第一篇:電力系統潮流計算問答題.
潮流計算數學模型與數值方法
1.什么是潮流計算?潮流計算的主要作用有哪些?
潮流計算是根據給定的電網結構、參數和發電機、負荷等元件的運行條件,確定電力系統各部分穩態運行狀態參數的計算。對于正在運行的電力系統,通過潮流計算可以判斷電網母線電壓、支路電流和功率是否越限,如果有越限,就應采取措施,調整運行方式。對于正在規劃的電力系統,通過潮流計算,可以為選擇電網供電方案和電氣設備提供依據。潮流計算還可以為繼電保護和自動裝置定整計算、電力系統故障計算和穩定計算等提供原始數據。
2.☆☆☆☆潮流計算有哪些待求量、已知量?(已知量:
1、電力系統網絡結構、參數
2、決定系統運行狀態的邊界條件 待求量:系統穩態運行狀態 例如各母線上的電壓(幅值及相角)、網絡中的功率分布以及功率損耗等)
通常給定的運行條件有系統中各電源和負荷點的功率、樞紐點電壓、平衡點的電壓和相位角。待求的運行狀態參量包括電網各母線節點的電壓幅值和相角,以及各支路的功率分布、網絡的功率損耗等。3.潮流計算節點分成哪幾類?分類根據是什么?(分成三類:PQ節點、PV節點和平衡節 點,分類依據是給定變量的不同)PU節點(電壓控制母線)有功功率Pi和電壓幅值Ui為給定。這種類型節點相當于發電機母線節點,或者相當于一個裝有調相機或靜止補償器的變電所母線。PQ節點 注入有功功率Pi和無功功率Qi是給定的。相當于實際電力系統中的一個負荷節點,或有功和無功功率給定的發電機母線。
平衡節點 用來平衡全電網的功率。平衡節點的電壓幅值Ui和相角δi是給定的,通常以它的相角為參考點,即取其電壓相角為零。一個獨立的電力網中只設一個平衡節點。
4.教材牛頓-拉夫遜法及有功-無功分解法是基于何種電路方程?可否采用其它類型方程?基于節點電壓方程,還可以采用回路電流方程和割集電壓方程等。但是后兩者不常用。
5.教材牛頓-拉夫遜法是基于節點阻抗方程、還是基于節點導納方程進行迭代計算的?試闡述這兩種方程的優點與缺點。(基于節點導納矩陣 節點阻抗矩陣的特點:1.不能由等值電路直接求出2.滿秩矩陣內存量大3.對角占優矩陣。節點導納矩陣的特點:1.直觀容易形成2.對稱陣3.稀疏矩陣(零元素多):每一行的零元素個數=該節點直接連出的支路數。6.說出至少兩種建立節點導納矩陣的方法,闡述其中一種方法的原理與過程。
方法:1.根據自導納和互導納的定義直接求取2.運用一節點關聯矩陣計算3.阻抗矩陣的逆矩陣
節點導納矩陣的形成:1.對角線元素點接地,的求解【除i外的其他節
等于與節點直接相連的的所有支路導納,只在i節點加單位電壓值】解析和2.互導納析:等于,節點之間直接相連的支路導納的負值。
(無源網絡導納之間是對稱的)解7.潮流計算需要考慮哪些約束條件?
答: 為了保證系統的正常運行必須滿足以下的約束條件: 對控制變量
對沒有電源的節點則為
對狀態變量的約束條件則是
對某些狀態變量還有如下的約束條件
8.對采用計算機計算潮流的算法有哪些基本要求?為什么有這些要求? 答:1.要給定初值。
計算機計算潮流的算法大多采用迭代法,對于迭代法,只有在給定初值的情況下才能夠進行迭代。
2.進行有限次迭代,每進行一次迭代都要計算精度,進行檢驗。
在采用迭代法時,當結果滿足精度即可將該結果潮流計算的結果,因此,算法應在每一次迭代后,驗證是否符合精度,進而判斷是否結束進程。3.能夠在有限步驟,有限時間內完成,避免成為死循環。
9.高斯-賽德爾法與牛頓-拉夫遜法的主要不同是什么?高斯賽德爾法既可用以解線性方程組,也可以用以解非線性方程組。一階收斂,對初值要求很低。迭代時除平衡節點兒外,其他節點兒的電壓都將變化,而這一情況不符合PV節點兒電壓大小不變的約定。因此,每次迭代求得
這些節點兒的電壓后,應對它們的大小按給定值修正,并據此調整這些節點兒注入的無功功率。這是運用高斯賽德爾進行潮流計算的特殊之處。
牛頓拉夫遜法是常用的解非線性方程組的方法,初值要選擇比較接近它們的精確解,收斂速度快二階收斂。
10.牛頓-拉夫遜法與有功-無功分解法的主要不同是什么?
答:1.牛頓法有一個修正方程,且系數矩陣元素為非對稱矩陣存儲空間大,每次迭代都要變化,重新計算;PQ分解法,兩個修正方程式,且系數矩陣是常系數對稱陣,要求存儲空間小,計算速度快,較適合在線計算。
2.PQ分解法每一步運算速度較牛頓法快,但是,運算步驟多。3.PQ分解法應用范圍較牛頓法小,只適和R< 高壓電網。
11.采用高斯-賽德爾法求解潮流方程,是否需要求解線性方程組?需要 12.采用牛頓-拉夫遜法求解潮流方程,是否需要求解線性方程組?需要
13.采用有功-無功(PQ)分解法求解潮流方程,是否需要求解線性方程組?不需要
14.潮流方程是一個非線性方程組嗎?為什么?(方程的非線性體現在系統各元件的非線性 上面,強調代數方程主要是為了和后面的短路計算和系統穩定計算計算的微分方程區別開來)
15.采用牛頓-拉夫遜法求解潮流方程的計算過程中,一個重要環節是求解線性方程組。請說明這個線性方程組與潮流方程的關系。(潮流方程應為節點有功功率和無功功率與節點電壓、節點導納之間的關系。而所謂線性方程組即為修正方程式,修正方程式即為潮流方程中節點注入功率和節點電壓平方的不平衡量對節點電壓的實部和虛部求偏導得到,而不平衡量是由潮流方程中有功和無功經迭代而來)
16.說出至少兩種求解線性方程組的數值方法,闡述其中一種方法的計算過程。(線性方程組的求解分為直接求解法和迭代法,直接求解法包括LU分解法和QR分解法,迭代法包括雅可比迭代法和高斯賽德爾迭代法等)
17.有功-無功(PQ)分解法可以求解直角坐標形式的潮流方程嗎?為什么?(不可以,因為P-Q分解法潮流計算派生于以極坐標表示時的牛頓拉夫遜法)
18.通過查找資料,比較潮流方程的直角坐標形式、極坐標形式和混合坐標形式。(直角坐標:有2n-2個修正方程式,極坐標:有n+m-2個修正方程式)
19.求解同一個潮流方程采用牛頓-拉夫遜法和有功-無功(PQ)分解法,哪種方法的迭代次數多?每一步迭代過程中,哪種方法計算量較大?總體而言,那種方法計算效率更高、速度更快?(PQ分解法計算時要求的迭代次數多,牛頓拉夫遜法的每一步迭代過程計算量較大,總體而言,PQ分解法較好)
20.高斯-賽德爾法與牛頓-拉夫遜法中,哪種方法對初值要求較低?(高斯賽德爾法對初值要求比較低)
21.潮流計算過程中出現PV節點無功功率超出給定限額,對什么樣的實際物理情況?在計算中應如何處理?(PV節點注入無功功率超出給定限額,即出現了
或的情況。為了保證電源設備的安全運行,取定值或定值而任憑相應節點的電壓大小偏移給定值,即在迭代過程中讓某些PV節點轉化為PQ節點)
22.PV節點向PQ節點轉化,在高斯-賽德爾法和牛頓-拉夫遜法的處理方式有什么不同?(采用高斯賽德爾法時,PV節點向PQ節點的轉化,不會影響迭代格式,而采用牛頓拉夫遜法時會影響其迭代格式)
23.采用有功-無功(PQ)分解法計算潮流,修正方程式系數矩陣每次迭代是否需要重新計算?若出現PV節點無功越限情況,應如何處理?修正方程式會不會發生變化?(不需要重新計算,PQ分解法中修正方程式系數矩陣恒定不變)
24.牛頓-拉夫遜法和有功-無功(PQ)分解法比較來看,修正方程式在存儲規模上有什么不同?計算量上有什么不同?為什么?(PQ分解法在存儲規模和計算量上要少于牛頓拉夫遜法,這是由于PQ分解法以迭代過程中保持不變的系數矩陣、替代起變化的系數矩陣J)25.教材第三章手算潮流,給定末端負荷功率和始端電壓,則需反復推算才能獲得同時滿足末端負荷功率和始端電壓兩個限制條件的潮流結果。你認為這種迭代過程從數學角度看,更接近于高斯-賽德爾法、牛頓-拉夫遜法還是有功-無功(PQ)分解法?為什么?(更接近于高斯賽德爾法,由高斯賽德爾法的迭代格式可以知道,帶入方程組系數和第k項的值可以求出第k+1項的值,這與手算潮流時的前推回代方法一致)
26.為什么有功-無功(PQ)分解法計算潮流存儲修正方程式系數的所需內存數量要比牛頓-拉夫遜法少?(與牛頓拉夫遜法相比,PQ分解法的修正方程式以一個n-1階和一個m-1階系數矩陣和替代了原有的n+m-2階系數矩陣J,在提高了計算速度的同時,降低了對系數所需內存數量的要求)
27.為什么有功-無功(PQ)分解法修正方程式系數矩陣各元素為常數?(PQ分解法對修正方程式系數矩陣進行了分解,并做以簡化,1、建設各元件電抗遠大于電阻,則子陣N、J可略去,又根據自導納定義,子陣H和L中對角線元素
和,則子陣H和L中非對角線元素
和
中各元素為常數)
2、假設而其中均為常數,故系數矩陣28.電力系統的無功電源有哪些?各自有什么主要特點?(1.發電機:是最基本的無功功率電源2.電容器和調相機:電容器只能向系統供應感性無功,其感性無功功率與其端電壓的平方成正比3.靜止補償器和靜止調相機:依靠的仍是其中的電容器 4.聯電抗器:它不是電源而是負荷,用以吸取輕載或空載線路過剩的感性無功功率,對高壓遠距離輸電線路可以提高輸送能力,降低過電壓等作用)
29.簡要說明電力系統電壓調整的目的和重要性。(電壓是電力的重要體現方面,也是衡量電能質量優與差的重要指標,同時,電壓的不穩定,也會對輸電、配電等環節造成嚴重的危害,對整個電網造成損失。電壓也是電力系統無功功率供需平衡的具體表現,所以,電壓的高低與穩定影響到的也不單單是電力質量的問題,而是整個供電環境和運行系統的問題。因此,進行電壓調整可以提高電能質量,保證無功功率平衡,穩定運行環境)
30.試述電力系統調壓的主要方法和應用場合。(1.改變發電機機端電壓進行調壓:首先考慮、、最常用、典型逆調壓 2.改變變壓器變比進行調壓:只能在電壓器退出運行的條件下才能進行,應用于無功功率充足的系統3。借助無功補償裝置進行調壓: 用于無功功率不足的系統4.改變線路參數進行調壓,即串電容調壓:應用較少)
第二篇:電力系統潮流計算
南 京 理 工 大 學
《電力系統穩態分析》
課程報告
姓名
XX
學 號: 5*** 自動化學院 電氣工程
基于牛頓-拉夫遜法的潮流計算例題編程報學院(系): 專
業: 題
目: 任課教師 碩士導師 告
楊偉 XX
2015年6月10號
基于牛頓-拉夫遜法的潮流計算例題編程報告
摘要:電力系統潮流計算的目的在于:確定電力系統的運行方式、檢查系統中各元件是否過壓或者過載、為電力系統繼電保護的整定提供依據、為電力系統的穩定計算提供初值、為電力系統規劃和經濟運行提供分析的基礎。潮流計算的計算機算法包含高斯—賽德爾迭代法、牛頓-拉夫遜法和P—Q分解法等,其中牛拉法計算原理較簡單、計算過程也不復雜,而且由于人們引入泰勒級數和非線性代數方程等在算法里從而進一步提高了算法的收斂性和計算速度。同時基于MATLAB的計算機算法以雙精度類型進行數據的存儲和運算, 數據精確度高,能進行潮流計算中的各種矩陣運算,使得傳統潮流計算方法更加優化。
一 研究內容
通過一道例題來認真分析牛頓-拉夫遜法的原理和方法(采用極坐標形式的牛拉法),同時掌握潮流計算計算機算法的相關知識,能看懂并初步使用MATLAB軟件進行編程,培養自己電力系統潮流計算機算法編程能力。
例題如下:用牛頓-拉夫遜法計算下圖所示系統的潮流分布,其中系統中5為平衡節點,節點5電壓保持U=1.05為定值,其他四個節點分別為PQ節點,給定的注入功率如圖所示。計算精度要求各節點電壓修正量不大于10-6。
二 牛頓-拉夫遜法潮流計算 1 基本原理
牛頓法是取近似解x(k)之后,在這個基礎上,找到比x(k)更接近的方程的根,一步步地迭代,找到盡可能接近方程根的近似根。牛頓迭代法其最大優點是在方程f(x)=0的單根附近時誤差將呈平方減少,而且該法還可以用來求方程的重根、復根。電力系統潮流計算,一般來說,各個母線所供負荷的功率是已知的,各個節點的電壓是未知的(平衡節點外)可以根據網絡結構形成節點導納矩陣,然后由節點導納矩陣列寫功率方程,由于功率方程里功率是已知的,電壓的幅值和相角是未知的,這樣潮流計算的問題就轉化為求解非線性方程組的問題了。為了便于用迭代法解方程組,需要將上述功率方程改寫成功率平衡方程,并對功率平衡方程求偏導,得出對應的雅可比矩陣,給未知節點賦電壓初值,將初值帶入功率平衡方程,得到功率不平衡量,這樣由功率不平衡量、雅可比矩陣、節點電壓不平衡量(未知的)構成了誤差方程,解誤差方程,得到節點電壓不平衡量,節點電壓加上節點電壓不平衡量構成節點電壓新的初值,將新的初值帶入原來的功率平衡方程,并重新形成雅可比矩陣,然后計算新的電壓不平衡量,這樣不斷迭代,不斷修正,一般迭代三到五次就能收斂。2 基本步驟和設計流程圖
形成了雅克比矩陣并建立了修正方程式,運用牛頓-拉夫遜法計算潮流的核心問題已經解決,已有可能列出基本計算步驟并編制流程圖。由課本總結基本步驟如下:
1)形成節點導納矩陣Y;
2)設各節點電壓的初值,如果是直角坐標的話設電壓的實部e和虛部f;如果是極坐標的話則設電壓的幅值U和相角a;
3)將各個節點電壓的初值代入公式求修正方程中的不平衡量以及修正方程的系數矩陣的雅克比矩陣;
4)解修正方程式,求各節點電壓的變化量,即修正量; 5)計算各個節點電壓的新值,即修正后的值;
6)利用新值從第(3)步開始進入下一次迭代,直至達到精度退出循環; 7)計算平衡節點的功率和線路功率,輸出最后計算結果; ① 公式推導
② 流程圖
三
matlab編程代碼
clear;
% 如圖所示1,2,3,4為PQ節點,5為平衡節點
y=0;
% 輸入原始數據,求節點導納矩陣
y(1,2)=1/(0.07+0.21j);
y(4,5)=0;y(1,3)=1/(0.06+0.18j);
y(1,4)=1/(0.05+0.10j);
y(1,5)=1/(0.04+0.12j);
y(2,3)=1/(0.05+0.10j);
y(2,5)=1/(0.08+0.24j);
y(3,4)=1/(0.06+0.18j);
for i=1:5
for j=i:5
y(j,i)=y(i,j);
end
end
Y=0;
% 求節點導納矩陣中互導納
for i=1:5
for j=1:5
if i~=j
Y(i,j)=-y(i,j);
end
end
end
% 求節點導納矩陣中自導納
for i=1:5
Y(i,i)=sum(y(i,:));
end
Y
% Y為導納矩陣
G=real(Y);
B=imag(Y);% 輸入原始節點的給定注入功率
S(1)=0.3+0.3j;
S(2)=-0.5-0.15j;
S(3)=-0.6-0.25j;
S(4)=-0.7-0.2j;
S(5)=0;
P=real(S);
Q=imag(S);
% 賦初值,U為節點電壓的幅值,a為節點電壓的相位角
U=ones(1,5);
U(5)=1.05;
a=zeros(1,5);
x1=ones(8,1);
x2=ones(8,1);
k=0;
while max(x2)>1e-6
for i=1:4
for j=1:4
H(i,j)=0;
N(i,j)=0;
M(i,j)=0;
L(i,j)=0;
oP(i)=0;
oQ(i)=0;
end
end
% 求有功、無功功率不平衡量
for i=1:4
for j=1:5
oP(i)=oP(i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
oQ(i)=oQ(i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));
end
oP(i)=oP(i)+P(i);
oQ(i)=oQ(i)+Q(i);
end
x2=[oP,oQ]';
% x2為不平衡量列向量
% 求雅克比矩陣
% 當i~=j時,求H,N,M,L
for i=1:4
for j=1:4
if i~=j
H(i,j)=-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));
N(i,j)=-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
L(i,j)=H(i,j);
M(i,j)=-N(i,j);
end
end
end
% 當i=j時,求H,N,M,L
for i=1:4
for j=1:5
if i~=j H(i,i)=H(i,i)+U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)));N(i,i)=N(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
M(i,i)=M(i,i)-U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)));
L(i,i)=L(i,i)-U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))
end
end
N(i,i)=N(i,i)-2*(U(i))^2*G(i,i);
L(i,i)=L(i,i)+2*(U(i))^2*B(i,i);
end
J=[H,N;M,L]
% J為雅克比矩陣
x1=-((inv(J))*x2);
% x1為所求△x的列向量
% 求節點電壓新值,準備下一次迭代
for i=1:4
oa(i)=x1(i);
oU(i)=x1(i+4)*U(i);
end
for i=1:4
a(i)=a(i)+oa(i);
U(i)=U(i)+oU(i);
end
k=k+1;
end
k,U,a
% 求節點注入功率
i=5;
for j=1:5
P(i)=U(i)*U(j)*(G(i,j)*cos(a(i)-a(j))+B(i,j)*sin(a(i)-a(j)))+P(i);
Q(i)=U(i)*U(j)*(G(i,j)*sin(a(i)-a(j))-B(i,j)*cos(a(i)-a(j)))+Q(i);
end
S(5)=P(5)+Q(5)*sqrt(-1);
S
% 求節點注入電流
I=Y*U'
四
運行結果
節點導納矩陣
經過五次迭代后的雅克比矩陣
迭代次數以及節點電壓的幅值和相角(弧度數)
節點注入功率和電流
五 結果分析
在這次學習和實際操作過程里:首先,對電力系統分析中潮流計算的部分特別是潮流計算的計算機算法中的牛頓-拉夫遜法進行深入的研讀,弄明白了其原理、計算過程、公式推導以及設計流程。牛頓-拉夫遜法是求解非線性方程的迭代過程,其計算公式為?F?J?X,式中J為所求函數的雅可比矩陣;?X為需要求的修正值;?F為不平衡的列向量。利用x(*)=x(k+1)+?X(k+1)進行多次迭代,通過迭代判據得到所需要的精度值即準確值x(*)。六 結論
通過這個任務,自己在matlab編程,潮流計算,word文檔的編輯功能等方面均有提高,但也暴漏出一些問題:理論知識儲備不足,對matlab的性能和特點還不能有一個全面的把握,對word軟件也不是很熟練,相信通過以后的學習能彌補這些不足,達到一個新的層次。
第三篇:電力系統潮流計算程序設計
電力系統潮流計算程序設計
姓名:韋應順
學號:2011021052 電力工程學院
牛頓—拉夫遜潮流計算方法具有能夠將非線性方程線性化的特點,而使用MATLAB語言是由于MATLAB語言的數學邏輯強,易編譯。
【】【】1.MATLAB程序12
Function tisco %這是一個電力系統潮流計算的程序 n=input(‘n請輸入節點數:n=’); m=input(‘請輸入支路數:m=’);ph=input(‘n請輸入平衡母線的節點號:ph=’); B1=input(‘n請輸入支路信號:B1=’);%它以矩陣形式存貯支路的情況,每行存貯一條支路 %第一列存貯支路的一個端點 %第二列存貯支路的另一個端點 %第三列存貯支路阻抗
%第四列存貯支路的對地導納
%第五列存貯變壓器的變比,注意支路為1 %第六列存貯支路的序號
B2=input(‘n請輸入節點信息:B2=’); %第一列為電源側的功率 %第二列為負荷側的功率 %第三列為該點的電壓值
%第四列為該點的類型:1為PQ,2為PV節點,3為平衡節點 A=input(‘n請輸入節點號及對地阻抗:A=’); ip=input(‘n請輸入修正值:ip=’); %ip為修正值);Y=zeros(n);
Y(p,q)=Y(p,q)-1./(B1(i3)*B1(i5);e=zeros(1,n);
Y(p,q)=Y(p,q);f=zeros(1,n);
no=2*ph=1; Y(q,q)=Y(q,q)+1./B1(i3)+B1(i4)/2;
End for i=1:n
G=real(Y);if A(i2)=0
B=imag(Y);p=A(i1);
Y(p p)=1./A(i2);for i=1:n End e(i)=real(B2(i3));End f(i)=imag(B2(i3));For i=1:m S(i)=B2(i1)-B2(i2);p=B1(i1);V(i)=B2(i3);p=B1(i2);end Y(p,p)=Y(p,p)+1./(B1(i3)*B1(i5)^2+B1(i4)./2P=real(S);Q=imag(S);[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);[De,Di]=hxf(J,D,F,ph,n,no);t=0;while
max(abs(De))>ip&max(abs(Dfi)>ip
t=t+1;
e=e+De;
f=f+Df;
[C,D,DF]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no);
J=jacci(Y,G,B,P,Q,e,f,V,C,D,B2,n,ph,no);
[De,Df]=hxf(J,Df,ph,n,no);end v=e+f*j;for i=1:n hh(i)=conj(Y(ph,i)*v(i));end S(ph)=sum(hh)*v(ph);B2(ph,1)=S(ph);V=abs(v);
jd=angle(v)*180/p;resulte1=[A(:,1),real(v),imag(v),V,jd,real(S’),imag(S’),real(B2(:1)),imag(B2(:1)),real(B2(:2)),imag(B2(:,2))];for i=1:m
a(i)=conj((v(B1(i1))/B1(i5)-v(B1(i2))/B1(i3));
b(i)=v(B1(i1))*a(i)-j*B1(i4)*v(B1(i))^2/2;
c(i)=-v(B1(i2))*a(i)-j*B1(i4)*v(B1(i2))^2/2;end result2=[B1(:,6),B1(:,1),B1(:,2),real(b’),imag(b’),real(c’),imag(c’), real(b’+c’),imag(b’+c’)];printcut(result1,S,b,c,result2);type resultm function [C,D,Df]=xxf(G,B,e,f,P,Q,n,B2,ph,V,no)%該子程序是用來求取Df for i=1:n
If
i=ph
C(i)=0;
D(i)=0;
For j=i:n
C(i)=C(i)+G(i,j)*e(j)-B(i,j)*f(j);D(i)=D(i)+G(i,j)*f(j)+B(i,j)*e(j);end
P1=C(i)*e(i)+D(i)*f(i);Q1=C(i)*f(i)-D(i)*e(i);V1=e(i)^2+f(i)^2;If
B2(i4)=2 p=2*i-1;
Df(p)=P(i)-P1;p=p+1;else p=2*i-1;
Df(p)=P(i)-P1;p=p+1;
Df(p)=Q(i)-Q1;end end end Df=Df’;If ph=n Df(no?=[];end
function [De,Df]=hxf(J,Df,ph,n,no)%該子函數是為求取De Df DX=JDf;DX1=DX;
x1=length(DX1);if ph=n DX(no)=0;DX(no+1)=0;
For i=(no+2):(x1+2)DX(i)=DX1(i-2);End Else
DX=[DX1,0,0];End k=0;
[x,y]=size(DX);For i=1:2:x K=k+1;
Df(k)=DX(i);De(k)=DX(i+1);End End case 2 Function for j=1:n J=jacci(Y,G,B,PQ,e,f,V,C,D,B2,n,ph,no)X1=G(i,j)*f(i)-B(i,j)*e(i);
X2=G(i,j)*e(i)+B(i,j)*f(i);%該子程序是用來求取jacci矩陣
for i=1:n X3=0;switch B2(i4)X4=0;case 3 P=2*i-1;continue q=2*j-1;case 1 J(p,q)=X1;for j=1:n m=p+1;if
J=&J=ph J(m,q)=X3;X1=G(i)*f(i)-B(i,j)*e(i);q=q+1;X2=G(i,j)*e(i)+B(i,j)*f(i);J(p,q)=X2;X3=-X2;J(m,q)=X4;X4=X1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);p=2*i-1;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=2*j-1;X3=0;J(p,q)=X1;X4=0;m=p+1;P=2*i-1;J(p,q)=X2;q=2*j-1;J(m,q)=X4;J(p,q)=X1;Else if j=&j=jph m=p+1;X1=D(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X3;X2=C(i)+G(i,j)*e(i)+B(i,j)*f(i);q=q+1;X3= C(i)+G(i,j)*e(i)-B(i,j)*f(i);J(p,q)=X2;X4= C(i)+G(i,j)*f(i)-B(i,j)*e(i);J(m,q)=X4;P=2*i-1;end q=2*j-1;end J(p,q)=X1;end m=p+1;end J(m,q)=X3;if ph=n q=q+1;J(no:)=[];J(p,q)=X2;J(no:)=[];J(m,q)=X4;J(:,no)=[];End J(:,no)=[];End
2實例驗證 【例題】設有一系統網絡結線見圖1,各支路阻抗和各節點功率均已以標幺值標示于圖1中,其中節點2連接的是發電廠,設節點1電壓保持U1=1.06定值,試計算其中的潮流分布,請輸入節點數:n=5 請輸入支路數:m=7 請輸入平衡母線的節點號:ph=l 請輸入支路信息:
BI=[ l 2 0.02+0.06i O l 1;1 3 0.08+0.24i 0 1 2;2 3 0.06+0.18i 0 l 3: 2 4 0.06+0.18i O l 4: 2 5 0.04+0.12i 0 l 5: 3 4 0.01+0.03i 0 l 6: 4 5 0.08+0.24i O 1 7] 請輸入節點信息:
B2=[ 0 0 1.06 3;0.2+0.20i 0 1 1;一O.45一O.15i 0 l l;一0.4-0.05i 0 l 1;一0.6—0.1i 0 1 l] 請輸入節點號及對地阻抗: A=[l 0;2 0;3 0;4 0;5 O ] 請輸入修正值:ip=0.000 0l
參考文獻
[1]陳珩.電力系統穩定分析[M].北京:中國電力出版社,2002:139—187.
[2]鄭阿奇.MATLAB實用教程[M].北京:電子工業出版社,2005:1-243.
[3] 束洪春,孫士云,等.云電送粵交商流混聯系統全過 程動態電壓研究[J】.中國電力,2008,4l(10):l-4. SHU Hong—ch吼,SUN Shi-yun,et a1.Research on fun prc'cess dyn鋤ic Voltage stabil時of hybrid AC/DC poWer tmnsmission System舶m Yu衄an proVince to G啪gdong province【J】.Electric Power,2008,4l(10): l-4.
[4] 朱新立,湯涌,等.大電網安全分析的全過程動態仿 真技術[J】.電網技術,2008,32(22):23—28. SONG Xin—Ii,TANG Yof唱,et a1. Full dyn鋤ic simulation for the stabilhy a眥lysis of large power system【J】.Power System融IlrIolo影,2008,32(22): 23.28.
[5]Roytelm鋤I,Shallidehpour S M.A comprehcnsivc long teml dynaIIlic simulation for powcr system recoVery【J】. IEEE Transactions 0n Power Systems,1994,9(3). [6] 石雩梅,汪志宏,等.發電機勵磁系統數學模型及參 數對電網動態穩定性分析結果影響的研究[J】.繼電 器,2007,35(21):22-27.
SHI Xue.mei,WANG Zlli-hon舀et a1.Iksearch on the innuence of g鋤e翰to璐baScd ∞de詛iled excitation system models柚d parameterS t0 power鏟id dyn鋤ic stabil時【J】.Relay,2007,35(2 1):22-27.
[7] 方思立,朱方.快速勵磁系統對系統穩定的影響[J】.中 國電機工程學報,1986,6(1):20.28.
FANG Si.1i,ZHU Fang.The effbct of f弧t.respon∞
excitation system on the stability of power netwofk【J】. Proceedings ofthe CSEE,1986,6(1):20-28.
[8] 劉取.電力系統穩定性及發電機勵磁控制[M】.北京: 中國電力出版社,2007.
LIU Qu.Power system S詛bility鋤d generator excitation control【M】.BeUing:ChiIla Electric Powef Press,2007. [9] Dallachy J L,Anderson T.EXperience with rcplacing ro詛ting exciters wim static exciters【J】.1k InStitution of Electrical Engineers,1 996.
[10] 陳利芳,陳天祿.淺談自并勵勵磁系統在大容量機組 中的應用【J】.繼電器,2007,35(1):8l培4. CHEN Li-f抽島CHEN Tian—lIL Application of 辯l仁exci組tion mode in large capacity髫memtor unit【J】. ReIay'2007,35(1):81-84.
[11] 方思立,劉增煌,孟慶和.大型汽輪發電機自并勵勵 磁系統的應用條件【J].中國電力,1994,27(12):61.63. FANG Si.Ii,LIU Zeng-hu鋤g,MENG Qin爭hc.m application conditions of large turbine generator self-excitation system【J】.Electric Powef,1994,27(12): 61.63.
[12]梁小冰,黃方能.利用EMTDC進行長持續時間過程 的仿真研究【J】.電網技術,2002,26(9):55.57. LIANG Xiao-bing,HUANG Fan爭眥ng.How to cany out simulalion of long dul‘ation processes by use of EMTDC【J】.Power System 11echnology,2002,26(9): 55-57.
[13]王卉,陳楷,彭哲,等.數字仿真技術在電力系統中 的應用及常用的幾種數字仿真工具【J】.繼電器,2004,32(21):7l一75.
wANG Hui,CHEN Kai,PENG zhe,et a1.Application of digital simulation眥hniques棚d severaJ simulation tools in power system[J】.Relay,2004,32(21):71·75.
[14]IEEE Power Engmeering Socie哆.IEEE std 421.5.2005 IEEE玎ccOmmended practice for excitation system models for power system stabiI時studies【s】.
第四篇:電力系統潮流計算程序
電力系統潮流計算c語言程序,兩行,大家可以看看,仔細研究,然后在這個基礎上修改。謝謝
#include “stdafx.h” #include #include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std; int _tmain(int argc, _TCHAR* argv[]){ int i; //i作為整個程序的循環變量 int N=Bus::ScanfBusNo();//輸入節點個數 int L=Line::ScanflineNo();//輸入支路個數 if((L&&N)==0){return 0;} //如果找不到兩個文件中的任意一個,退出 Line *line=new Line[L];//動態分配支路結構體 Line::ScanfLineData(line);//輸入支路參數 Line::PrintfLineData(line,L);//輸出支路參數 Bus *bus=new Bus[N];//動態分配結點結構體 for(int i=0;i bus[i].Sdelta.real=0; bus[i].Sdelta.image=0;} Bus::ScanfBusData(bus);//輸入節點參數 Bus::PrintfBusData(bus,N);//輸出結點參數 Complex **X;X=new Complex *[N];for(i=0;i Bus::JisuanNodeDnz(X,line,bus,L,N);//計算節點導納矩陣 Bus::PrintfNodeDnz(X,N);//輸出節點導納矩陣 int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i double *x;x=new double[NN];int count=1; LOOP: Bus::JisuanNodeI(X,bus,N);//計算節點注入電流 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeSdelta(bus,N);//計算節點功率差值 Bus::PrintfNodeScal(X,bus,N);//輸出節點功率差值 int icon=wehcon1(bus,N);//whether converbence看迭代是否結束 if(icon==1){ cout<<“icon=”< Bus::JisuanJacAug(JacAug,X,bus,N);//計算雅可比增廣矩陣 // Bus::PrintfJacAug(JacAug,N); gauss::gauss_slove(JacAug,x,NN);//解方程組求出電壓差值 Bus::ReviseNodeV(bus,x,N);//修正節點電壓 // Bus::PrintfNodeV(bus,N); count++; goto LOOP;} else { for(i=0;i { int statemp,endtemp; Complex aa,bb,cc,dd,B; B.real=0; B.image=-line[i].B; statemp=line[i].start; endtemp=line[i].end; aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd); aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd); } cout<<“icon=”< Bus::JisuanNodeScal(X,bus,N);//計算節點功率 for(i=0;i { bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//發電機功率=注入功率+負荷功率 bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image; bus[i].V=Complex::Rec2Polar(bus[i].V); } cout<<“====節點電壓===============發電機發出功率======”< for(i=0;i { cout<<“節點”<<(i+1)<<'t'; Complex::PrintfComplex(bus[i].V); coutt(bus[i].Scal.real); coutt(bus[i].Scal.image); cout< } cout<<“======線路傳輸功率==========”< for(i=0;i { int statemp,endtemp; statemp=line[i].start; endtemp=line[i].end; cout< Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01)); Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01)); cout< } } return 0;} #include “stdafx.h” #include #include“Complex.h” #include“wanjing.h” #include“gauss.h” using namespace std; int _tmain(int argc, _TCHAR* argv[]){ int i; //i作為整個程序的循環變量 int N=Bus::ScanfBusNo();//輸入節點個數 int L=Line::ScanflineNo();//輸入支路個數 if((L&&N)==0){return 0;} //如果找不到兩個文件中的任意一個,退出 Line *line=new Line[L];//動態分配支路結構體 Line::ScanfLineData(line);//輸入支路參數 Line::PrintfLineData(line,L);//輸出支路參數 Bus *bus=new Bus[N];//動態分配結點結構體 for(int i=0;i bus[i].Sdelta.real=0; bus[i].Sdelta.image=0;} Bus::ScanfBusData(bus);//輸入節點參數 Bus::PrintfBusData(bus,N);//輸出結點參數 Complex **X;X=new Complex *[N];for(i=0;i Bus::JisuanNodeDnz(X,line,bus,L,N);//計算節點導納矩陣 Bus::PrintfNodeDnz(X,N);//輸出節點導納矩陣 int NN=(N-1)*2;double **JacAug;JacAug=new double *[NN];for(i=0;i double *x;x=new double[NN];int count=1; LOOP: Bus::JisuanNodeI(X,bus,N);//計算節點注入電流 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeScal(X,bus,N);//計算節點功率 Bus::JisuanNodeSdelta(bus,N);//計算節點功率差值 Bus::PrintfNodeScal(X,bus,N);//輸出節點功率差值 int icon=wehcon1(bus,N);//whether converbence看迭代是否結束 if(icon==1){ cout<<“icon=”< Bus::JisuanJacAug(JacAug,X,bus,N);//計算雅可比增廣矩陣 // Bus::PrintfJacAug(JacAug,N); gauss::gauss_slove(JacAug,x,NN);//解方程組求出電壓差值 Bus::ReviseNodeV(bus,x,N);//修正節點電壓 // Bus::PrintfNodeV(bus,N); count++; goto LOOP;} else { for(i=0;i { int statemp,endtemp; Complex aa,bb,cc,dd,B; B.real=0; B.image=-line[i].B; statemp=line[i].start; endtemp=line[i].end; aa=Complex::productComplex(Complex::getconj(bus[statemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[statemp-1].V), Complex::getconj(bus[endtemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].stoe=Complex::productComplex(bus[statemp-1].V,dd); aa=Complex::productComplex(Complex::getconj(bus[endtemp-1].V), B); bb=Complex::subComplex (Complex::getconj(bus[endtemp-1].V), Complex::getconj(bus[statemp-1].V)); cc=Complex::productComplex(bb , Complex::getconj(line[i].Y)); dd=Complex::CaddC(aa,cc); line[i].etos=Complex::productComplex(bus[endtemp-1].V,dd); } cout<<“icon=”< Bus::JisuanNodeScal(X,bus,N);//計算節點功率 for(i=0;i { bus[i].Scal.real = bus[i].Scal.real + bus[i].Load.real;//發電機功率=注入功率+負荷功率 bus[i].Scal.image= bus[i].Scal.image+ bus[i].Load.image; bus[i].V=Complex::Rec2Polar(bus[i].V); } cout<<“====節點電壓===============發電機發出功率======”< for(i=0;i { cout<<“節點”<<(i+1)<<'t'; Complex::PrintfComplex(bus[i].V); coutt(bus[i].Scal.real); coutt(bus[i].Scal.image); cout< } cout<<“======線路傳輸功率==========”< for(i=0;i { int statemp,endtemp; statemp=line[i].start; endtemp=line[i].end; cout< Complex::PrintfComplex(Complex::ComDivRea(line[i].stoe,0.01)); Complex::PrintfComplex(Complex::ComDivRea(line[i].etos,0.01)); cout< } } return 0;} #include class Complex//定義復數類 { public: double real;double image;int RecPolar;//0表示直角坐標,1表示極坐標 static Complex CaddC(Complex c1,Complex c2);//求兩個復數和 static Complex subComplex(Complex c1,Complex c2);//求兩個復數差 static Complex productComplex(Complex c1,Complex c2);//求兩個復數積 static Complex divideComplex(Complex c1,Complex c2);//求兩個復數商 static Complex ComDivRea(Complex c1,double r2);//除數 static Complex getconj(Complex c1);//求一個復數共軛 static Complex getinverse(Complex c1);//取倒數 static double getComplexReal(Complex c1);//求一個復數實部 static double getCompleximage(Complex c1);//求一個復數虛部 static void PrintfComplex(Complex c1);//顯示一個復數 static void PrintfmultiComplex(Complex C,int N);//顯示多個復數 static void zeroComplex(Complex c1);//將復數復零 static Complex Rec2Polar(Complex c1);//取極坐標 Complex(){ RecPolar=0;} }; Complex Complex::Rec2Polar(Complex c1)//極坐標表示 { Complex Node;Node.real=sqrt(c1.real*c1.real+c1.image*c1.image);Node.image=atan2(c1.image,c1.real)*180/3.1415926;Node.RecPolar=1;return Node;} Complex Complex::CaddC(Complex c1,Complex c2)//復數加法 { Complex Node; Node.real=c1.real+c2.real; Node.image=c1.image+c2.image; return Node;} Complex Complex::subComplex(Complex c1,Complex c2)//復數減法 { Complex Node; Node.real=c1.real-c2.real; Node.image=c1.image-c2.image; return Node;} Complex Complex::productComplex(Complex c1,Complex c2)//復數乘法 { Complex Node; Node.real=c1.real*c2.real-c1.image*c2.image; Node.image=c1.image*c2.real+c2.image*c1.real; return Node;} Complex Complex::divideComplex(Complex c1,Complex c2)//復數除法 { Complex Node; Node.real=(c1.real*c2.real+c1.image*c2.image)/(pow(c2.real,2)+pow(c2.image,2));Node.image=(c1.image*c2.real-c1.real*c2.image)/(pow(c2.real,2)+pow(c2.image,2));return Node;} Complex Complex::ComDivRea(Complex c1,double r1)//復數除數 { Complex Node;Node.real=c1.real/(r1);Node.image=c1.image/(r1);return Node;} Complex Complex::getconj(Complex c1)//取共軛 { Complex Node; Node.real=c1.real;Node.image=-c1.image; return Node;} Complex Complex::getinverse(Complex c1)//取倒數 { Complex Node;Node.real=1;Node.image=0;Node=(Complex::divideComplex(Node,c1));return Node;} double Complex::getComplexReal(Complex c1)//取實部 { return c1.real;} double Complex::getCompleximage(Complex c1)//取虛部 { return c1.image;} void Complex::PrintfComplex(Complex c1)//按直角坐標輸出 { if(c1.RecPolar==0){ cout.precision(6); cout.width(8); cout.setf(ios::right); cout< ”; cout.precision(6); cout.width(8); cout.setf(ios::left); cout< ”;} else { cout< Complex::zeroComplex(Complex c1)//清零 { c1.real=0;c1.image=0;} class gauss { public: static void gauss_slove(double **a,double *x,int NN);static void gauss_output();}; void gauss::gauss_slove(double **a,double *x,int NN){ int n,i,j,k,*pivrow,**pivcol;double eps,pivot,sum,aik,al; n=NN;pivrow=new int[n];pivcol=new int *[n]; for(i=0;i pivot= fabs(a[k][k]); pivrow[k]=k;//行 pivcol[k][0]=k;pivcol[k][1]=k;//列n*2矩陣 for(i=k;i { for(j=k;j { if(pivot { pivot=fabs(a[i][j]); pivrow[k]=i;//行 pivcol[k][1]=j;//列 } } } if(pivot { cout<<“error”< getchar(); exit(0); } if(pivrow[k]!=k)//行變換 { for(j=k;j<(n+1);j++) { al=a[pivrow[k]][j]; a[pivrow[k]][j]=a[k][j]; a[k][j]=al; } } if(pivcol[k][1]!=k)//列變換 { for(i=0;i { al=a[i][pivcol[k][1]]; a[i][pivcol[k][1]]=a[i][k]; a[i][k]=al; } } if(k!=(n-1))//將矩陣化為上三角形 式 { for(i=(k+1);i { aik=a[i][k]; for(j=k;j<(n+1);j++) { a[i][j]-=aik*a[k][j]/a[k][k]; } } } } x[n-1]=a[n-1][n]/a[n-1][n-1];//解方程 for(i=(n-2);i>=0;i--){ sum=0; for(j=(i+1);j { sum +=a[i][j]*x[j];0.182709 0.016894-0.0310701 -0.0402051 0.156702 -0.0355909-0.0668055 -0.00703229-0.0886481 -0.0129814-0.0390805 -0.0135062-0.1023 -0.0460568 -0.0342827 -0.00382402-0.102896 -0.0184062 } x[i]=(a[i][n]-sum)/a[i][i];} for(k=(n-2);k>=0;k--){ al=x[pivcol[k][1]]; x[pivcol[k][1]]=x[pivcol[k][0]]; x[pivcol[k][0]]=al;} cout<<“節點電壓修正量”< cout< } ====節點功率計算值==== 0.935261 -0.159048 0.573909 0.0789973-0.00289889 -0.00796623-0.0791247 -0.0168362-0.436255 -0.0580392 0.0359139 -0.0106592-0.229118 -0.0885419-0.136179 -0.148207 0.0446243 0.0111298-0.0223764 -0.00695775-0.0237482 -0.198318 -5.24266e-015 -0.0354071 -0.0925078 -1.05629e-015 -0.0391348 0.014529 0.00158644 -0.0258771 -0.109514 icon=1進行第2次迭代 節點電壓修正量 =================-0.00164889-0.000540034-0.00261067-0.00532027-0.00235315-0.00600971-0.00189677-0.00643874-0.0023631-0.00650659-0.00170949-0.0074907-0.00164545-0.00485415-0.00493977-0.0119042-0.00331285-0.0175611-0.00207908 -0.00347744-0.0869347-9.48909e-015-0.0110778-0.0538236-7.53784e-016-0.0168097 7.049e-005-0.00146487-0.00458276 0.00251645 -0.00336375-0.00530645-0.0147816-0.000326161-0.00640487-0.00251701-0.0169829-0.00175286-0.0174333-0.0239063 -0.0119192-0.076014 -0.0160104-0.441997 -0.0750285 0.000250012 3.72542e-005-0.228052 -0.108844-0.100078 -0.105634 0.000410707 0.000378067-0.057497 -0.0195879 0.200039 0.0582563-0.00307326-0.0163809-0.00232773-0.0175806 8.74293e-005-0.0192018 0.000558996-0.0197776-0.000247851-0.0193784-0.00115346-0.0185848-0.00127275-0.0186244-0.00010108-0.0188966 0.000553585-0.0200901-3.76315e-005-0.0208303 0.00308341-0.0219386-0.00195916-0.0205356-0.00184757-0.0076401 0.00197593-0.0245534 0.00434657-0.027534 ====節點功率計算值==== 0.98623 -0.134163 0.583136 0.166278-0.111173 0.199792 -0.0621041 -0.0821379 -0.0350785 -0.0902383 -0.0320461 -0.0951562 -0.0220362 -0.175458 4.72557e-015 -0.0320661 -0.0871134 -7.03489e-017 -0.0350769 0.000273455 1.51804e-005 -0.0240417 -0.10604 icon=1進行第3次迭代 節點電壓修正量 =================-2.67079e-005-2.30128e-006-2.20543e-005-6.00686e-005-2.33043e-005-6.85601e-005-3.22294e-005-2.61107e-005-2.80198e-005-6.6167e-005-2.34528e-005 -0.0739846 0.0227868-0.0158709-0.0248173-0.0179447-0.0578368-0.00890719-0.0337091-0.00693706-0.111601 1.21429e-014-0.0159145-0.0667319 9.24355e-016-0.0228592 7.10354e-005-6.6188e-006-0.00889343-0.0184098 -5.66132e-005-4.4646e-005-1.74668e-005-4.50947e-005-0.000181763-3.81763e-006-0.000286581-6.68993e-005-1.28441e-005-5.17172e-005-0.000223284-4.54717e-005-2.47586e-005 4.32335e-007-0.000258494 1.82635e-005-0.000272051-6.95195e-006-0.000251969 1.11318e-005-0.000279418 5.74737e-005-0.000307368 6.86998e-005-0.000320274 5.38112e-005-0.00031447 3.59531e-005-0.00030494 3.37607e-005-0.000307449 5.26532e-005-0.000310721 6.92761e-005-0.000350373 5.60942e-005-0.00040977 0.000123641-0.000440259 1.36149e-005-0.000426973-1.70227e-005-9.37794e-005 0.000113675-0.000544011 0.000176034-0.000636202 ====節點功率計算值==== 0.986878 -0.133979 0.583 0.167193-0.024 -0.012-0.076 -0.016-0.442 -0.0748606 1.43501e-008 1.07366e-008-0.228 -0.109 -0.0999999 -0.104049 4.51318e-008 8.98835e-008-0.0579999 -0.0199999 0.2 0.0591018-0.112 -0.0749997 0.2 0.0242519-0.062 -0.016-0.082 -0.025-0.035 -0.018 -0.0900001 -0.058-0.032 -0.00899997-0.095 -0.0339999-0.022 -0.00699998-0.175 -0.112 -6.07156e-015 -1.19217e-014-0.032 -0.016-0.087 -0.0669999 7.03078e-017 -9.23979e-016-0.035 -0.0229999 1.09492e-007 4.45699e-008 1.54958e-009 -2.01531e-010-0.024 -0.00899994-0.106 -0.0189996 icon=0,迭代結束。 ====節點電壓===============發電機發出功率====== 節點1 1.05 0。 98.6878-13.3979 節點2 1.045 -1.846。 29.4193 節點3 1.02384-3.83352。 0 節 點25 1.01216-9.68486。 0 0 0 節點4 1.01637-4.55698。 0 節 點26 0.994393 -10.1089。 0 0 0 節點5 1.01 -6.48617。 節 點27 1.02012-9.42025。 0 11.5139 0 節點6 1.01332-5.38073。 0 節 點28 1.00992-5.86244。 0 0 0 節點7 1.00489-6.38368。 0 節 點29 1.00022-10.6579。 0 0 節點8 19.5951 節點9 0 節點10 0 節點11 5.91018 節點12 0 節點13 2.42519 節點14 0 節點15 0 節點16 0 節點17 0 節點18 0 節點19 0 節點20 0 節點21 0 節點22 0 節點23 0 節點24 0 1.01 -5.62974。 1.03905-6.78143。 1.03595-8.69362。 -4.5962。 1.04711-7.80323。 1.05 -6.34392。 1.03242-8.7401。 1.02788-8.86784。 1.03458-8.45044。 1.03051-8.83678。 1.01845-9.5141。 1.01604-9.70326。 1.02022-9.50938。 1.0237-9.17478。 1.02432-9.17024。 1.01802-9.36719。 1.01339-9.68362。 0 20 節 點30 0.988705 -11.5464。 0 0 0 ====== 線路傳輸功率========== 2to1 -57.7373 5.41674i 58.3454 0 -15.1827i 3to1 -39.659 -7.75964i 40.3424 1.78481i 4to2 -30.87 -9.74186i 31.4153 0 3.58352i 4to3 -37.0772 -7.78596i 37.259 6.55964i 5to2 -44.3717 -9.78456i 45.2968 0 4.84242i 6to2 -38.4766 -8.22625i 39.3252 0 2.87667i 6to4 -34.946 1.92384i 35.0885 0 -3.28202i 7to5 -0.16304 -6.41767i 0.171702 0 2.2985i 7to6 -22.637 -4.48233i 22.7745 0 1.44238i 8to6 -11.8939 -5.48098i 11.913 0 3.70557i 6to9 12.3737 -12.3826i -12.3737 0 13.0033i 6to10 10.9107 -3.80907i -10.9107 0 4.53223i 11to9 5.91018i 0 -5.08963i 10to9 -32.652 -2.3712i 32.652 0 3.46974i 4to12 23.5411 -11.5375i -23.5411 0 13.2407i 13to12 2.42519i 1.05 -1.90978i 1.66484i 14to12 -7.9019 -2.06732i 7.97894 30to29 -3.6702 -0.542564i 3.70398 2.22749i 0.606393i 15to12 -18.254 -5.74885i 18.4835 28to8 -1.89152 -3.79982i 1.89395 6.20089i-4.9239i 16to12-7.53872 -2.90237i 7.59633 28to6 -14.7868 -2.82565i 14.8234 3.02352i 0.294601i 15to14-1.69544 -0.461488i 1.70189 請按任意鍵繼續...0.467323i 17to16-4.03014 1.10238i 18to15-6.08074 1.46028i 19to18-2.87549 0.478389i 20to19 6.6418-2.93222i 20to10 -8.8418 3.85077i 17to10-4.96987 4.76656i 21to10-16.1562 9.42843i 22to10-7.87782 4.21401i 22to21 1.34443-2.01837i 23to15-5.59369 2.25006i 24to22-6.48186 2.08163i 24to23-2.38596 0.579814i 25to24-0.167617 0.281364i 26to25 -3.5 2.3674i 27to25 3.39433-2.08638i 28to27 16.1446 3.13006i 29to27-6.10398 1.67047i 30to27-6.92979-1.07089i-1.37839i-0.467767i 2.96679i-3.66679i-4.72911i-9.18162i-4.10132i 2.01969i-2.17981i-2.00141i-0.56401i -0.28102i-2.29999i 2.11848i-2.10093i-1.50639i -1.3574i 4.03872 6.12096 2.88074 -6.62452 8.9242 4.98423 16.2709 7.93248 -1.34378 5.62846 6.53339 2.39369 0.167814 3.54513 -3.37751 -16.1446 6.19083 7.09313 高等電力系統分析 IEEE30節點潮流程序 班級:電研114班 姓名:王大偉 學號:2201100151 電力系統潮流計算發展史 對潮流計算的要求可以歸納為下面幾點: (1)算法的可靠性或收斂性(2)計算速度和內存占用量(3)計算的方便性和靈活性 電力系統潮流計算屬于穩態分析范疇,不涉及系統元件的動態特性和過渡過程。因此其數學模型不包含微分方程,是一組高階非線性方程。非線性代數方程組的解法離不開迭代,因此,潮流計算方法首先要求它是能可靠的收斂,并給出正確答案。隨著電力系統規模的不斷擴大,潮流問題的方程式階數越來越高,目前已達到幾千階甚至上萬階,對這樣規模的方程式并不是采用任何數學方法都能保證給出正確答案的。這種情況促使電力系統的研究人員不斷尋求新的更可靠的計算方法。 在用數字計算機求解電力系統潮流問題的開始階段,人們普遍采用以節點導納矩陣為基礎的高斯-賽德爾迭代法(一下簡稱導納法)。這個方法的原理比較簡單,要求的數字計算機的內存量也比較小,適應當時的電子數字計算機制作水平和電力系統理論水平,于是電力系統計算人員轉向以阻抗矩陣為主的逐次代入法(以下簡稱阻抗法)。 20世紀60年代初,數字計算機已經發展到第二代,計算機的內存和計算速度發生了很大的飛躍,從而為阻抗法的采用創造了條件。阻抗矩陣是滿矩陣,阻抗法要求計算機儲存表征系統接線和參數的阻抗矩陣。這就需要較大的內存量。而且阻抗法每迭代一次都要求順次取阻抗矩陣中的每一個元素進行計算,因此,每次迭代的計算量很大。 阻抗法改善了電力系統潮流計算問題的收斂性,解決了導納法無法解決的一些系統的潮流計算,在當時獲得了廣泛的應用,曾為我國電力系統設計、運行和研究作出了很大的貢獻。但是,阻抗法的主要缺點就是占用計算機的內存很大,每次迭代的計算量很大。當系統不斷擴大時,這些缺點就更加突出。為了克服阻抗法在內存和速度方面的缺點,后來發展了以阻抗矩陣為基礎的分塊阻抗法。這個方法把一個大系統分割為幾個小的地區系統,在計算機內只需存儲各個地區系統的阻抗矩陣及它們之間的聯絡線的阻抗,這樣不僅大幅度的節省了內存容量,同時也提高了節省速度。 克服阻抗法缺點的另一途徑是采用牛頓-拉夫遜法(以下簡稱牛頓法)。牛頓法是數學中求解非線性方程式的典型方法,有較好的收斂性。解決電力系統潮流計算問題是以導納矩陣為基礎的,因此,只要在迭代過程中盡可能保持方程式系數矩陣的稀疏性,就可以大大提高牛頓潮流程序的計算效率。自從20世紀60年代中期采用了最佳順序消去法以后,牛頓法在收斂性、內存要求、計算速度方面都超過了阻抗法,成為直到目前仍被廣泛采用的方法。 在牛頓法的基礎上,根據電力系統的特點,抓住主要矛盾,對純數學的牛頓法進行了改造,得到了P-Q分解法。P-Q分解法在計算速度方面有顯著的提高,迅速得到了推廣。 牛頓法的特點是將非線性方程線性化。20世紀70年代后期,有人提出采用更精確的模型,即將泰勒級數的高階項也包括進來,希望以此提高算法的性能,這便產生了保留非線性的潮流算法。另外,為了解決病態潮流計算,出現了將潮流計算表示為一個無約束非線性規劃問題的模型,即非線性規劃潮流算法。 近20多年來,潮流算法的研究仍然非常活躍,但是大多數研究都是圍繞改進牛頓法和P-Q分解法進行的。此外,隨著人工智能理論的發展,遺傳算法、人工神經網絡、模糊算法也逐漸被引入潮流計算。但是,到目前為止這些新的模型和算法還不能取代牛頓法和P-Q分解法的地位。由于電力系統規模的不斷擴大,對計算速度的要求不斷提高,計算機的并行計算技術也將在潮流計算中得到廣泛的應用,成為重要的研究領域。第五篇:電力系統潮流計算發展史