節點功率,為此必須應用聯系節點電流和節點功率的關系式
??Pi?jQi(i?1,2,3,?,n)
(1-3)Ii?ViPi?jQiVi?n將式(1-3)代入式(1-2)得到
?(i?1,2,3,?,n)
(1-4)??YijVjj?1交流電力系統中的復數電壓變量可以用兩種極坐標來表示
??Vej?i
或
Vii5)
而復數導納為
??e?jf(1-ViiiYij?Gij?jBij
(1-6)
將式(1-5)、式(1-6)代入以導納矩陣為基礎的式(1-4),并將實部與虛部分開,可以得到以下兩種形式的潮流方程。潮流方程的直角坐標形式為
(i?1,2,3,?,n)(1-7)Pi?ei?(Gijej?Bijfj)?fi?(Gijfi?Bijej)
j?ij?iQi?fi?(Gijej?Bijfj)?ei?(Gijfi?Bijej)(i?1,2,3,?,n)(1-8)
j?ij?i潮流方程的極坐標形式為 ,2,3,?,n)
Pi?Vi?Vi(Gijcos?ij?Bijsin?ij)(i?1j?i(1-9)Qi?Vi?Vi(Gijsin?ij?Bijcos?ij)(i?1,2,3,?,n)
j?i(1-10)
以上各式中,j?i表示?號后的標號j的節點必須直接和節點i相聯,并包括j?i的情況。這兩種形式的潮流方程通常稱為節點功率方程,是牛頓-拉夫遜等潮流算法所采用的主要數學模型。PQ分解法派生于以極坐標表示的牛頓-拉夫遜法。
②分析NR法和PQ分解法計算潮流的特點 NR法特點:
1.收斂速度快,若選擇到一個較好的初值,算法將具有平方收斂特性,一般迭代4—5次便可以收斂到一個非常精確的解。而且其迭代次數與所計算網絡的規模基本無關。
2.具有良好的收斂可靠性,對于前面提到的對以節點導納矩陣為基礎的高斯一塞德爾法呈病態的系統,牛頓法均能可靠地收斂。
3.牛頓法所需的內存量及每次迭代所需時間均較前述的高斯一塞德爾法為多,并與程序設計技巧有密切關系。
PQ法特點:
1.以一個(n-1)階和一個(m-1)階系數矩陣B、替代原有的系數矩陣J,提高了計算速度,降低了對貯存容量的要求。
2.以迭代過程中保持不變的系數矩陣B、替代原有的系數矩陣J,顯著的提高了計算速度。
3.以對稱的系數矩陣B、替代原有的系數矩陣J,使求逆等運算量和所需的儲存容量都大為減少。
⑵對潮流結果進行分析,評價該潮流斷面的運行方式安全性和經濟性: 潮流斷面也稱輸電斷面。在實際電力系統中,系統調度人員往往僅根據地理位置,將聯絡電源中心與負荷中心的若干線路選為一個輸電斷面。在某一基態潮流下,有功潮流方向相同且電氣距離相近的一組輸電線路的集合稱為輸電斷面。
安全性:各節點電壓滿足電壓波動的一般要求,既滿足電壓波動在±5%。基于安全性相關的其他因素,暫時還沒有涉及,暫不作考慮。
經濟性:經計算可知,本斷面網損率為4.95%,基本滿足一般的網損要求,即一般要求在4%~5%之間即為較經濟。
基于經濟性相關的其他因素,暫時還沒有涉及,暫不作考慮。⑶分析調節系統中薄弱環節:
由仿真結果分析可知,節點6電壓最低成為系統進行的最大隱患。下面對系統中,如何提高全網電壓最低點電壓進行討論:
犧牲電壓去滿足無功電源與無功負荷的平衡,提高節點電壓,應該增發無功。①通過調節發電機端電壓調壓
本質:發電機是無功電源,增發無功,且6節點有發電機,可直接調節6節點 不用增加新設備,從而不需要增加投資
(發電機母線沒有負荷時,在95%~100%范圍內調壓,發電機母線有負荷時,一般采用逆調壓)②通過補償設備調壓和組合調壓 并聯電容器,調相機或靜止補償器,降低網絡中的功率和能量損耗并不能提高節點6電壓水平,也不能減小線路負擔和損耗。③通過調節變壓器變比調節 通過調節變壓分觸頭,即調節變壓器的變比,實際調節了線路的阻抗值,以調壓。采用該方法能有效提升節點電壓,并對掐節點的影響較少,同時調節變壓器分觸頭并不需要進行額外的投入,是一種十分經濟的調節方法。⑷分析各種調整措施的特點并比較它們之間的差異: 發電機調壓,因不用附加設備,不需要附加投資。當然,應該盡量避免無功的遠距離傳輸,否則不僅會增大有功損耗,而且對電壓的調節也不利。
有載調壓變壓器可帶負荷調壓,而無載變壓器只能停運調壓。經常性的變壓器調壓,只能采用有載調壓變壓器(或串聯加壓器,很少)。隨著電壓質量的要求逐漸提高,目前在500KV、200KV、和110KV電網中,廣泛采用有載調節變壓器,而35KV和10KV電網常采用無載調壓變壓器。
變壓器調壓不能解決無功平衡問題,當無功不足時,變壓器調節甚至坑內加劇無功不足并引發發電機電壓穩定問題。無功不足的系統,首要問題是增加無功電源,以采用并聯電容器、調相機或靜止補償器為宜。其中,調相機因運行、維護費用大成為淘汰設備,而靜止補償器因為投資大爺應用很少。就地無功補償既能調壓又能減少電網中的無功功率傳輸,從而降低有功損耗,因此也在電網中廣泛采用。一般都在變壓器的低壓側設置可控的無功補償設備(如多組并聯電容器組),已達到無功的就地補償目的。而500KV變電站還常配置不可控的500KV高壓并聯電抗器(高抗),以補充線路過剩的充電無功。
串聯補償電容器,因其設計、運行方面的問題很少采用。為了合理選擇調壓措施,應進行綜合技術經濟比較。
本課題中,提高電壓等級,在相同的傳輸功率的情況下,適當的提高節點電壓,可在一定程度上減少線路的損耗。另外,提高負荷的功率因數也可以起到減少線路損耗的效果,但在本課題中,不是很適用。無功補償設備的添加,減少了線路中無功的流動,進而減少了線路的電壓損失,在結果上也可以起到減少線路損耗的效果。
第二篇:電力系統仿真MATPOWER潮流計算
IEEE30節點潮流計算
寧夏大學新華學院 馬智
潮流計算,指在給定電力系統網絡拓撲、元件參數和發電、負荷參量條件下,計算有功功率、無功功率及電壓在電力網中的分布。潮流計算是根據給定的電網結構、參數和發電機、負荷等元件的運行條件,確定電力系統各部分穩態運行狀態參數的計算。通常給定的運行條件有系統中各電源和負荷點的功率、樞紐點電壓、平衡點的電壓和相位角。待求的運行狀態參量包括電網各母線節點的電壓幅值和相角,以及各支路的功率分布、網絡的功率損耗等。它是基于配電網絡特有的層次結構特性,論文提出了一種新穎的分層前推回代算法。該算法將網絡支路按層次進行分類,并分層并行計算各層次的支路功率損耗和電壓損耗,因而可大幅度提高配電網潮流的計算速度。論文在MATLAB環境下,利用其快速的復數矩陣運算功能,實現了文中所提的分層前推回代算法,并取得了非常明顯的速度效益。另外,論文還討論發現,當變壓器支路阻抗過小時,利用Π型模型會產生數值巨大的對地導納,由此會導致潮流不收斂。為此,論文根據理想變壓器對功率和電壓的變換原理,提出了一種有效的電壓變換模型來處理變壓器支路,從而改善了潮流算法的收斂特性。
關鍵詞:電力系統;潮流分析;MATLAB
潮流計算的目的
電力系統的潮流計算最主要的目的是為了讓電力系統能夠安全穩定運行的同時做到經濟運行。所以考留到經及調度、電網規劃、電力系統可靠性分析。
具體表現在以下方面:
①在電網規劃階段,通過潮流計算,合理規劃電源容量及接入點,合理規劃網架,選擇無功補償方案,滿足規劃水平的大、小方式下潮流交換控制、調峰、調相、調壓的要求。
②在編制年運行方式時,在預計負荷增長及新設備投運基礎上,選擇典型方式進行潮流計算,發現電網中薄弱環節,供調度員日常調度控制參考,并對規劃、基建部門提出改進網架結構,加快基建進度的建議。
③正常檢修及特殊運行方式下的潮流計算,用于日運行方式的編制,指導發電廠開機方式,有功、無功調整方案及負荷調整方案,滿足線路、變壓器熱穩定要求及電壓質量要求。
④預想事故、設備退出運行對靜態安全的影響分析及作出預想的運行方式調整方案。
總結為在電力系統運行方式和規劃方案的研究中,都需要進行潮流計算以比較運行方式或規劃供電方案的可行性、可靠性和經濟性。同時,為了實時監控電力系統的運行狀態,也需要進行大量而快速的潮流計算。因此,潮流計算是電力系統中應用最廣泛、最基本和最重要的一種電氣運算。在系統規劃設計和安排系統的運行方式時,采用離線潮流計算;在電力系統運行狀態的實時監控中,則采用在線潮流計算。
MATLAB軟件的應用
MATLAB Compiler是一種編譯工具,它能夠將M編寫的函數文件生成函數庫或者可執行文件COM組件等,以提供給其他高級語言如C++、C#等進行調用由此擴展MATLAB的應用范圍,將MATLAB的開發效率與其他高級語言的運行結合起來,取長補短,豐富程序開發的手段。
目前電子計算機已廣泛應用于電力系統的分析計算,潮流計算是其基本應用軟件之一。現有很多潮流計算方法。對潮流計算方法有五方面的要求:(1)計算速度快(2)內存需要少(3)計算結果有良好的可靠性和可信性(4)適應性好,即能處理變壓器變比調整、系統元件的不同描述和與其它程序配合的能力強(5)簡單。
MATLAB是一種交互式、面向對象的程序設計語言,廣泛應用于工業界與學術界,主要用于矩陣運算,同時在數值分析、自動控制模擬、數字信號處理、動態分析、繪圖等方面也具有強大的功能。
MATLAB程序設計語言結構完整,且具有優良的移植性,它的基本數據元素
是不需要定義的數組。它可以高效率地解決工業計算問題,特別是關于矩陣和矢量的計算。MATLAB與C語言和FORTRAN語言相比更容易被掌握。通過M語言,可以用類似數學公式的方式來編寫算法,大大降低了程序所需的難度并節省了時間,從而可把主要的精力集中在算法的構思而不是編程上。
另外,MATLAB提供了一種特殊的工具:工具箱(TOOLBOXES).這些工具箱主要包括:信號處理(SIGNAL PROCESSING)、控制系統(CONTROL SYSTEMS)、神經網絡(NEURAL NETWORKS)、模糊邏輯(FUZZY LOGIC)、小波(WAVELETS)和模擬(SIMULATION)等等。不同領域、不同層次的用戶通過相應工具的學習和應用,可以方便地進行計算、分析及設計工作。
MATLAB設計中,原始數據的填寫格式是很關鍵的一個環節,它與程序使用的方便性和靈活性有著直接的關系。原始數據輸入格式的設計,主要應從使用的角度出發,原則是簡單明了,便于修改。
14611121416***25783***9202422302526
圖1 IEEE-30節點系統接線圖
總結及感想
通過這次的課程設計,我知道了潮流計算的基本步驟和方法,明白了潮流計算對于電力系統的重要性,準確的潮流計算對于工農業的生產有著十分重要的意義。這次實習忙碌但是充實,在其中我發現了自己的不足,自己知識的很多漏洞,和基礎知識不扎實,課外知識知之甚少。看到了自己理論聯系實際的能力還需提高,也知道了自己以后學習的方向和目的。這次課程設計對自己意義很大,自己從中獲得很多東西。
第三篇:電力系統潮流計算
南 京 理 工 大 學
《電力系統穩態分析》
課程報告
姓名
XX
學 號: 5*** 自動化學院 電氣工程
基于牛頓-拉夫遜法的潮流計算例題編程報學院(系): 專
業: 題
目: 任課教師 碩士導師 告
楊偉 XX
2015年6月10號
基于牛頓-拉夫遜法的潮流計算例題編程報告
摘要:電力系統潮流計算的目的在于:確定電力系統的運行方式、檢查系統中各元件是否過壓或者過載、為電力系統繼電保護的整定提供依據、為電力系統的穩定計算提供初值、為電力系統規劃和經濟運行提供分析的基礎。潮流計算的計算機算法包含高斯—賽德爾迭代法、牛頓-拉夫遜法和P—Q分解法等,其中牛拉法計算原理較簡單、計算過程也不復雜,而且由于人們引入泰勒級數和非線性代數方程等在算法里從而進一步提高了算法的收斂性和計算速度。同時基于MATLAB的計算機算法以雙精度類型進行數據的存儲和運算, 數據精確度高,能進行潮流計算中的各種矩陣運算,使得傳統潮流計算方法更加優化。
一 研究內容
通過一道例題來認真分析牛頓-拉夫遜法的原理和方法(采用極坐標形式的牛拉法),同時掌握潮流計算計算機算法的相關知識,能看懂并初步使用MATLAB軟件進行編程,培養自己電力系統潮流計算機算法編程能力。
例題如下:用牛頓-拉夫遜法計算下圖所示系統的潮流分布,其中系統中5為平衡節點,節點5電壓保持U=1.05為定值,其他四個節點分別為PQ節點,給定的注入功率如圖所示。計算精度要求各節點電壓修正量不大于10-6。
二 牛頓-拉夫遜法潮流計算 1 基本原理
牛頓法是取近似解x(k)之后,在這個基礎上,找到比x(k)更接近的方程的根,一步步地迭代,找到盡可能接近方程根的近似根。牛頓迭代法其最大優點是在方程f(x)=0的單根附近時誤差將呈平方減少,而且該法還可以用來求方程的重根、復根。電力系統潮流計算,一般來說,各個母線所供負荷的功率是已知的,各個節點的電壓是未知的(平衡節點外)可以根據網絡結構形成節點導納矩陣,然后由節點導納矩陣列寫功率方程,由于功率方程里功率是已知的,電壓的幅值和相角是未知的,這樣潮流計算的問題就轉化為求解非線性方程組的問題了。為了便于用迭代法解方程組,需要將上述功率方程改寫成功率平衡方程,并對功率平衡方程求偏導,得出對應的雅可比矩陣,給未知節點賦電壓初值,將初值帶入功率平衡方程,得到功率不平衡量,這樣由功率不平衡量、雅可比矩陣、節點電壓不平衡量(未知的)構成了誤差方程,解誤差方程,得到節點電壓不平衡量,節點電壓加上節點電壓不平衡量構成節點電壓新的初值,將新的初值帶入原來的功率平衡方程,并重新形成雅可比矩陣,然后計算新的電壓不平衡量,這樣不斷迭代,不斷修正,一般迭代三到五次就能收斂。2 基本步驟和設計流程圖
形成了雅克比矩陣并建立了修正方程式,運用牛頓-拉夫遜法計算潮流的核心問題已經解決,已有可能列出基本計算步驟并編制流程圖。由課本總結基本步驟如下:
1)形成節點導納矩陣Y;
2)設各節點電壓的初值,如果是直角坐標的話設電壓的實部e和虛部f;如果是極坐標的話則設電壓的幅值U和相角a;
3)將各個節點電壓的初值代入公式求修正方程中的不平衡量以及修正方程的系數矩陣的雅克比矩陣;
4)解修正方程式,求各節點電壓的變化量,即修正量; 5)計算各個節點電壓的新值,即修正后的值;
6)利用新值從第(3)步開始進入下一次迭代,直至達到精度退出循環; 7)計算平衡節點的功率和線路功率,輸出最后計算結果; ① 公式推導
② 流程圖
三
matlab編程代碼
clear;
% 如圖所示1,2,3,4為PQ節點,5為平衡節點
y=0;
% 輸入原始數據,求節點導納矩陣
y(1,2)=1/(0.07+0.21j);
y(4,5)=0;y(1,3)=1/(0.06+0.18j);
y(1,4)=1/(0.05+0.10j);
y(1,5)=1/(0.04+0.12j);
y(2,3)=1/(0.05+0.10j);
y(2,5)=1/(0.08+0.24j);
y(3,4)=1/(0.06+0.18j);
for i=1:5
for j=i:5
y(j,i)=y(i,j);
end
end
Y=0;
% 求節點導納矩陣中互導納
for i=1:5
for j=1:5
if i~=j
Y(i,j)=-y(i,j);
end
end
end
% 求節點導納矩陣中自導納
for i=1:5
Y(i,i)=sum(y(i,:));
end
Y
% Y為導納矩陣
G=real(Y);
B=imag(Y);% 輸入原始節點的給定注入功率
S(1)=0.3+0.3j;
S(2)=-0.5-0.15j;
S(3)=-0.6-0.25j;
S(4)=-0.7-0.2j;
S(5)=0;
P=real(S);
Q=imag(S);
% 賦初值,U為節點電壓的幅值,a為節點電壓的相位角
U=ones(1,5);
U(5)=1.05;
a=zeros(1,5);
x1=ones(8,1);
x2=ones(8,1);
k=0;
while max(x2)>1e-6
for i=1:4
for j=1:4
H(i,j)=0;
N(i,j)=0;
M(i,j)=0;
L(i,j)=0;
oP(i)=0;
oQ(i)=0;
end
end
% 求有功、無功功率不平衡量
for i=1:4
for j=1:5
oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));
end
oP(i)=oP(i)+P(i);
oQ(i)=oQ(i)+Q(i);
end
x2=[oP,oQ]';
% x2為不平衡量列向量
% 求雅克比矩陣
% 當i~=j時,求H,N,M,L
for i=1:4
for j=1:4
if i~=j
H(i,j)=-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));
N(i,j)=-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
L(i,j)=H(i,j);
M(i,j)=-N(i,j);
end
end
end
% 當i=j時,求H,N,M,L
for i=1:4
for j=1:5
if i~=j H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));N(i,i)=N(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))
end
end
N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);
L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);
end
J=[H,N;M,L]
% J為雅克比矩陣
x1=-((inv(J))*x2);
% x1為所求△x的列向量
% 求節點電壓新值,準備下一次迭代
for i=1:4
oa(i)=x1(i);
oU(i)=x1(i+4)*U(i);
end
for i=1:4
a(i)=a(i)+oa(i);
U(i)=U(i)+oU(i);
end
k=k+1;
end
k,U,a
% 求節點注入功率
i=5;
for j=1:5
P(i)=U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)))+P(i);
Q(i)=U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))+Q(i);
end
S(5)=P(5)+Q(5)*sqrt(-1);
S
% 求節點注入電流
I=Y*U'
四
運行結果
節點導納矩陣
經過五次迭代后的雅克比矩陣
迭代次數以及節點電壓的幅值和相角(弧度數)
節點注入功率和電流
五 結果分析
在這次學習和實際操作過程里:首先,對電力系統分析中潮流計算的部分特別是潮流計算的計算機算法中的牛頓-拉夫遜法進行深入的研讀,弄明白了其原理、計算過程、公式推導以及設計流程。牛頓-拉夫遜法是求解非線性方程的迭代過程,其計算公式為?F?J?X,式中J為所求函數的雅可比矩陣;?X為需要求的修正值;?F為不平衡的列向量。利用x(*)=x(k+1)+?X(k+1)進行多次迭代,通過迭代判據得到所需要的精度值即準確值x(*)。六 結論
通過這個任務,自己在matlab編程,潮流計算,word文檔的編輯功能等方面均有提高,但也暴漏出一些問題:理論知識儲備不足,對matlab的性能和特點還不能有一個全面的把握,對word軟件也不是很熟練,相信通過以后的學習能彌補這些不足,達到一個新的層次。
第四篇:電力系統潮流計算程序設計
電力系統潮流計算程序設計
姓名:韋應順
學號:2011021052 電力工程學院
牛頓—拉夫遜潮流計算方法具有能夠將非線性方程線性化的特點,而使用MATLAB語言是由于MATLAB語言的數學邏輯強,易編譯。
【】【】1.MATLAB程序12
Function tisco %這是一個電力系統潮流計算的程序 n=input(‘n請輸入節點數:n=’); m=input(‘請輸入支路數:m=’);ph=input(‘n請輸入平衡母線的節點號:ph=’); B1=input(‘n請輸入支路信號:B1=’);%它以矩陣形式存貯支路的情況,每行存貯一條支路 %第一列存貯支路的一個端點 %第二列存貯支路的另一個端點 %第三列存貯支路阻抗
%第四列存貯支路的對地導納
%第五列存貯變壓器的變比,注意支路為1 %第六列存貯支路的序號
B2=input(‘n請輸入節點信息:B2=’); %第一列為電源側的功率 %第二列為負荷側的功率 %第三列為該點的電壓值
%第四列為該點的類型:1為PQ,2為PV節點,3為平衡節點 A=input(‘n請輸入節點號及對地阻抗:A=’); ip=input(‘n請輸入修正值:ip=’); %ip為修正值);Y=zeros(n);
Y(p,q)=Y(p,q)-1./(B1(i3)*B1(i5);e=zeros(1,n);
Y(p,q)=Y(p,q);f=zeros(1,n);
no=2*ph=1; Y(q,q)=Y(q,q)+1./B1(i3)+B1(i4)/2;
End for i=1:n
G=real(Y);if A(i2)=0
B=imag(Y);p=A(i1);
Y(p p)=1./A(i2);for i=1:n End e(i)=real(B2(i3));End f(i)=imag(B2(i3));For i=1:m S(i)=B2(i1)-B2(i2);p=B1(i1);V(i)=B2(i3);p=B1(i2);end Y(p,p)=Y(p,p)+1./(B1(i3)*B1(i5)^2+B1(i4)./2P=real(S);Q=imag(S);[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);[De,Di]=hxf(J,D,F,ph,n,no);t=0;while
max(abs(De))>ip&max(abs(Dfi)>ip
t=t+1;
e=e+De;
f=f+Df;
[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);
J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);
[De,Df]=hxf(J,Df,ph,n,no);end v=e+f*j;for i=1:n hh(i)=conj(Y(ph,i)*v(i));end S(ph)=sum(hh)*v(ph);B2(ph,1)=S(ph);V=abs(v);
jd=angle(v)*180/p;resulte1=[A(:,1),real(v),imag(v),V,jd,real(S’),imag(S’),real(B2(:1)),imag(B2(:1)),real(B2(:2)),imag(B2(:,2))];for i=1:m
a(i)=conj((v(B1(i1))/B1(i5)-v(B1(i2))/B1(i3));
b(i)=v(B1(i1))*a(i)-j*B1(i4)*v(B1(i))^2/2;
c(i)=-v(B1(i2))*a(i)-j*B1(i4)*v(B1(i2))^2/2;end result2=[B1(:,6),B1(:,1),B1(:,2),real(b’),imag(b’),real(c’),imag(c’), real(b’+c’),imag(b’+c’)];printcut(result1,S,b,c,result2);type resultm function [C,D,Df]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no)%該子程序是用來求取Df for i=1:n
If
i=ph
C(i)=0;
D(i)=0;
For j=i:n
C(i)=C(i)+G(i,j)*e(j)-B(i,j)*f(j);D(i)=D(i)+G(i,j)*f(j)+B(i,j)*e(j);end
P1=C(i)*e(i)+D(i)*f(i);Q1=C(i)*f(i)-D(i)*e(i);V1=e(i)^2+f(i)^2;If
B2(i4)=2 p=2*i-1;
Df(p)=P(i)-P1;p=p+1;else p=2*i-1;
Df(p)=P(i)-P1;p=p+1;
Df(p)=Q(i)-Q1;end end end Df=Df’;If ph=n Df(no?=[];end
function [De,Df]=hxf(J,Df,ph,n,no)%該子函數是為求取De Df DX=JDf;DX1=DX;
x1=length(DX1);if ph=n DX(no)=0;DX(no+1)=0;
For i=(no+2):(x1+2)DX(i)=DX1(i-2);End Else
DX=[DX1,0,0];End k=0;
[x,y]=size(DX);For i=1:2:x K=k+1;
Df(k)=DX(i);De(k)=DX(i+1);End End case 2 Function for j=1:n J=jacci(Y,G,B,PQ,e,f,V,C,D,B2,n,ph,no)X1=G(i,j)*f(i)-B(i,j)*e(i);
X2=G(i,j)*e(i)+B(i,j)*f(i);%該子程序是用來求取jacci矩陣
for i=1:n X3=0;switch B2(i4)X4=0;case 3 P=2*i-1;continue q=2*j-1;case 1 J(p,q)=X1;for j=1:n m=p+1;if
J=&J=ph J(m,q)=X3;X1=G(i)*f(i)-B(i,j)*e(i);q=q+1;X2=G(i,j)*e(i)+B(i,j)*f(i);J(p,q)=X2;X3=-X2;J(m,q)=X4;X4=X1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);p=2*i-1;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=2*j-1;X3=0;J(p,q)=X1;X4=0;m=p+1;P=2*i-1;J(p,q)=X2;q=2*j-1;J(m,q)=X4;J(p,q)=X1;Else if j=&j=jph m=p+1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X3;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=q+1;X3= C(i)+G(i,j)*e(i)-B(i,j)*f(i);J(p,q)=X2;X4= C(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X4;P=2*i-1;end q=2*j-1;end J(p,q)=X1;end m=p+1;end J(m,q)=X3;if ph=n q=q+1;J(no:)=[];J(p,q)=X2;J(no:)=[];J(m,q)=X4;J(:,no)=[];End J(:,no)=[];End
2實例驗證 【例題】設有一系統網絡結線見圖1,各支路阻抗和各節點功率均已以標幺值標示于圖1中,其中節點2連接的是發電廠,設節點1電壓保持U1=1.06定值,試計算其中的潮流分布,請輸入節點數:n=5 請輸入支路數:m=7 請輸入平衡母線的節點號:ph=l 請輸入支路信息:
BI=[ l 2 0.02+0.06i O l 1;1 3 0.08+0.24i 0 1 2;2 3 0.06+0.18i 0 l 3: 2 4 0.06+0.18i O l 4: 2 5 0.04+0.12i 0 l 5: 3 4 0.01+0.03i 0 l 6: 4 5 0.08+0.24i O 1 7] 請輸入節點信息:
B2=[ 0 0 1.06 3;0.2+0.20i 0 1 1;一O.45一O.15i 0 l l;一0.4-0.05i 0 l 1;一0.6—0.1i 0 1 l] 請輸入節點號及對地阻抗: A=[l 0;2 0;3 0;4 0;5 O ] 請輸入修正值:ip=0.000 0l
參考文獻
[1]陳珩.電力系統穩定分析[M].北京:中國電力出版社,2002:139—187.
[2]鄭阿奇.MATLAB實用教程[M].北京:電子工業出版社,2005:1-243.
[3] 束洪春,孫士云,等.云電送粵交商流混聯系統全過 程動態電壓研究[J】.中國電力,2008,4l(10):l-4. SHU Hong—ch吼,SUN Shi-yun,et a1.Research on fun prc'cess dyn鋤ic Voltage stabil時of hybrid AC/DC poWer tmnsmission System舶m Yu衄an proVince to G啪gdong province【J】.Electric Power,2008,4l(10): l-4.
[4] 朱新立,湯涌,等.大電網安全分析的全過程動態仿 真技術[J】.電網技術,2008,32(22):23—28. SONG Xin—Ii,TANG Yof唱,et a1. Full dyn鋤ic simulation for the stabilhy a眥lysis of large power system【J】.Power System融IlrIolo影,2008,32(22): 23.28.
[5]Roytelm鋤I,Shallidehpour S M.A comprehcnsivc long teml dynaIIlic simulation for powcr system recoVery【J】. IEEE Transactions 0n Power Systems,1994,9(3). [6] 石雩梅,汪志宏,等.發電機勵磁系統數學模型及參 數對電網動態穩定性分析結果影響的研究[J】.繼電 器,2007,35(21):22-27.
SHI Xue.mei,WANG Zlli-hon舀et a1.Iksearch on the innuence of g鋤e翰to璐baScd ∞de詛iled excitation system models柚d parameterS t0 power鏟id dyn鋤ic stabil時【J】.Relay,2007,35(2 1):22-27.
[7] 方思立,朱方.快速勵磁系統對系統穩定的影響[J】.中 國電機工程學報,1986,6(1):20.28.
FANG Si.1i,ZHU Fang.The effbct of f弧t.respon∞
excitation system on the stability of power netwofk【J】. Proceedings ofthe CSEE,1986,6(1):20-28.
[8] 劉取.電力系統穩定性及發電機勵磁控制[M】.北京: 中國電力出版社,2007.
LIU Qu.Power system S詛bility鋤d generator excitation control【M】.BeUing:ChiIla Electric Powef Press,2007. [9] Dallachy J L,Anderson T.EXperience with rcplacing ro詛ting exciters wim static exciters【J】.1k InStitution of Electrical Engineers,1 996.
[10] 陳利芳,陳天祿.淺談自并勵勵磁系統在大容量機組 中的應用【J】.繼電器,2007,35(1):8l培4. CHEN Li-f抽島CHEN Tian—lIL Application of 辯l仁exci組tion mode in large capacity髫memtor unit【J】. ReIay'2007,35(1):81-84.
[11] 方思立,劉增煌,孟慶和.大型汽輪發電機自并勵勵 磁系統的應用條件【J].中國電力,1994,27(12):61.63. FANG Si.Ii,LIU Zeng-hu鋤g,MENG Qin爭hc.m application conditions of large turbine generator self-excitation system【J】.Electric Powef,1994,27(12): 61.63.
[12]梁小冰,黃方能.利用EMTDC進行長持續時間過程 的仿真研究【J】.電網技術,2002,26(9):55.57. LIANG Xiao-bing,HUANG Fan爭眥ng.How to cany out simulalion of long dul‘ation processes by use of EMTDC【J】.Power System 11echnology,2002,26(9): 55-57.
[13]王卉,陳楷,彭哲,等.數字仿真技術在電力系統中 的應用及常用的幾種數字仿真工具【J】.繼電器,2004,32(21):7l一75.
wANG Hui,CHEN Kai,PENG zhe,et a1.Application of digital simulation眥hniques棚d severaJ simulation tools in power system[J】.Relay,2004,32(21):71·75.
[14]IEEE Power Engmeering Socie哆.IEEE std 421.5.2005 IEEE玎ccOmmended practice for excitation system models for power system stabiI時studies【s】.
第五篇:電力系統潮流計算程序
電力系統潮流計算c語言程序,兩行,大家可以看看,仔細研究,然后在這個基礎上修改。謝謝
#include “stdafx.h” #include #include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std; int _tmain(int argc, _TCHAR* argv[]){ int i; //i作為整個程序的循環變量 int N=Bus::ScanfBusNo();//輸入節點個數 int L=Line::ScanflineNo();//輸入支路個數 if((L&&N)==0){return 0;} //如果找不到兩個文件中的任意一個,退出 Line *line=new Line[L];//動態分配支路結構體 Line::ScanfLineData(line);//輸入支路參數 Line::PrintfLineData(line,L);//輸出支路參數 Bus *bus=new Bus[N];//動態分配結點結構體 for(int i=0;i bus[i].Sdelta.real=0; bus[i].Sdelta.image=0;} Bus::ScanfBusData(bus);//輸入節點參數 Bus::PrintfBusData(bus,N);//輸出結點參數 Complex **X;X=new Complex *[N];for(i=0;i Bus::JisuanNodeDnz(X,line,bus,L,N);//計算節點導納矩陣 Bus::PrintfNodeDnz(X,N);//輸出節點導納矩陣 int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i double *x;x=new double[NN];int count=1; LOOP: Bus::JisuanNodeI(X,bus,N);//計算節點注入電流 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeSdelta(bus,N);//計算節點功率差值 Bus::PrintfNodeScal(X,bus,N);//輸出節點功率差值 int icon=wehcon1(bus,N);//whether converbence看迭代是否結束 if(icon==1){ cout<<“icon=”< Bus::JisuanJacAug(JacAug,X,bus,N);//計算雅可比增廣矩陣 // Bus::PrintfJacAug(JacAug,N); gauss::gauss_slove(JacAug,x,NN);//解方程組求出電壓差值 Bus::ReviseNodeV(bus,x,N);//修正節點電壓 // Bus::PrintfNodeV(bus,N); count++; goto LOOP;} else { for(i=0;i { int statemp,endtemp; Complex aa,bb,cc,dd,B; B.real=0; B.image=-line[i].B; statemp=line[i].start; endtemp=line[i].end; aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd); aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd); } cout<<“icon=”< Bus::JisuanNodeScal(X,bus,N);//計算節點功率 for(i=0;i { bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//發電機功率=注入功率+負荷功率 bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image; bus[i].V=Complex::Rec2Polar(bus[i].V); } cout<<“====節點電壓===============發電機發出功率======”< for(i=0;i { cout<<“節點”<<(i+1)<<'t'; Complex::PrintfComplex(bus[i].V); coutt(bus[i].Scal.real); coutt(bus[i].Scal.image); cout< } cout<<“======線路傳輸功率==========”< for(i=0;i { int statemp,endtemp; statemp=line[i].start; endtemp=line[i].end; cout< Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01)); Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01)); cout< } } return 0;} #include “stdafx.h” #include #include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std; int _tmain(int argc, _TCHAR* argv[]){ int i; //i作為整個程序的循環變量 int N=Bus::ScanfBusNo();//輸入節點個數 int L=Line::ScanflineNo();//輸入支路個數 if((L&&N)==0){return 0;} //如果找不到兩個文件中的任意一個,退出 Line *line=new Line[L];//動態分配支路結構體 Line::ScanfLineData(line);//輸入支路參數 Line::PrintfLineData(line,L);//輸出支路參數 Bus *bus=new Bus[N];//動態分配結點結構體 for(int i=0;i bus[i].Sdelta.real=0; bus[i].Sdelta.image=0;} Bus::ScanfBusData(bus);//輸入節點參數 Bus::PrintfBusData(bus,N);//輸出結點參數 Complex **X;X=new Complex *[N];for(i=0;i Bus::JisuanNodeDnz(X,line,bus,L,N);//計算節點導納矩陣 Bus::PrintfNodeDnz(X,N);//輸出節點導納矩陣 int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i double *x;x=new double[NN];int count=1; LOOP: Bus::JisuanNodeI(X,bus,N);//計算節點注入電流 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeSdelta(bus,N);//計算節點功率差值 Bus::PrintfNodeScal(X,bus,N);//輸出節點功率差值 int icon=wehcon1(bus,N);//whether converbence看迭代是否結束 if(icon==1){ cout<<“icon=”< Bus::JisuanJacAug(JacAug,X,bus,N);//計算雅可比增廣矩陣 // Bus::PrintfJacAug(JacAug,N); gauss::gauss_slove(JacAug,x,NN);//解方程組求出電壓差值 Bus::ReviseNodeV(bus,x,N);//修正節點電壓 // Bus::PrintfNodeV(bus,N); count++; goto LOOP;} else { for(i=0;i { int statemp,endtemp; Complex aa,bb,cc,dd,B; B.real=0; B.image=-line[i].B; statemp=line[i].start; endtemp=line[i].end; aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd); aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd); } cout<<“icon=”< Bus::JisuanNodeScal(X,bus,N);//計算節點功率 for(i=0;i { bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//發電機功率=注入功率+負荷功率 bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image; bus[i].V=Complex::Rec2Polar(bus[i].V); } cout<<“====節點電壓===============發電機發出功率======”< for(i=0;i { cout<<“節點”<<(i+1)<<'t'; Complex::PrintfComplex(bus[i].V); coutt(bus[i].Scal.real); coutt(bus[i].Scal.image); cout< } cout<<“======線路傳輸功率==========”< for(i=0;i { int statemp,endtemp; statemp=line[i].start; endtemp=line[i].end; cout< Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01)); Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01)); cout< } } return 0;} #include class Complex//定義復數類 { public: double real;double image;int RecPolar;//0表示直角坐標,1表示極坐標 static Complex CaddC(Complex c1,Complex c2);//求兩個復數和 static Complex subComplex(Complex c1,Complex c2);//求兩個復數差 static Complex productComplex(Complex c1,Complex c2);//求兩個復數積 static Complex divideComplex(Complex c1,Complex c2);//求兩個復數商 static Complex ComDivRea(Complex c1,double r2);//除數 static Complex getconj(Complex c1);//求一個復數共軛 static Complex getinverse(Complex c1);//取倒數 static double getComplexReal(Complex c1);//求一個復數實部 static double getCompleximage(Complex c1);//求一個復數虛部 static void PrintfComplex(Complex c1);//顯示一個復數 static void PrintfmultiComplex(Complex C,int N);//顯示多個復數 static void zeroComplex(Complex c1);//將復數復零 static Complex Rec2Polar(Complex c1);//取極坐標 Complex(){ RecPolar=0;} }; Complex Complex::Rec2Polar(Complex c1)//極坐標表示 { Complex Node;Node.real=sqrt(c1.real*c1.real+c1.image*c1.image);Node.image=atan2(c1.image,c1.real)*180/3.1415926;Node.RecPolar=1;return Node;} Complex Complex::CaddC(Complex c1,Complex c2)//復數加法 { Complex Node; Node.real=c1.real+c2.real; Node.image=c1.image+c2.image; return Node;} Complex Complex::subComplex(Complex c1,Complex c2)//復數減法 { Complex Node; Node.real=c1.real-c2.real; Node.image=c1.image-c2.image; return Node;} Complex Complex::productComplex(Complex c1,Complex c2)//復數乘法 { Complex Node; Node.real=c1.real*c2.real-c1.image*c2.image; Node.image=c1.image*c2.real+c2.image*c1.real; return Node;} Complex Complex::divideComplex(Complex c1,Complex c2)//復數除法 { Complex Node; Node.real=(c1.real*c2.real+c1.image*c2.image)/(pow(c2.real,2)+pow(c2.image,2));Node.image=(c1.image*c2.real-c1.real*c2.image)/(pow(c2.real,2)+pow(c2.image,2));return Node;} Complex Complex::ComDivRea(Complex c1,double r1)//復數除數 { Complex Node;Node.real=c1.real/(r1);Node.image=c1.image/(r1);return Node;} Complex Complex::getconj(Complex c1)//取共軛 { Complex Node; Node.real=c1.real;Node.image=-c1.image; return Node;} Complex Complex::getinverse(Complex c1)//取倒數 { Complex Node;Node.real=1;Node.image=0;Node=(Complex::divideComplex(Node,c1));return Node;} double Complex::getComplexReal(Complex c1)//取實部 { return c1.real;} double Complex::getCompleximage(Complex c1)//取虛部 { return c1.image;} void Complex::PrintfComplex(Complex c1)//按直角坐標輸出 { if(c1.RecPolar==0){ cout.precision(6); cout.width(8); cout.setf(ios::right); cout< ”; cout.precision(6); cout.width(8); cout.setf(ios::left); cout< ”;} else { cout< Complex::zeroComplex(Complex c1)//清零 { c1.real=0;c1.image=0;} class gauss { public: static void gauss_slove(double **a,double *x,int NN);static void gauss_output();}; void gauss::gauss_slove(double **a,double *x,int NN){ int n,i,j,k,*pivrow,**pivcol;double eps,pivot,sum,aik,al; n=NN;pivrow=new int[n];pivcol=new int *[n]; for(i=0;i pivot= fabs(a[k][k]); pivrow[k]=k;//行 pivcol[k][0]=k;pivcol[k][1]=k;//列n*2矩陣 for(i=k;i { for(j=k;j { if(pivot { pivot=fabs(a[i][j]); pivrow[k]=i;//行 pivcol[k][1]=j;//列 } } } if(pivot { cout<<“error”< getchar(); exit(0); } if(pivrow[k]!=k)//行變換 { for(j=k;j<(n+1);j++) { al=a[pivrow[k]][j]; a[pivrow[k]][j]=a[k][j]; a[k][j]=al; } } if(pivcol[k][1]!=k)//列變換 { for(i=0;i { al=a[i][pivcol[k][1]]; a[i][pivcol[k][1]]=a[i][k]; a[i][k]=al; } } if(k!=(n-1))//將矩陣化為上三角形 式 { for(i=(k+1);i { aik=a[i][k]; for(j=k;j<(n+1);j++) { a[i][j]-=aik*a[k][j]/a[k][k]; } } } } x[n-1]=a[n-1][n]/a[n-1][n-1];//解方程 for(i=(n-2);i>=0;i--){ sum=0; for(j=(i+1);j { sum +=a[i][j]*x[j];0.182709 0.016894-0.0310701 -0.0402051 0.156702 -0.0355909-0.0668055 -0.00703229-0.0886481 -0.0129814-0.0390805 -0.0135062-0.1023 -0.0460568 -0.0342827 -0.00382402-0.102896 -0.0184062 } x[i]=(a[i][n]-sum)/a[i][i];} for(k=(n-2);k>=0;k--){ al=x[pivcol[k][1]]; x[pivcol[k][1]]=x[pivcol[k][0]]; x[pivcol[k][0]]=al;} cout<<“節點電壓修正量”< cout< } ====節點功率計算值==== 0.935261 -0.159048 0.573909 0.0789973-0.00289889 -0.00796623-0.0791247 -0.0168362-0.436255 -0.0580392 0.0359139 -0.0106592-0.229118 -0.0885419-0.136179 -0.148207 0.0446243 0.0111298-0.0223764 -0.00695775-0.0237482 -0.198318 -5.24266e-015 -0.0354071 -0.0925078 -1.05629e-015 -0.0391348 0.014529 0.00158644 -0.0258771 -0.109514 icon=1進行第2次迭代 節點電壓修正量 =================-0.00164889-0.000540034-0.00261067-0.00532027-0.00235315-0.00600971-0.00189677-0.00643874-0.0023631-0.00650659-0.00170949-0.0074907-0.00164545-0.00485415-0.00493977-0.0119042-0.00331285-0.0175611-0.00207908 -0.00347744-0.0869347-9.48909e-015-0.0110778-0.0538236-7.53784e-016-0.0168097 7.049e-005-0.00146487-0.00458276 0.00251645 -0.00336375-0.00530645-0.0147816-0.000326161-0.00640487-0.00251701-0.0169829-0.00175286-0.0174333-0.0239063 -0.0119192-0.076014 -0.0160104-0.441997 -0.0750285 0.000250012 3.72542e-005-0.228052 -0.108844-0.100078 -0.105634 0.000410707 0.000378067-0.057497 -0.0195879 0.200039 0.0582563-0.00307326-0.0163809-0.00232773-0.0175806 8.74293e-005-0.0192018 0.000558996-0.0197776-0.000247851-0.0193784-0.00115346-0.0185848-0.00127275-0.0186244-0.00010108-0.0188966 0.000553585-0.0200901-3.76315e-005-0.0208303 0.00308341-0.0219386-0.00195916-0.0205356-0.00184757-0.0076401 0.00197593-0.0245534 0.00434657-0.027534 ====節點功率計算值==== 0.98623 -0.134163 0.583136 0.166278-0.111173 0.199792 -0.0621041 -0.0821379 -0.0350785 -0.0902383 -0.0320461 -0.0951562 -0.0220362 -0.175458 4.72557e-015 -0.0320661 -0.0871134 -7.03489e-017 -0.0350769 0.000273455 1.51804e-005 -0.0240417 -0.10604 icon=1進行第3次迭代 節點電壓修正量 =================-2.67079e-005-2.30128e-006-2.20543e-005-6.00686e-005-2.33043e-005-6.85601e-005-3.22294e-005-2.61107e-005-2.80198e-005-6.6167e-005-2.34528e-005 -0.0739846 0.0227868-0.0158709-0.0248173-0.0179447-0.0578368-0.00890719-0.0337091-0.00693706-0.111601 1.21429e-014-0.0159145-0.0667319 9.24355e-016-0.0228592 7.10354e-005-6.6188e-006-0.00889343-0.0184098 -5.66132e-005-4.4646e-005-1.74668e-005-4.50947e-005-0.000181763-3.81763e-006-0.000286581-6.68993e-005-1.28441e-005-5.17172e-005-0.000223284-4.54717e-005-2.47586e-005 4.32335e-007-0.000258494 1.82635e-005-0.000272051-6.95195e-006-0.000251969 1.11318e-005-0.000279418 5.74737e-005-0.000307368 6.86998e-005-0.000320274 5.38112e-005-0.00031447 3.59531e-005-0.00030494 3.37607e-005-0.000307449 5.26532e-005-0.000310721 6.92761e-005-0.000350373 5.60942e-005-0.00040977 0.000123641-0.000440259 1.36149e-005-0.000426973-1.70227e-005-9.37794e-005 0.000113675-0.000544011 0.000176034-0.000636202 ====節點功率計算值==== 0.986878 -0.133979 0.583 0.167193-0.024 -0.012-0.076 -0.016-0.442 -0.0748606 1.43501e-008 1.07366e-008-0.228 -0.109 -0.0999999 -0.104049 4.51318e-008 8.98835e-008-0.0579999 -0.0199999 0.2 0.0591018-0.112 -0.0749997 0.2 0.0242519-0.062 -0.016-0.082 -0.025-0.035 -0.018 -0.0900001 -0.058-0.032 -0.00899997-0.095 -0.0339999-0.022 -0.00699998-0.175 -0.112 -6.07156e-015 -1.19217e-014-0.032 -0.016-0.087 -0.0669999 7.03078e-017 -9.23979e-016-0.035 -0.0229999 1.09492e-007 4.45699e-008 1.54958e-009 -2.01531e-010-0.024 -0.00899994-0.106 -0.0189996 icon=0,迭代結束。 ====節點電壓===============發電機發出功率====== 節點1 1.05 0。 98.6878-13.3979 節點2 1.045 -1.846。 29.4193 節點3 1.02384-3.83352。 0 節 點25 1.01216-9.68486。 0 0 0 節點4 1.01637-4.55698。 0 節 點26 0.994393 -10.1089。 0 0 0 節點5 1.01 -6.48617。 節 點27 1.02012-9.42025。 0 11.5139 0 節點6 1.01332-5.38073。 0 節 點28 1.00992-5.86244。 0 0 0 節點7 1.00489-6.38368。 0 節 點29 1.00022-10.6579。 0 0 節點8 19.5951 節點9 0 節點10 0 節點11 5.91018 節點12 0 節點13 2.42519 節點14 0 節點15 0 節點16 0 節點17 0 節點18 0 節點19 0 節點20 0 節點21 0 節點22 0 節點23 0 節點24 0 1.01 -5.62974。 1.03905-6.78143。 1.03595-8.69362。 -4.5962。 1.04711-7.80323。 1.05 -6.34392。 1.03242-8.7401。 1.02788-8.86784。 1.03458-8.45044。 1.03051-8.83678。 1.01845-9.5141。 1.01604-9.70326。 1.02022-9.50938。 1.0237-9.17478。 1.02432-9.17024。 1.01802-9.36719。 1.01339-9.68362。 0 20 節 點30 0.988705 -11.5464。 0 0 0 ====== 線路傳輸功率========== 2to1 -57.7373 5.41674i 58.3454 0 -15.1827i 3to1 -39.659 -7.75964i 40.3424 1.78481i 4to2 -30.87 -9.74186i 31.4153 0 3.58352i 4to3 -37.0772 -7.78596i 37.259 6.55964i 5to2 -44.3717 -9.78456i 45.2968 0 4.84242i 6to2 -38.4766 -8.22625i 39.3252 0 2.87667i 6to4 -34.946 1.92384i 35.0885 0 -3.28202i 7to5 -0.16304 -6.41767i 0.171702 0 2.2985i 7to6 -22.637 -4.48233i 22.7745 0 1.44238i 8to6 -11.8939 -5.48098i 11.913 0 3.70557i 6to9 12.3737 -12.3826i -12.3737 0 13.0033i 6to10 10.9107 -3.80907i -10.9107 0 4.53223i 11to9 5.91018i 0 -5.08963i 10to9 -32.652 -2.3712i 32.652 0 3.46974i 4to12 23.5411 -11.5375i -23.5411 0 13.2407i 13to12 2.42519i 1.05 -1.90978i 1.66484i 14to12 -7.9019 -2.06732i 7.97894 30to29 -3.6702 -0.542564i 3.70398 2.22749i 0.606393i 15to12 -18.254 -5.74885i 18.4835 28to8 -1.89152 -3.79982i 1.89395 6.20089i-4.9239i 16to12-7.53872 -2.90237i 7.59633 28to6 -14.7868 -2.82565i 14.8234 3.02352i 0.294601i 15to14-1.69544 -0.461488i 1.70189 請按任意鍵繼續...0.467323i 17to16-4.03014 1.10238i 18to15-6.08074 1.46028i 19to18-2.87549 0.478389i 20to19 6.6418-2.93222i 20to10 -8.8418 3.85077i 17to10-4.96987 4.76656i 21to10-16.1562 9.42843i 22to10-7.87782 4.21401i 22to21 1.34443-2.01837i 23to15-5.59369 2.25006i 24to22-6.48186 2.08163i 24to23-2.38596 0.579814i 25to24-0.167617 0.281364i 26to25 -3.5 2.3674i 27to25 3.39433-2.08638i 28to27 16.1446 3.13006i 29to27-6.10398 1.67047i 30to27-6.92979-1.07089i-1.37839i-0.467767i 2.96679i-3.66679i-4.72911i-9.18162i-4.10132i 2.01969i-2.17981i-2.00141i-0.56401i -0.28102i-2.29999i 2.11848i-2.10093i-1.50639i -1.3574i 4.03872 6.12096 2.88074 -6.62452 8.9242 4.98423 16.2709 7.93248 -1.34378 5.62846 6.53339 2.39369 0.167814 3.54513 -3.37751 -16.1446 6.19083 7.09313 高等電力系統分析 IEEE30節點潮流程序 班級:電研114班 姓名:王大偉 學號:2201100151