久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

完全平方公式說課說課稿

時(shí)間:2019-05-14 02:01:37下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《完全平方公式說課說課稿》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《完全平方公式說課說課稿》。

第一篇:完全平方公式說課說課稿

《完全平方公式》說課稿

各位老師,大家下午好:

今天我說課的內(nèi)容是人教版教材八年級上冊,第一章第8節(jié)乘法公式—完全平方公式。下面我將從教材與目標(biāo),學(xué)情分析與教法學(xué)法,教學(xué)過程分析及教學(xué)評價(jià)與反思這4個(gè)維度來闡述我對本節(jié)課的理解和設(shè)計(jì)。

首先,我先從教材的地位與作用、教學(xué)目標(biāo)、教學(xué)重點(diǎn)與難點(diǎn)這3個(gè)方面來詮釋“教材與目標(biāo)”。

本課內(nèi)容主要研究的是完全平方公式的推導(dǎo)和應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運(yùn)算和整式乘法后進(jìn)行的。乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,完全平方公式的學(xué)習(xí)對簡化某些整式的運(yùn)算,培養(yǎng)學(xué)生的求簡意識很有幫助。同時(shí)它也是學(xué)生后續(xù)學(xué)習(xí)的必備基礎(chǔ)。學(xué)生以后學(xué)習(xí)因式分解、一元二次方程、勾股定理等知識和重要的數(shù)學(xué)方法“配方法”的時(shí)候會反復(fù)的應(yīng)用這個(gè)公式。最后公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。

依據(jù)課標(biāo)和教材對本課的要求,我確定的知識與技能教學(xué)目標(biāo)為會推導(dǎo)完全平方公式,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,并能運(yùn)用公式進(jìn)行簡單的計(jì)算;過程與方法目標(biāo)為通過推導(dǎo)過程進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,.重視學(xué)生對算理的理解,有意識地培養(yǎng)他們有條理的思考和表達(dá)能力。情感態(tài)度與價(jià)值觀方面鼓勵(lì)學(xué)生自己探索算法的多樣化,培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,同時(shí)通過小組合作來加強(qiáng)學(xué)生的團(tuán)隊(duì)意識。

依據(jù)學(xué)生的認(rèn)知特點(diǎn)和認(rèn)知水平,我將教學(xué)重點(diǎn)設(shè)定為掌握完全平方公式的結(jié)構(gòu)特點(diǎn)和字母表示的廣泛含義,并會運(yùn)用公式進(jìn)行簡單計(jì)算。同時(shí)引導(dǎo)學(xué)生用多種方法來推導(dǎo)公式,使學(xué)生體會數(shù)形結(jié)合與化歸的數(shù)學(xué)思想,從而來突破難點(diǎn)。

二、學(xué)情分析與教法學(xué)法

八年級的學(xué)生年齡基本都在十四歲左右,正處于活潑好動的青春期中期。此階段的學(xué)生,個(gè)人意識增強(qiáng),渴望歸屬感和被認(rèn)同。如果課堂氣氛沉悶單調(diào),他們也會較快的感到疲勞煩躁。針對學(xué)生的心智特征及本課實(shí)際,我以“引”為主,主要采用啟發(fā)引導(dǎo),合作交流的方式展開教學(xué),引導(dǎo)學(xué)生主動參與到教學(xué)過程中來建構(gòu)知識。

教法和學(xué)法是相輔相成、相得益彰的。好的教學(xué)策略能夠引導(dǎo)學(xué)生自主探索,主動的、生動團(tuán)結(jié)的、富有個(gè)性地進(jìn)行學(xué)習(xí)和創(chuàng)造,從而產(chǎn)生好的學(xué)習(xí)策略。

這一階段的學(xué)生抽象思維發(fā)展迅速,但形象思維仍占優(yōu)勢,左右腦的聯(lián)系還未最后發(fā)育完善。針對學(xué)生的思維特點(diǎn),我在教學(xué)中注重形象思維與邏輯思維的結(jié)合,加強(qiáng)了基本數(shù)學(xué)思想方法的教學(xué),著重強(qiáng)調(diào)了數(shù)形結(jié)合思想。學(xué)生在數(shù)學(xué)活動中左右腦優(yōu)勢互補(bǔ),潛能得以充分發(fā)揮。

下邊我來重點(diǎn)說說教學(xué)過程設(shè)計(jì)。本節(jié)課設(shè)計(jì)了5個(gè)教學(xué)環(huán)節(jié),“引公式,激情引趣”;“算公式、運(yùn)用已學(xué)知識計(jì)算”;“數(shù)形結(jié)合,理解公式”;“練公式,探索新知”和“鞏固知識,進(jìn)行計(jì)算”,環(huán)環(huán)相扣,循序漸進(jìn)。

興趣是最好的老師,因此在引入時(shí),我創(chuàng)設(shè)了這樣的一個(gè)情境:一個(gè)老人非常喜歡孩子,孩子來玩時(shí),老人都要拿糖果招待,來一個(gè)孩子,老人就給孩子一塊糖,來n個(gè)孩子,就給n塊糖,在此情景下,提出四個(gè)問題;

(1)第一天有a個(gè)孩子去了老人家,老人一共給了這些孩子多少顆糖?

(2)第二天有b個(gè)孩子去了老人家,老人一共給了這些孩子多少顆糖?(3)第三天有a+b個(gè)孩子去了老人家,老人一共給了這些孩子多少顆糖?(4)第三天拿到的糖果為什么要比第一二天的糖果多?

這時(shí)候,學(xué)生就會產(chǎn)生興趣,從而激發(fā)了學(xué)生探索問題的熱情,調(diào)動了學(xué)習(xí)積極性。問題如何解決?這就到了第二個(gè)階段,算公式,運(yùn)用已學(xué)的多項(xiàng)式乘法法則計(jì)算,得出本課的主要類容(a+b)2=a2+2ab+b2

為了培養(yǎng)學(xué)生用圖形來解釋數(shù)的能力,并且為了進(jìn)一步的理解公式,此時(shí),我們引入了圖形的概念,將兩個(gè)圖形畫出來,讓學(xué)生計(jì)算各個(gè)矩形的面積,來加深對完全平方公式的理解并進(jìn)一步的掌握,“面積法”在數(shù)學(xué)中的重要地位不言而喻,后邊偉大的勾股定理的產(chǎn)生就和“面積法”密不可分。其實(shí)這種方法也正是代數(shù)恒等式思想的重要體現(xiàn)。學(xué)生小組討論,通過多種方法對圖形進(jìn)行分割,把所得的結(jié)果在同組中交流,并派代表向全班同學(xué)介紹,從而來提高學(xué)生的合作能力和表達(dá)能力。屏幕上展示的為學(xué)生可能出現(xiàn)的一些思路的預(yù)案。當(dāng)然,課堂是動態(tài)生成的,我也期待著學(xué)生通過思維的碰撞,隨時(shí)出現(xiàn)新的思路,給我以驚喜。

接著,我告訴學(xué)生:我們學(xué)的完全平方公式是一對雙胞胎,還有一個(gè)是兩數(shù)差的平方。給學(xué)生一定時(shí)間自由討論,探究 a與b差的平方,為學(xué)生創(chuàng)設(shè)一個(gè)對前邊所學(xué)知識進(jìn)行合理遷移的機(jī)會。

為什么還要探索兩數(shù)差的平方公式呢。我們知道,兩數(shù)差的平方雖然可以轉(zhuǎn)化成和的平方,但在實(shí)際應(yīng)用中,實(shí)踐表明還是把它們分開來用更方便一些。

至此,這節(jié)課推導(dǎo)出了兩個(gè)公式,也就是完全平方公式。此時(shí)我板書課題,通過“點(diǎn)題”來強(qiáng)化教學(xué)主線。學(xué)生用自己的語言來描述公式,進(jìn)入到本課的下一教學(xué)環(huán)節(jié)練公式,探索新知,首先師生共同來完成兩道例題。兩個(gè)例題都是強(qiáng)調(diào)了對公式結(jié)構(gòu)的把握。通過兩個(gè)例題的講解再讓學(xué)生自己練習(xí),講與練相結(jié)合,通過運(yùn)用公式進(jìn)行簡便運(yùn)算來使學(xué)生體會到公式的實(shí)用價(jià)值,培養(yǎng)求簡意識。

基本的數(shù)學(xué)運(yùn)算是數(shù)學(xué)知識最直接的應(yīng)用,也是學(xué)生體會公式優(yōu)勢的最佳時(shí)機(jī),因此最后個(gè)教學(xué)環(huán)節(jié)設(shè)計(jì)為鞏固知識,進(jìn)行計(jì)算。先是練習(xí)一些較為簡單,形式化的題目,再加以變式,鞏固知識,最后再對本節(jié)課所學(xué)知識進(jìn)行歸納,“暢所欲言,課時(shí)小結(jié)”。加深學(xué)生對公式特點(diǎn)的認(rèn)識,提高學(xué)生歸納總結(jié)能力和口頭表達(dá)能力。

作業(yè)布置時(shí)分層進(jìn)行,滿足了不同層次學(xué)生的不同需求。

最后我來說一下本課的教學(xué)評價(jià)與反思,本課全程關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),注意評價(jià)的內(nèi)容、主體和形式的多樣化。充分發(fā)揮評價(jià)的導(dǎo)向與發(fā)展功能,促進(jìn)學(xué)生的自主評價(jià)。

在教學(xué)中本課以公式探索為載體,以猜想、驗(yàn)證為主線。讓學(xué)生經(jīng)歷了由問題情境到建構(gòu)模型,解釋應(yīng)用的探索過程,在主動、愉悅的氣氛中獲取知識、掌握方法!

在課堂上我沒有將重點(diǎn)放在公式的大量練習(xí)上,而是更多地去關(guān)注公式的發(fā)現(xiàn)和探究過程,這樣做轉(zhuǎn)變了學(xué)生的學(xué)習(xí)方式,培養(yǎng)了學(xué)生的能力,使學(xué)生學(xué)會探索,學(xué)會發(fā)現(xiàn),無論是在現(xiàn)在還是在將來的學(xué)習(xí)生活中,能夠擁有一雙更加矯健的翅膀,去翱翔在蒼穹之下,云端之上!

我的說課到此結(jié)束。最后,讓我在此對各位的傾聽表示感謝,敬請多加指導(dǎo)。

第二篇:完全平方公式說課說課稿

《完全平方公式》說課稿

各位老師,大家下午好:

今天我說課的內(nèi)容是人教版教材八年級上冊,第十五章第2節(jié)乘法公式的第二課時(shí)—完全平方公式。下面我將從教材與目標(biāo),學(xué)情分析與教法學(xué)法,教學(xué)過程分析及教學(xué)評價(jià)與反思這4個(gè)維度來闡述我對本節(jié)課的理解和設(shè)計(jì)。

首先,我先從教材的地位與作用、教學(xué)目標(biāo)、教學(xué)重點(diǎn)與難點(diǎn)這3個(gè)方面來詮釋“教材與目標(biāo)”。

本課內(nèi)容主要研究的是完全平方公式的推導(dǎo)和應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運(yùn)算和整式乘法后進(jìn)行的。乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,完全平方公式的學(xué)習(xí)對簡化某些整式的運(yùn)算,培養(yǎng)學(xué)生的求簡意識很有幫助。同時(shí)它也是學(xué)生后續(xù)學(xué)習(xí)的必備基礎(chǔ)。學(xué)生以后學(xué)習(xí)因式分解、一元二次方程、勾股定理等知識和重要的數(shù)學(xué)方法“配方法”的時(shí)候會反復(fù)的應(yīng)用這個(gè)公式。最后公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。

依據(jù)課標(biāo)和教材對本課的要求,我確定的知識與技能教學(xué)目標(biāo)為會推導(dǎo)完全平方公式,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,并能運(yùn)用公式進(jìn)行簡單的計(jì)算;過程與方法目標(biāo)為通過推導(dǎo)過程進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,.重視學(xué)生對算理的理解,有意識地培養(yǎng)他們有條理的思考和表達(dá)能力。情感態(tài)度與價(jià)值觀方面鼓勵(lì)學(xué)生自己探索算法的多樣化,培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,同時(shí)通過小組合作來加強(qiáng)學(xué)生的團(tuán)隊(duì)意識。

依據(jù)學(xué)生的認(rèn)知特點(diǎn)和認(rèn)知水平,我將教學(xué)重點(diǎn)設(shè)定為掌握完全平方公式的幾何背景、結(jié)構(gòu)特點(diǎn)和語言表述,并會運(yùn)用公式進(jìn)行簡單計(jì)算。同時(shí)引導(dǎo)學(xué)生用多種方法來推導(dǎo)公式,使學(xué)生體會數(shù)形結(jié)合與化歸的數(shù)學(xué)思想,從而來突破難點(diǎn)。

二、學(xué)情分析與教法學(xué)法

八年級的學(xué)生年齡基本都在十四歲左右,正處于活潑好動的青春期中期。此階段的學(xué)生,個(gè)人意識增強(qiáng),渴望歸屬感和被認(rèn)同。如果課堂氣氛沉悶單調(diào),他們也會較快的感到疲勞煩躁。針對學(xué)生的心智特征及本課實(shí)際,我以“引”為主,主要采用啟發(fā)引導(dǎo),合作交流的方式展開教學(xué),引導(dǎo)學(xué)生主動參與到教學(xué)過程中來建構(gòu)知識。

教法和學(xué)法是相輔相成、相得益彰的。好的教學(xué)策略能夠引導(dǎo)學(xué)生自主探索,主動的、生動團(tuán)結(jié)的、富有個(gè)性地進(jìn)行學(xué)習(xí)和創(chuàng)造,從而產(chǎn)生好的學(xué)習(xí)策略。

這一階段的學(xué)生抽象思維發(fā)展迅速,但形象思維仍占優(yōu)勢,左右腦的聯(lián)系還未最后發(fā)育完善。針對學(xué)生的思維特點(diǎn),我在教學(xué)中注重形象思維與邏輯思維的結(jié)合,加強(qiáng)了基本數(shù)學(xué)思想方法的教學(xué),著重強(qiáng)調(diào)了數(shù)形結(jié)合思想。學(xué)生在數(shù)學(xué)活動中左右腦優(yōu)勢互補(bǔ),潛能得以充分發(fā)揮。

下邊我來重點(diǎn)說說教學(xué)過程設(shè)計(jì)。本節(jié)課設(shè)計(jì)了5個(gè)教學(xué)環(huán)節(jié),“引公式,激情引趣”;“證公式、以形推數(shù)”;“說公式,提煉提升”;“練公式,學(xué)以致用”和“暢所欲言,課時(shí)小結(jié)”,環(huán)環(huán)相扣,循序漸進(jìn)。

興趣是最好的老師,因此在引入時(shí),我創(chuàng)設(shè)了這樣的一個(gè)情境:阜陽實(shí)驗(yàn)中學(xué)7班和11班原來所負(fù)責(zé)的衛(wèi)生區(qū)均為邊長為a米的正方形,由七年級升入到了八年級。兩個(gè)班都要求擴(kuò)大所負(fù)責(zé)衛(wèi)生區(qū)的面積。7班衛(wèi)生委員要求將原衛(wèi)生區(qū)的邊長增加b米,擴(kuò)充為一個(gè)邊長為(a+b)米的大正方形。11班則要求再增加一塊邊長為b米的衛(wèi)生區(qū)。兩個(gè)班增加后的衛(wèi)生區(qū)總面積一樣嗎?

這時(shí)候,學(xué)生之間出現(xiàn)分歧,引爆本節(jié)課的爭論點(diǎn),從而激發(fā)了學(xué)生探索問題的熱情,調(diào)動了學(xué)習(xí)積極性。

問題如何解決?我引導(dǎo)學(xué)生利用圖形來表示兩班增加后的衛(wèi)生區(qū)總面積。從這兩個(gè)圖形上學(xué)生可以直觀的感受到個(gè)總面積并不相等,得出這樣的一個(gè)結(jié)論,兩數(shù)和的平方并不等于兩數(shù)的平方和。因?yàn)楦鶕?jù)以往的教學(xué)經(jīng)驗(yàn),學(xué)生在學(xué)習(xí)完全平方公式時(shí),容易受到積的平方的運(yùn)算法則的負(fù)遷移,誤認(rèn)為a與b和的完全平方等于a2與b2的和,所以此問題情境的設(shè)置一方面利用生活中的實(shí)例來激情引趣,另一方面為學(xué)生在下面的學(xué)習(xí)中正確認(rèn)識公式結(jié)構(gòu)上的特點(diǎn)做好了鋪墊,兩數(shù)和的平方到底應(yīng)等于什么呢?通過這個(gè)問題引入到第二個(gè)環(huán)節(jié):“證”公式,以形推數(shù)。由原來的知識儲備和情境問題中圖形的提示,學(xué)生一般能想到兩種證法。利用多項(xiàng)式的乘法和利用“數(shù)形結(jié)合”來以形推數(shù)。

為了培養(yǎng)學(xué)生用圖形來解釋數(shù)的能力,我進(jìn)一步要求學(xué)生通過多種方法求同一個(gè)圖形的面積,進(jìn)行發(fā)散思維。這個(gè)過程也正是引導(dǎo)學(xué)生運(yùn)用“面積法”來解決問題的過程。

“面積法”在數(shù)學(xué)中的重要地位不言而喻,后邊偉大的勾股定理的產(chǎn)生就和“面積法”密不可分。其實(shí)這種方法也正是代數(shù)恒等式思想的重要體現(xiàn)。學(xué)生小組討論,通過多種方法對圖形進(jìn)行分割,把所得的結(jié)果在同組中交流,并派代表向全班同學(xué)介紹,從而來提高學(xué)生的合作能力和表達(dá)能力。屏幕上展示的為學(xué)生可能出現(xiàn)的一些思路的預(yù)案。當(dāng)然,課堂是動態(tài)生成的,我也期待著學(xué)生通過思維的碰撞,隨時(shí)出現(xiàn)新的思路,給我以驚喜。

本環(huán)節(jié)我引導(dǎo)學(xué)生充分的感受到了“數(shù)形結(jié)合”的思想,這正是本節(jié)課重點(diǎn)也是難點(diǎn)所在,由于第一種方法最簡單、直觀,因此可以用以動畫的形式再一次讓學(xué)生直觀的感受,進(jìn)而使本節(jié)課的難點(diǎn)簡單、明了化。

接著,我告訴學(xué)生:我們學(xué)的完全平方公式是一對雙胞胎,還有一個(gè)是兩數(shù)差的平方。給學(xué)生一定時(shí)間自由討論,探究 a與b差的平方,為學(xué)生創(chuàng)設(shè)一個(gè)對前邊所學(xué)知識進(jìn)行合理遷移的機(jī)會。

為什么還要探索兩數(shù)差的平方公式呢。我們知道,兩數(shù)差的平方雖然可以轉(zhuǎn)化成和的平方,但在實(shí)際應(yīng)用中,實(shí)踐表明還是把它們分開來用更方便一些。

學(xué)生在充分討論的基礎(chǔ)上可能會得到以下三種方法。我首先肯定這些方法都很好。例如第二種方法,把a(bǔ)與b差的平方,看成是a與(-b)和的平方,體現(xiàn)了化歸的思想,很有創(chuàng)造性。

方法3中學(xué)生自己構(gòu)建圖形,這使學(xué)生對剛學(xué)過的“和的平方”這一教學(xué)環(huán)節(jié)中所領(lǐng)會的數(shù)..學(xué)思想方法進(jìn)行遷移建模,也正是通過升華已學(xué)知識來生成新知識的的過程。當(dāng)然部分學(xué)生受遷移能力水平所限,可能在自己構(gòu)建圖形時(shí)出現(xiàn)困難,教師對于這部分學(xué)生要特別的加以關(guān)注輔導(dǎo)。

同時(shí)此環(huán)節(jié)通過再次讓學(xué)生用不同方法表示圖中陰影部分面積來以形推數(shù),將難點(diǎn)簡單化,..使學(xué)生更容易理解。

至此,這節(jié)課推導(dǎo)出了兩個(gè)公式,也就是完全平方公式。此時(shí)我板書課題,通過“點(diǎn)題”來強(qiáng)化教學(xué)主線。學(xué)生用自己的語言來描述公式,進(jìn)入到本課的第3個(gè)教學(xué)環(huán)節(jié)“說”公式,提煉提升,將符號語言和圖形語言轉(zhuǎn)化為文字?jǐn)⑹觥N疫m時(shí)補(bǔ)充口訣來幫助學(xué)生記憶,“首平方,尾平方,2倍首尾在中央”。

基本的數(shù)學(xué)運(yùn)算是數(shù)學(xué)知識最直接的應(yīng)用,也是學(xué)生體會公式優(yōu)勢的最佳時(shí)機(jī),因此第4個(gè)教學(xué)環(huán)節(jié)設(shè)計(jì)為“練”公式,學(xué)以致用。

首先師生共同來完成兩道例題。例1強(qiáng)調(diào)了對公式結(jié)構(gòu)的把握。例題2我則設(shè)計(jì)成了“速算比賽”的形式,通過運(yùn)用公式進(jìn)行簡便運(yùn)算來使學(xué)生體會到公式的實(shí)用價(jià)值,培養(yǎng)求簡意識。

課時(shí)練習(xí)第一題以“生活在線”的形式呈現(xiàn),培養(yǎng)學(xué)生靈活運(yùn)用所學(xué)知識解決實(shí)際問題的能力,而活動題的設(shè)置充分調(diào)動了學(xué)生的主動性,使學(xué)生成為了課堂的主人。

最后由學(xué)生對本節(jié)課所學(xué)知識進(jìn)行歸納,“暢所欲言,課時(shí)小結(jié)”。加深學(xué)生對公式特點(diǎn)的認(rèn)識,提高學(xué)生歸納總結(jié)能力和口頭表達(dá)能力。

作業(yè)布置時(shí)分層進(jìn)行,滿足了不同層次學(xué)生的不同需求。下面是我本節(jié)課的板書設(shè)計(jì)。體現(xiàn)了“條理性”和“實(shí)用性”原則。

最后我來說一下本課的教學(xué)評價(jià)與反思,本課全程關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),注意評價(jià)的內(nèi)容、主體和形式的多樣化。充分發(fā)揮評價(jià)的導(dǎo)向與發(fā)展功能,促進(jìn)學(xué)生的自主評價(jià)。

在教學(xué)中本課以公式探索為載體,以猜想、驗(yàn)證為主線。讓學(xué)生經(jīng)歷了由問題情境到建構(gòu)模型,解釋應(yīng)用的探索過程,在主動、愉悅的氣氛中獲取知識、掌握方法!

在課堂上我沒有將重點(diǎn)放在公式的大量練習(xí)上,而是更多地去關(guān)注公式的發(fā)現(xiàn)和探究過程,這樣做轉(zhuǎn)變了學(xué)生的學(xué)習(xí)方式,培養(yǎng)了學(xué)生的能力,使學(xué)生學(xué)會探索,學(xué)會發(fā)現(xiàn),無論是在現(xiàn)在還是在將來的學(xué)習(xí)生活中,能夠擁有一雙更加矯健的翅膀,去翱翔在蒼穹之下,云端之上!

我的說課到此結(jié)束。最后,讓我在此對各位的傾聽表示感謝,敬請多加指導(dǎo)。

第三篇:完全平方公式教案

人教新課標(biāo)八年級上15.2完全平方公式表格式教案

一、復(fù)習(xí)舊知

探究,計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.

答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.

二、探究新知

1.計(jì)算:(a+b)2 和(a-b)2 ;并說明發(fā)現(xiàn)的規(guī)律。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.

(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 2.歸納完全平方公式

兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即

學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納

教師讓學(xué)生利用多項(xiàng)式的乘法法則進(jìn)行推理.教師讓學(xué)生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.

這里是對前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算

公式的推導(dǎo)既是對上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;

(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:

⑴ ; ⑵ 【點(diǎn)撥】展開后的式子有三項(xiàng),能合并的要合并.5.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;

解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;

(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)]

2、[(x-z)+y]2,再用完全平方公式計(jì)算; 思考

⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號:∵4+5+2與4+(5+2)的值相等;4-5-2與4-(5+2)的值相等.所以可以寫出下列兩個(gè)等式:(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)左邊沒括號,右邊有括號,也就是添了括號,?同學(xué)們可不可以總結(jié)出添括號法則來呢? 添括號其實(shí)就是把去括號反過來。

教學(xué)程序及教學(xué)內(nèi)容

學(xué)生分組討論,合作交流,歸納完全平方公式的特征。

部分學(xué)生板演,然后學(xué)生交流分析過程:此題需靈活運(yùn)用完全平方公式。學(xué)生思考,教師點(diǎn)撥。

學(xué)生在做題時(shí),不要鼓勵(lì)他們直接套用公式,而應(yīng)讓學(xué)生理解每一步的運(yùn)算理由。.學(xué)生分組討論,最后總結(jié)。

師生行為 的思想方法:特例—?dú)w納—猜想—驗(yàn)證一用數(shù)學(xué)符號表示. 的設(shè)置是由淺入深,讓 每個(gè)學(xué)生感到學(xué)有所成,感

受到學(xué)習(xí)數(shù)學(xué)的樂趣.整個(gè)過程貫穿完全平方公式的結(jié)構(gòu)特征及由一般到特殊的思想的體驗(yàn),親身 經(jīng)歷了數(shù)學(xué)魅力所在.注意完全平方公式中容易出現(xiàn)的問題,讓學(xué)生掌握。

第四篇:9.14完全平方公式[推薦]

運(yùn)用完全平方公式分解因式(2)

教學(xué)目標(biāo)

1.使學(xué)生鞏固地掌握用完全平方公式分解因式。

2.使學(xué)生學(xué)習(xí)多步驟、多方法的分解因式。重點(diǎn)難點(diǎn)

重點(diǎn):掌握多步驟、多方法的方法。

難點(diǎn):讓學(xué)生學(xué)會觀察多項(xiàng)式的特點(diǎn),恰當(dāng)?shù)匕才挪襟E、恰當(dāng)?shù)剡x用方法分解因式。教學(xué)過程

一、復(fù)習(xí)

1.提問:什么是完全平方公式法分解因式? 2.練習(xí):把下列各式分解因式:(1)x2y3–x3y2–xy;(2)9(a+b)2–(a–b);(3)(s+t)2–18(s+t)+81;(4)x2y2–8xyz+16z2;(5)a6–25a4;

(6)–10mn–25n2–m2。

以上6道題目的因式分解,有的是一個(gè)步驟完成的,如(1)、(3)、(4)用完全平方公式法。有的要用兩個(gè)步驟完成的,如(2)、(5)、(6)都先經(jīng)過提公因式,再分別用平方差公式、或完全平方公式。還有的如(2),先用平方差公式,再用提公因式法提數(shù)字公因式。通

過這幾道題目的復(fù)習(xí)練習(xí),我們要知道做因式分解的目的,首先,要有觀察力,能發(fā)現(xiàn)多項(xiàng)式的公因式,會識別它可以用什么公式進(jìn)行因式分解。其次,要將因式分解進(jìn)行到底。只要因式中有多項(xiàng)式,而這個(gè)多項(xiàng)式還可以因式分解,包括有公因數(shù)我們就要把工作進(jìn)行下去,直到因式的各項(xiàng)不能再分解為止。

二、范例講解

例6 把3ax2+6axy+3ay2分解因式。

[教學(xué)要點(diǎn)]讓學(xué)生觀察后發(fā)現(xiàn):(1)這是一個(gè)三項(xiàng)式;(2)各項(xiàng)有公因式3a。其次,在提出公因式后,讓學(xué)生繼續(xù)發(fā)現(xiàn)括號內(nèi)三項(xiàng)是一個(gè)完全平方式。因此,還可以用完全平方公式繼續(xù)分解為二項(xiàng)式的平方。

例(補(bǔ)充)把–16x4y6+24x3y5–9x2y4分解因式。

[教學(xué)要點(diǎn)]讓學(xué)生發(fā)現(xiàn);(1)這是一個(gè)三項(xiàng)式;(2)各項(xiàng)有公因式x2y4;(3)為了適應(yīng)完全平方公式的形式,各項(xiàng)還要變號,為此提一個(gè)含有“–”的公因式–x2y4:

–16x4y6+24x3y5–9x2y4 =–x2y4(16x2y2–24xy+9)=–x2y4(4x–3)2。

例(補(bǔ)充)把(x2+y2)2–4x2y2因式分解。

[教學(xué)要點(diǎn)](1)讓學(xué)生發(fā)現(xiàn)原式是二項(xiàng)平方差。因此可用平方差公式分解因式;(2)用平方差公式分解因式后,兩個(gè)因式都是三項(xiàng)式,它們又都是完全平方式,因此可繼續(xù)用完全平方公式在分解。

(x2+y2)2–4x2y2

=[(x2+y2)+2xy][(x2+y2)–2xy] =(x+y)2(x–y)2。

學(xué)生易出現(xiàn)的錯(cuò)誤是,在用平方差完成分解因式后,不再繼續(xù)分解下去。因此要特別強(qiáng)調(diào)第二步的觀察。讓學(xué)生發(fā)現(xiàn)還可以用完全平方公式繼續(xù)分解,否則不算做完這題。

三、課堂練習(xí)(補(bǔ)充)1.把下列各式分解因式:(1)–4xy–4x2–4y2;(2)3ab2+6a2b+3a3;(3)(s+t)2–10(s+t)+25;(4)0.25a2b2–abc+c2。2.把下列各式分解因式:(1)x2y–6xy+9y;(2)2x3y2–16x2y+32x;(3)16x5+8x3y2+xy4;(4)(a2+3a)2 –(a–1)2。

四、作業(yè)設(shè)計(jì)

1.復(fù)習(xí)乘法的平方差公式,乘法的完全平方公式計(jì)算:(1)(3m+2n)(2n–3m);(2)(2a3–b2)(b2+2a3);(3)(–a+2b)(–a–2b);22 11

(4)(–4x–3)(4x–3);(5)(–b2+4a2)2;(6)(t2+12)2;(7)(a+b)(a2–b2)(a–b);(8)(a+2b–3)(a+2b+3)。2.把下列各式分解因式:(1)2a4b2–4a3b2+10ab4;(2)16x4y–8x2y2;(3)10(x–y)2–5(x–y)3;(4)6(x–2)2+5(2–x);(5)5(m–n)3+10(n–m)5;(6)(a–1)+x2(1–a);*(7)ab–(a2+b2);21(8)(x+y)2+4(x+y)z+4z2。3.把下列各式分解因式:(1)16x–x3;(2)9(x+a)2+30(x+a)(x+b)+25(x+b)2;(3)a3+4ab2–4a2b;(4)–mn+2m2n–m3n;**(5)(s2+2s)2–(2s+4t2)2;(6)(x2+y2)2–(y2+z2)2;(7)(a–b)(a2–c2)+(b–a)(b2–c2);

(8)2(5m–17)2–128(m–1)2。

第五篇:完全平方公式教案

完全平方公式教案1

一、教材分析

本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級上冊第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。

作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。

二、學(xué)情分析

學(xué)生剛學(xué)過多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。

三、教學(xué)目標(biāo)

知識與技能

1.完全平方公式的推導(dǎo)及其應(yīng)用。

2.完全平方公式的幾何證明。

過程與方法

經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力。

情感態(tài)度與價(jià)值觀

對學(xué)生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。

四、教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn)

完全平方公式的推導(dǎo)過程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。

教學(xué)難點(diǎn)

完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。

五、教法學(xué)法

多媒體輔助教學(xué),將知識形象化、生動化,激發(fā)學(xué)生的興趣。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動手、動腦、動口,積極參與知識全過程。

六、教學(xué)過程設(shè)計(jì)

師生活動

設(shè)計(jì)意圖

一.復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則

1、多項(xiàng)式與多項(xiàng)式的乘法法則內(nèi)容。

2、多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。

二.講授新課

完全平方公式的推導(dǎo)

1、利用多項(xiàng)式與多項(xiàng)式的乘法法則和幾何法推導(dǎo)完全平方(和)公式

附:有簡單的填空練習(xí)

2、利用多項(xiàng)式乘法則和換元法推導(dǎo)完全平方 (差)公式

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

二、總結(jié)完全平方公式的特點(diǎn)

介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

三、課堂練習(xí)

1、改錯(cuò)練習(xí)

2、例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)

第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;

第二步準(zhǔn)確代入公式;

第三步化簡。

計(jì)算練習(xí)

(1)課本110頁第一題

(2) (x-6)2 (y-5)2

四、課堂小結(jié):

1、應(yīng)用完全平方公式應(yīng)注意什么?

在解題過程中要準(zhǔn)確確定a和b,對照公式原形的兩邊, 做到不丟項(xiàng)、不弄錯(cuò)符號、2ab時(shí)不能少乘以2。

2、助記口訣

復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。

利用不同的的方法來推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。

利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。

通過課堂練習(xí),使學(xué)生掌握用完全平方公式計(jì)算的步驟,加強(qiáng)學(xué)生解題的準(zhǔn)確率。

強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問題的能力和解題的準(zhǔn)確率。

完全平方公式教案2

1.能根據(jù)多項(xiàng)式的乘法推導(dǎo)出完全平方公式;(重點(diǎn))

2.理解并掌握完全平方公式,并能進(jìn)行計(jì)算.(重點(diǎn)、難點(diǎn))

一、情境導(dǎo)入

計(jì)算:

(1)(x+1)2; (2)(x-1)2;

(3)(a+b)2; (4)(a-b)2.

由上述計(jì)算,你發(fā)現(xiàn)了什么結(jié)論?

二、合作探究

探究點(diǎn):完全平方公式

【類型一】 直接運(yùn)用完全平方公式進(jìn)行計(jì)算

利用完全平方公式計(jì)算:

(1)(5-a)2;

(2)(-3-4n)2;

(3)(-3a+b)2.

解析:直接運(yùn)用完全平方公式進(jìn)行計(jì)算即可.

解:(1)(5-a)2=25-10a+a2;

(2)(-3-4n)2=92+24n+16n2;

(3)(-3a+b)2=9a2-6ab+b2.

方法總結(jié):完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第12題

【類型二】 構(gòu)造完全平方式

如果36x2+(+1)x+252是一個(gè)完全平方式,求的值.

解析:先根據(jù)兩平方項(xiàng)確定出這兩個(gè)數(shù),再根據(jù)完全平方公式確定的值.

解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個(gè)完全平方式.注意積的2倍的符號,避免漏解.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第4題

【類型三】 運(yùn)用完全平方公式進(jìn)行簡便計(jì)算

利用完全平方公式計(jì)算:

(1)992; (2)1022.

解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計(jì)算.(2)可把102分成100+2,然后根據(jù)完全平方公式計(jì)算.

解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

(2)1022=(100+2)2=1002+2×100×2+4=10404.

方法總結(jié):利用完全平方公式計(jì)算一個(gè)數(shù)的平方時(shí),先把這個(gè)數(shù)寫成整十或整百的數(shù)與另一個(gè)數(shù)的和或差,然后根據(jù)完全平方公式展開計(jì)算.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第13題

【類型四】 靈活運(yùn)用完全平方公式求代數(shù)式的值

若(x+)2=9,且(x-)2=1.

(1)求1x2+12的值;

(2)求(x2+1)(2+1)的值.

解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.

解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

方法總結(jié):所求的展開式中都含有x或x+時(shí),我們可以把它們看作一個(gè)整體代入到需要求值的代數(shù)式中,整體求解.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第9題

【類型五】 完全平方公式的幾何背景

我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數(shù)恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=4ab.那么通過圖乙面積的計(jì)算,驗(yàn)證了一個(gè)恒等式,此等式是( )

A.a(chǎn)2-b2=(a+b)(a-b)

B.(a-b)(a+2b)=a2+ab-2b2

C.(a-b)2=a2-2ab+b2

D.(a+b)2=a2+2ab+b2

解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.

方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第7題

【類型六】 與完全平方公式有關(guān)的探究問題

下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).

(a+b)1=a+b,

(a+b)2=a2+2ab+b2,

(a+b)3=a3+3a2b+3ab2+b3,

則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個(gè)系數(shù)的和,由此可得(a+b)4的各項(xiàng)系數(shù)依次為1、4、6、4、1;(a+b)5的各項(xiàng)系數(shù)依次為1、5、10、10、5、1;因此(a+b)6的系數(shù)分別為1、6、15、20、15、6、1,故填20.

方法總結(jié):對于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第10題

三、板書設(shè)計(jì)

1.完全平方公式

兩個(gè)數(shù)的和(或差)的平方,等于這兩個(gè)數(shù)的平方和加(或減)這兩個(gè)數(shù)乘積的2倍.

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

2.完全平方公式的運(yùn)用

本節(jié)課通過多項(xiàng)式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯(cuò)誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學(xué)生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過判斷正誤等習(xí)題強(qiáng)化學(xué)生對完全平方公式的理解記憶。

完全平方公式教案3

教學(xué)目標(biāo)

1。使學(xué)生會分析和判斷一個(gè)多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;

2。理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。

3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.

4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):運(yùn)用完全平方式分解因式。

難點(diǎn):靈活運(yùn)用完全平方公式公解因式。

教學(xué)過程設(shè)計(jì)

一、復(fù)習(xí)

1。問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解。我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法。

2。把下列各式分解因式:

(1)ax4-ax2 (2)16m4-n4。

解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

(2) 16m4-n4=(4m2)2-(n2)2

=(4m2+n2)(4m2-n2)

=(4m2+n2)(2m+n)(2m-n)。

問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式。

請寫出完全平方公式。

完全平方公式是:

(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。

二、新課

和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到

a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式。運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式。

問:具備什么特征的多項(xiàng)是完全平方式?

答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號可正可負(fù),像這樣的式子就是完全平方式。

問:下列多項(xiàng)式是否為完全平方式?為什么?

(1)x2+6x+9; (2)x2+xy+y2;

(3)25x4-10x2+1; (4)16a2+1。

答:(1)式是完全平方式。因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以

x2+6x+9=(x+3) 。

(2)不是完全平方式。因?yàn)榈谌糠直仨毷?xy。

(3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

25x -10x +1=(5x-1) 。

(4)不是完全平方式。因?yàn)槿钡谌糠帧?/p>

請同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對應(yīng)項(xiàng),其中a=?b=?2ab=?

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y。

例1 把25x4+10x2+1分解因式。

分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍。所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。

解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

例2 把1- m+ 分解因式。

問:請同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“ ”是 的平方,第二項(xiàng)“- m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式。

解法1 1- m+ =1-2·1· +( )2=(1- )2。

解法2 先提出 ,則

1- m+ = (16-8m+m2)

= (42-2·4·m+m2)

= (4-m)2。

三、課堂練習(xí)(投影)

1。填空:

(1)x2-10x+( )2=( )2;

(2)9x2+( )+4y2=( )2;

(3)1-( )+m2/9=( )2。

2。下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多

項(xiàng)式改變?yōu)橥耆椒绞健?/p>

(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

(4)9m2+12m+4; (5)1-a+a2/4。

3。把下列各式分解因式:

(1)a2-24a+144; (2)4a2b2+4ab+1;

(3)19x2+2xy+9y2; (4)14a2-ab+b2。

答案:

1。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

2。(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。

(2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式。

(3)是完全平方式,a2-4ab+4b2=(a-2b)2。

(4)是完全平方式,9m2+12m+4=(3m+2) 2。

(5)是完全平方式,1-a+a2/4=(1-a2)2。

3。(1)(a-12) 2; (2)(2ab+1) 2;

(3)(13x+3y) 2; (4)(12a-b)2。

四、小結(jié)

運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的主要思路與方法是:

1。首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。有時(shí)需要先把多項(xiàng)式經(jīng)過適當(dāng)變形,得到一個(gè)完全平方式,然后再把它因式分解。

2。在選用完全平方公式時(shí),關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負(fù)號,則用公式a2-2ab+b2=(a-b) 2。

五、作業(yè)

把下列各式分解因式:

1。(1)a2+8a+16; (2)1-4t+4t2;

(3)m2-14m+49; (4)y2+y+1/4。

2。(1)25m2-80m+64; (2)4a2+36a+81;

(3)4p2-20pq+25q2; (4)16-8xy+x2y2;

(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

4。(1) x -4x; (2)a5+a4+ a3。

答案:

1。(1)(a+4)2; (2)(1-2t)2;

(3)(m-7) 2; (4)(y+12)2。

2。(1)(5m-8) 2; (2)(2a+9) 2;

(3)(2p-5q) 2; (4)(4-xy) 2;

(5)(ab-2) 2; (6)(5a2-4b2) 2。

3。(1)(mn-1) 2; (2)7am-1(a-1) 2。

4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

課堂教學(xué)設(shè)計(jì)說明

1。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

2。本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法。在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn)。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。

完全平方公式教案4

教材分析

1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式

1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個(gè)相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的`檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項(xiàng)的定義。

②合并同類項(xiàng)法則

③多項(xiàng)式乘以多項(xiàng)式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標(biāo)

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價(jià)不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡單的計(jì)算。

難點(diǎn):會推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計(jì)如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特點(diǎn)。

(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。

(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運(yùn)用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判斷:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項(xiàng)。

(2)兩個(gè)平方項(xiàng)符號永遠(yuǎn)為正。

(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。

(4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。

〈五〉、探險(xiǎn)之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

板書設(shè)計(jì)

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

完全平方公式教案5

運(yùn)用乘法公式計(jì)算:

(l) (2)

(3) (4)

學(xué)生活動:采取比賽的方式把學(xué)生分成四組,每組完成一題,看哪一組完成得快而且準(zhǔn)確,每組各派一個(gè)學(xué)生板演本組題目.

【教法說明】這樣做的目的是訓(xùn)練學(xué)生的快速反應(yīng)能力及綜合運(yùn)用知識的能力,同時(shí)也激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛.

(四)總結(jié)、擴(kuò)展

這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.

引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問題.

八、布置作業(yè)

完全平方公式教案6

教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達(dá)能力。

2、體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運(yùn)用公式進(jìn)行簡單的計(jì)算。

3、了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。

4、在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。

教學(xué)重點(diǎn):

1、弄清完全平方公式的來源及其結(jié)構(gòu)特點(diǎn),用自己的語言說明公式及其特點(diǎn);

2、會用完全平方公式進(jìn)行運(yùn)算。

教學(xué)難點(diǎn):

會用完全平方公式進(jìn)行運(yùn)算

教學(xué)方法:

探索討論、歸納總結(jié)。

教學(xué)過程:

一、回顧與思考

活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的結(jié)構(gòu)特點(diǎn):左邊是兩個(gè)二項(xiàng)式的乘積,即兩數(shù)和與這兩數(shù)差的積。

右邊是兩數(shù)的平方差。

2、應(yīng)用平方差公式的注意事項(xiàng):弄清在什么情況下才能使用平方差公式。

二、情境引入

活動內(nèi)容:提出問題:

一塊邊長為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。

用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。

三、初識完全平方公式

活動內(nèi)容:

1、通過多項(xiàng)式的乘法法則來驗(yàn)證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引導(dǎo)學(xué)生利用幾何圖形來驗(yàn)證兩數(shù)差的完全平方公式。

3、分析完全平方公式的結(jié)構(gòu)特點(diǎn),并用語言來描述完全平方公式。

結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;

右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

四、再識完全平方公式

活動內(nèi)容:例1用完全平方公式計(jì)算:

(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

2、總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

五、鞏固練習(xí):

1、下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。

1、6完全平方公式:

一、學(xué)習(xí)目標(biāo)

1、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。

2、了解完全平方公式的幾何背景

二、學(xué)習(xí)重點(diǎn):會用完全平方公式進(jìn)行運(yùn)算。

三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。

四、學(xué)習(xí)設(shè)計(jì)

(一)預(yù)習(xí)準(zhǔn)備

(1)預(yù)習(xí)書p23—26

(2)思考:和的平方等于平方的和嗎?

1、6《完全平方公式》習(xí)題

1、已知實(shí)數(shù)x、y都大于2,試比較這兩個(gè)數(shù)的積與這兩個(gè)數(shù)的和的大小,并說明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。

《1、6完全平方公式》課時(shí)練習(xí)

1、(5—x2)2等于;

答案:25—10x2+x4

解析:解答:(5—x2)2=25—10x2+x4

分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。

2、(x—2y)2等于;

答案:x2—8xy+4y2

解析:解答:(x—2y)2=x2—8xy+4y2

分析:根據(jù)完全平方公式與積的乘方法則可完成此題。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2

解析:解答:(3a—4b)2=9a2—24ab+16b2

分析:根據(jù)完全平方公式可完成此題。

完全平方公式教案7

一、學(xué)習(xí)目標(biāo)

1.會運(yùn)用完全平方公式進(jìn)行一些數(shù)的簡便運(yùn)算

二、學(xué)習(xí)重點(diǎn)

運(yùn)用完全平方公式進(jìn)行一些數(shù)的簡便運(yùn)算

三、學(xué)習(xí)難點(diǎn)

靈活運(yùn)用平方差和完全平方公式進(jìn)行整式的簡便運(yùn)算

四、學(xué)習(xí)設(shè)計(jì)

(一)預(yù)習(xí)準(zhǔn)備

(1)預(yù)習(xí)書p26-27

(2)思考:如何更簡單迅捷地進(jìn)行各種乘法公式的運(yùn)算?[

(3)預(yù)習(xí)作業(yè):1.利用完全平方公式計(jì)算

(1)(2) (3)(4)

2.計(jì)算:

(1) (2)

(二)學(xué)習(xí)過程

平方差公式和完全平方公式的逆運(yùn)用

由 反之

反之

1、填空:

(1)(2)(3)

(4)(5)

(6)

(7)若,則k=

(8)若是完全平方式,則k=

例1計(jì)算:1. 2.

現(xiàn)在我們從幾何角度去解釋完全平方公式:

從圖(1)中可以看出大正方形的邊長是a+b,

它是由兩個(gè)小正方形和兩個(gè)矩形組成,所以

大正方形的面積等于這四個(gè)圖形的面積之和.

則S= =

即:

如圖(2)中,大正方形的邊長是a,它的面積是 ;矩形DCGE與矩形BCHF是全等圖形,長都是 ,寬都是 ,所以它們的面積都是 ;正方形HCGM的邊長是b,其面積就是 ;正方形AFME的邊長是 ,所以它的面積是 .從圖中可以看出正方形AEMF的面積等于正方形ABCD的面積減去兩個(gè)矩形DCGE和BCHF的面積再加上正方形HCGM的面積.也就是:(a-b)2= .這也正好符合完全平方公式.

例2.計(jì)算:

(1) (2)

變式訓(xùn)練:

(1) (2)

(3) (4)(x+5)2–(x-2)(x-3)

(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

拓展:1、(1)已知,則=

(2)已知,求________,________

(3)不論為任意有理數(shù),的值總是

A.負(fù)數(shù)B.零C.正數(shù)D.不小于2

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值

回顧小結(jié)

1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認(rèn)識a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號。

2.解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會有不同的效果,要學(xué)會優(yōu)化選擇。

完全平方公式教案8

學(xué)習(xí)目標(biāo):

1、會推導(dǎo)完全平方公式,并能用幾何圖形解釋公式;

2、利用公式進(jìn)行熟練地計(jì)算;

3、經(jīng)歷探索完全平方公式的推導(dǎo)過程,發(fā)展符號感,體會特殊一般特殊的認(rèn)知規(guī)律。

學(xué)習(xí)過程:

(一)自主探索

1、計(jì)算:(1)(a+b)2 (2)(a-b)2

2、你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?

(二)合作交流:

你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。

(三)試一試,我能行。

1、利用完全平方公式計(jì)算:

(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來源:中.考.資.源.網(wǎng)]

(四)鞏固練習(xí)

利用完全平方公式計(jì)算:

A組:

(1)( x+ y)2 (2)(-2m+5n)2

(3)(2a+5b)2 (4)(4p-2q)2

B組:

(1)( x- y2) 2 (2)(1.2m-3n)2

(3)(- a+5b)2 (4)(- x- y)2

C組:

(1)1012 (2)542 (3)9972

(五)小結(jié)與反思

我的收獲:

我的疑惑:

(六)達(dá)標(biāo)檢測

1、(a-b)2=a2+b2+ .

2、(a+2b)2= .

3、如果(x+4)2=x2+kx+16,那么k= .

4、計(jì)算:

(1)(3m- )2 (2)(x2-1)2

(2)(-a-b)2 (4)( s+ t)2

完全平方公式教案9

教學(xué)建議

(一)教材分析

1、知識結(jié)構(gòu)

2、重點(diǎn)、難點(diǎn)分析

重點(diǎn):真命題的證明步驟與格式.命題的證明步驟與格式是本節(jié)的主要內(nèi)容,是學(xué)習(xí)數(shù)學(xué)必具備的能力,在今后的學(xué)習(xí)中將會有大量的證明問題;另一方面它還體現(xiàn)了數(shù)學(xué)的邏輯性和嚴(yán)謹(jǐn)性.

難點(diǎn):推論證明的思路和方法.因?yàn)樗w現(xiàn)了學(xué)生的抽象思維能力,由于學(xué)生對邏輯的理解不深刻,往往找不出最優(yōu)的思維切入點(diǎn),證明的盲目性很大,因此對學(xué)生證明的思路和方法的訓(xùn)練是教學(xué)的難點(diǎn).

(二)教學(xué)建議

1、四個(gè)注意

(1)注意:①公理是通過長期實(shí)踐反復(fù)驗(yàn)證過的,不需要再進(jìn)行推理論證而都承認(rèn)的真命題;②公理可以作為判定其他命題真假的根據(jù).

(2)注意:定理都是真命題,但真命題不一定都是定理.一般選擇一些最基本最常用的真命題作為定理,可以以它們?yōu)楦鶕?jù)推證其他命題.這些被選作定理的真命題,在教科書中是用黑體字排印的.

(3)注意:在幾何問題的研究上,必須經(jīng)過證明,才能作出真實(shí)可靠的判斷.如“兩直線平行,同位角相等”這個(gè)命題,如果只采用測量的方法.只能測量有限個(gè)兩平行直線的同位角是相等的.但采用推理方法證明兩平行直線的同位角相等,那么就可以確信任意兩平行直線的同位角相等.

(4)注意:證明中的每一步推理都要有根據(jù),不能“想當(dāng)然”.①論據(jù)必須是真命題,如:定義、公理、已經(jīng)學(xué)過的定理和巳知條件;②論據(jù)的真實(shí)性不能依賴于論證的真實(shí)性;③論據(jù)應(yīng)是論題的充足理由.

2、逐步滲透數(shù)學(xué)證明的思想:

(1)加強(qiáng)數(shù)學(xué)推理(證明)的語言訓(xùn)練使學(xué)生做到,能用準(zhǔn)確的語言表述學(xué)過的概念和命題,即進(jìn)行語言準(zhǔn)確性訓(xùn)練;能學(xué)會一些基本的推理論證語言,如“因?yàn)椤浴本涫剑叭绻敲础本涫降鹊龋惶岣叻栒Z言的識別和表達(dá)能力,例如,把要證明的命題結(jié)合圖形,用已知,求證的形式寫出來.

(2)提高學(xué)生的“圖形”能力,包括利用大綱允許的工具畫圖(垂線、平行線)的能力和在對要證命題的理解(如分清題設(shè)、結(jié)論)的基礎(chǔ)上,畫出要證明的命題的圖形的能力,后一點(diǎn)尤其重要,一般通過圖形易于弄清命題并找出證明的方法.

(3)加強(qiáng)各種推理訓(xùn)練,一般應(yīng)先使學(xué)生從“模仿”教科書的形式開始訓(xùn)練.首先是用自然語言敘述只有一步推理的過程,然后用簡化的“三段論”方法表述出這一過程,再進(jìn)行有兩步推理的過程的模仿;最后,在學(xué)完“命題、定理、證明”一單元后,總結(jié)證明的一般步驟,并進(jìn)行多至三、四步的推理.在以上訓(xùn)練中,每一步推理的后面都應(yīng)要求填注推理根據(jù),這既可訓(xùn)練良好的推理習(xí)慣,又有助于掌握學(xué)過的命題.

教學(xué)目標(biāo):

1、了解證明的必要性,知道推理要有依據(jù);熟悉綜合法證明的格式,能說出證明的步驟.

2、能用符號語言寫出一個(gè)命題的題設(shè)和結(jié)論.

3、通過對真命題的分析,加強(qiáng)推理能力的訓(xùn)練,培養(yǎng)學(xué)生邏輯思維能力.

教學(xué)重點(diǎn):證明的步驟與格式.

教學(xué)難點(diǎn):將文字語言轉(zhuǎn)化為幾何符號語言.

教學(xué)過程

一、復(fù)習(xí)提問

1、命題“兩直線平行,內(nèi)錯(cuò)角相等”的題設(shè)和結(jié)論各是什么?

2、根據(jù)題設(shè),應(yīng)畫出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)

3、結(jié)論的內(nèi)容在圖中如何表示?(答:在圖中標(biāo)出一對內(nèi)錯(cuò)角,并用符號表示)

二、例題分析

例1 、證明:兩直線平行,內(nèi)錯(cuò)角相等.

已知: a∥b,c是截線.

求證:∠1=∠2.

分析:要證∠1=∠2,

只要證∠3=∠2即可,因?yàn)?/p>

∠3與∠1是對頂角,根據(jù)平行線的性質(zhì),

易得出∠3=∠2.

證明: ∵a∥b(已知),

∴∠3=∠2(兩直線平行,同位角相等).

∵∠1=∠3(對頂角相等),

∴∠1=∠2(等量代換).

例2 、證明:鄰補(bǔ)角的平分線互相垂直.

已知:如圖,∠AOB+∠BOC=180°,

OE平分∠AOB,OF平分∠BOC.

求證:OE⊥OF.

分析:要證明OE⊥OF,只要證明∠EOF=90°,即∠1+∠2=90°即可.

證明: ∵OE平分∠AOB,

∴∠1=∠AOB,同理∠2=∠BOC,

∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90°,∴OE⊥OF(垂直定義).

三、課堂練習(xí):

1、平行于同一條直線的兩條直線平行.

2、兩條平行線被第三條直線所截,同位角的平分線互相平行.

四、歸納小結(jié)

主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從知識、技能、數(shù)學(xué)思想方法等方面加以歸納,有利于學(xué)生掌握、運(yùn)用知識.然后見投影儀.

五、布置作業(yè)

課本P1435、(2),7.

六、課后思考:

1、垂直于同一條直線的兩條直線的位置關(guān)系怎樣?

2、兩條平行線被第三條直線所截,內(nèi)錯(cuò)角的平分線位置關(guān)系怎樣?

3、兩條平行線被第三條直線所截,同旁內(nèi)角的平分線位置關(guān)系怎樣?

完全平方公式教案10

學(xué)習(xí)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗(yàn)證等能力。

2、會推導(dǎo)完全平方公式,了解公式的幾何背景,會用公式計(jì)算。

3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

學(xué)習(xí)重點(diǎn):會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。

學(xué)習(xí)難點(diǎn):掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。

學(xué)習(xí)過程:

一、學(xué)習(xí)準(zhǔn)備

1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2 (a-b)2

2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。

嘗試用自己的語言敘述完全平方公式:

3、完全平方公式的幾何意義:閱讀課本64頁,完成填空。

4、完全平方公式的結(jié)構(gòu)特征:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是

注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號表示為:(□±△)=□2±2□△+△2

5、兩個(gè)完全平方公式的轉(zhuǎn)化:

(a-b)2= 2=( )2+2( )+( )2=

二、合作探究

1、利用乘法公式計(jì)算:

(1) (3a+2b)2 (2) (-4x2-1)2

分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a ,哪個(gè)式子相當(dāng)于公式中的b

2、利用乘法公式計(jì)算:

(1) 992 (2) ( )2

分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2

3、利用完全平方公式計(jì)算:

(1) (a+b+c)2 (2) (a-b)3

三、學(xué)習(xí)

對照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

四、自我測試

1、下列計(jì)算是否正確,若不正確,請訂正;

(1) (-1+3a)2=9a2-6a+1

(2) (3x2- )2=9x4-

(3) (xy+4)2=x2y2+16

(4) (a2b-2)2=a2b2-2a2b+4

2、利用乘法公式計(jì)算:

(1) (3x+1)2 (2) (a-3b)2

(3) (-2x+ )2 (4) (-3m-4n)2

3、利用乘法公式計(jì)算:

(1) 9992 (2) (100.5)2

4、先化簡,再求值;

( m-3n)2-( m+3n)2+2,其中m=2,n=3

五、思維拓展

1、如果x2-kx+81是一個(gè)完全平方公式,則k的值是

2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是

3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

4、x+y=4 ,x-y=10 ,那么xy=

5、已知x- =4,則x2+ =

完全平方公式教案11

重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接?jì)算.

教學(xué)過程

一、議一議

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個(gè)正方形面積和是多少?

3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答(1)(a+b) (2)a +b (3)因?yàn)?a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.

二、做一做

例1. 利用完全平方式計(jì)算1. 102 。

2. 197 師:要利用完全平方公式計(jì)算,則要創(chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計(jì)算盡可能簡便.學(xué)生活動:在練習(xí)本上演示此題.讓學(xué)生敘述

教師板書.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.計(jì)算:1.(x-3) -x

2.(2a+b- )(2a-b+ )師生共同分析:1中(x-3) 可利用完全平方公式.學(xué)生動筆解答第1題.教師根據(jù)學(xué)生解答情況,板書如下:解:1. (x-3) -x = x +6x+9-x =6x+9師問:此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.學(xué)生活動:分小組討論第(2)題的解法.此題學(xué)生解答,難度較大.教師要引導(dǎo)學(xué)生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學(xué)生小組交流派代表進(jìn)行全班交流.最后教師板書解題過程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

三、試一試

計(jì)算:

1. (a+b+c)

2. (a+b) 師生共同分析:對于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c) =[a+(b+c)] 對于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。

教師板書.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

四、隨堂練習(xí)

P38 1

五、小結(jié)

本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn). 1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab) = a b 的錯(cuò)誤,或(ab) = a ab+b (漏掉2倍)等錯(cuò)誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.

六、作業(yè)

課本習(xí)題1.14 P38 1、2、3.

七、教后反思

1.9 整式的除法第一課時(shí) 單項(xiàng)式除以單項(xiàng)式教學(xué)目標(biāo)1.經(jīng)歷探索單項(xiàng)式除法的法則過程,了解單項(xiàng)式除法的意義.

2.理解單項(xiàng)式除法法則,會進(jìn)行單項(xiàng)式除以單項(xiàng)式運(yùn)算.重點(diǎn)、難點(diǎn)重點(diǎn):單項(xiàng)式除以單項(xiàng)式的運(yùn)算.難點(diǎn):單項(xiàng)式除以單項(xiàng)式法則的理解.

完全平方公式教案12

課題教案:完全平方公式

學(xué)科:數(shù)學(xué)

年級:七年級

1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。

1.1以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。使學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

1.2用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。

2教學(xué)目標(biāo)

2.1知識目標(biāo):會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算;了解(a+b)2=a2+2ab+b2的幾何背景。

2.2技能目標(biāo):經(jīng)歷由一般的多項(xiàng)式乘法向乘法公式過渡的探究過程,進(jìn)一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。

2.3情感與態(tài)度目標(biāo):通過觀察、實(shí)驗(yàn)、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性。

3教學(xué)重點(diǎn)完全平方公式的準(zhǔn)確應(yīng)用。

4教學(xué)難點(diǎn)掌握公式中字母表達(dá)式的意義及靈活運(yùn)用公式進(jìn)行計(jì)算。

5教育理念和教學(xué)方式

5.1教學(xué)是師生交往、積極互動、共同發(fā)展的過程。教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:本節(jié)的教學(xué)過程,要為學(xué)生的動手實(shí)踐,自主探索與合作交流提供機(jī)會,搭建平臺;尊重和自己意見不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對自己的超越,尊重學(xué)生的個(gè)人感受和獨(dú)特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個(gè)人意義和社會價(jià)值,通過恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會自我調(diào)適,自我選擇。

學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

5.2采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。充分利用動手實(shí)踐的機(jī)會,盡可能增加教學(xué)過程的趣味性,強(qiáng)調(diào)學(xué)生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學(xué)習(xí)促進(jìn)自主探究。

6具體教學(xué)過程設(shè)計(jì)如下:

6.1提出問題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,你會計(jì)算下列各題嗎?

(x+3)2=,(x-3)2=,

這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:

(2m+3n)2=,(2m-3n)2=

6.2分析問題

6.2.1[學(xué)生回答]分組交流、討論 多項(xiàng)式的結(jié)構(gòu)特點(diǎn)

(1)原式的特點(diǎn)。兩數(shù)和的平方。

(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。等于它們平方的和,加上它們乘積的兩倍

(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。

(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

6.2.2[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

6.3運(yùn)用公式,解決問題

6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=, (m-n)2=,

(-m+n)2=, (-m-n)2=,

6.3.2小試牛刀

①(x+y)2=;②(-y-x)2=;

③(2x+3)2=;④(3a-2)2=;

6.4學(xué)生小結(jié):你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項(xiàng)。

(2)兩個(gè)平方項(xiàng)符號永遠(yuǎn)為正。

(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。

(4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。

6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題

完全平方公式教案13

教學(xué)過程

一、議一議

探索單項(xiàng)式除以單項(xiàng)式法則(出示投影1)計(jì)算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運(yùn)算,可以從兩方面思考:根據(jù)除法是乘法的逆運(yùn)算,將除法問題轉(zhuǎn)化為乘法問題去解決,即( )x = x y,由單項(xiàng)式乘以單項(xiàng)式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x y.學(xué)生動筆:寫出(2)(3)題的結(jié)果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運(yùn)算是單項(xiàng)式除以單項(xiàng)式的運(yùn)算,你能說說如何進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算?學(xué)生活動:小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正.出示單項(xiàng)式除法法則(投影顯示)單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

二、做一做

鞏固新知例1計(jì)算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學(xué)生活動:在練習(xí)本上計(jì)算.教師引導(dǎo)學(xué)生按法則進(jìn)行運(yùn)算,首先確定它們的系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的指數(shù)之差作為商式中對應(yīng)字母的指數(shù),只在被除式中含有的字母指數(shù)不變,最后化簡.第(1)(2)題對照法則進(jìn)行,第(3)題要按運(yùn)算順序進(jìn)行.第(4)題先把(2a+b)看作一個(gè)整體 (一個(gè)字母)相除,后用完全平方公式計(jì)算.教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b

三、隨堂練習(xí)

P40 1學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計(jì)算,同伴可交流,互相訂正.教師巡回檢查,對存在問題及時(shí)更正.待四名板演同學(xué)完成后,師生共同訂正.

四、小結(jié)

本節(jié)課主要學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的運(yùn)算.在運(yùn)用法則計(jì)算時(shí)應(yīng)注意以下幾點(diǎn):

1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;

2.符號問題;

3.指數(shù)相同的同底數(shù)冪相除商為1而不是0;4.在混合運(yùn)算中,要注意運(yùn)算的順序.五、作業(yè)課本習(xí)題1.15.P41 1、2. 3

完全平方公式教案14

總體說明:

完全平方公式則是對多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時(shí),完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習(xí)對簡化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡意識有較大好處.而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用.因此學(xué)好完全平方公式對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義.

本節(jié)是北師大版七年級數(shù)學(xué)下冊第一章《整式的運(yùn)算》的第8小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號感與推理能力,讓學(xué)生進(jìn)一步體會數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.

一、學(xué)生學(xué)情分析

學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).

學(xué)生活動經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗(yàn),培養(yǎng)了一定的符號感和推理能力;同時(shí)在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨(dú)立探究意識以及與同伴合作交流的能力.

二、教學(xué)目標(biāo)

知識與技能:

(1)讓學(xué)生會推導(dǎo)完全平方公式,并能進(jìn)行簡單的應(yīng)用.

(2)了解完全平方公式的幾何背景.

數(shù)學(xué)能力:

(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展學(xué)生的符號感與推理能力.

(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

情感與態(tài)度:

將學(xué)生頭腦中的前概念暴露出來進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.

三、教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):1、完全平方公式的推導(dǎo);

2、完全平方公式的應(yīng)用;

教學(xué)難點(diǎn):1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;

2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.

四、教學(xué)設(shè)計(jì)分析

本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).

第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題

活動內(nèi)容:計(jì)算:(a+2)2

設(shè)想學(xué)生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結(jié)果都將a=1代入計(jì)算,得出①②都是錯(cuò)誤的,但③的做法是否一定正確呢?怎么驗(yàn)證?

活動目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個(gè)正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯(cuò)誤或其它錯(cuò)誤充分暴露出來,并讓學(xué)生充分認(rèn)識到自己原有的定式思維是錯(cuò)誤的,為下一步構(gòu)建新的思維模式埋下伏筆.

第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22

活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.

第三環(huán)節(jié):推廣到一般情況,形成公式

活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗(yàn)到發(fā)現(xiàn)的快樂.

第四環(huán)節(jié):數(shù)形結(jié)合

活動內(nèi)容:設(shè)問:在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學(xué)生進(jìn)一步認(rèn)識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

第五環(huán)節(jié):進(jìn)一步拓廣

活動內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.

第六環(huán)節(jié):總結(jié)口訣、認(rèn)識特征

活動內(nèi)容:比較兩個(gè)公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)符號不同;右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個(gè)符號不同;

②公式中的a、b可以是任意一個(gè)代數(shù)式(數(shù)、字母、單項(xiàng)式、多項(xiàng)式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認(rèn)識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯(cuò)誤.

第七環(huán)節(jié):公式應(yīng)用

活動內(nèi)容:例:計(jì)算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)+()2=16x2+2xy+

活動目的:在前幾個(gè)環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認(rèn)識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識——模仿——再認(rèn)識.從而上升到理性認(rèn)識的階段.

第八環(huán)節(jié):隨堂練習(xí)

活動內(nèi)容:計(jì)算:①;②;③(n+1)2–n2

活動目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.

第九環(huán)節(jié):學(xué)生PK

活動內(nèi)容:每個(gè)學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰的準(zhǔn)確性率高,速度快.

活動目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.

第十環(huán)節(jié):學(xué)生反思

活動內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?

收獲1:認(rèn)識了完全平方公式,并能簡單應(yīng)用;

收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.

活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認(rèn)識,體會數(shù)學(xué)思想的精妙.

第十一環(huán)節(jié):布置作業(yè):

課本P43習(xí)題1.13

完全平方公式教案15

教學(xué)目標(biāo)

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。

2、掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)

教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀

教師活動:學(xué)生活動

復(fù)習(xí)鞏固:上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請同學(xué)們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2

a2-8a+16=a2-2×4a+42=(a-4)2

(要強(qiáng)調(diào)注意符號)

首先我們來試一試:(投影:牛刀小試)

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1

(3)(m+n)2-4(m+n)+4

(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)

2.把81x4-72x2y2+16y4分解因式

(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)

將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

練習(xí):第88頁練一練第1、2題

下載完全平方公式說課說課稿word格式文檔
下載完全平方公式說課說課稿.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    完全平方公式教案

    學(xué)習(xí)周報(bào)專業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)完全平方公式在代數(shù)、幾何中的兩點(diǎn)運(yùn)用 完全平方公式是中學(xué)階段運(yùn)用較為廣泛的一個(gè)公式.除了在一般計(jì)算過程中直接運(yùn)用完全平方公式外,在一些代數(shù)......

    完全平方公式 教學(xué)設(shè)計(jì)

    14.2.2 完全平方公式 教學(xué)設(shè)計(jì) -2021-2022學(xué)年人教版八年級數(shù)學(xué)上冊【課標(biāo)內(nèi)容】通過本課的學(xué)習(xí)不斷啟迪學(xué)生思考,發(fā)展學(xué)生的思維能力,讓學(xué)生經(jīng)歷探索新知、鞏固新知和拓展新......

    完全平方公式課題教案(范文模版)

    課題教案:完全平方公式 學(xué)科:數(shù)學(xué) 年級:七年級 1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。 1.1以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)......

    完全平方公式(教案1)

    《完全平方公式》教案 萬江三中 何建明 課題:人教版八年級上冊15.2.2《完全平方公式》 教學(xué)目標(biāo): 1、知道完全平方公式與多項(xiàng)式乘法的關(guān)系,理解完全平方公式的意義。 2、經(jīng)歷......

    完全平方公式教案2

    完全平方公式教案2 更多精品源自 3 e d u 課件 教學(xué)過程Ⅰ.提出問題,創(chuàng)設(shè)情境 [師]請同學(xué)們完成下列運(yùn)算并回憶去括號法則. 4+(5+2) 4-(5+2) a+(b+c) a-(b-c......

    初中數(shù)學(xué)完全平方公式

    初中數(shù)學(xué)完全平方公式(1) 教學(xué)設(shè)計(jì)和反思 一、內(nèi)容簡介 本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。 關(guān)鍵信息: 1、以教材作為......

    完全平方公式教學(xué)反思

    完全平方公式教學(xué)反思 完全平方公式教學(xué)反思1 本節(jié)課屬于人教版八年級數(shù)學(xué)上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完......

    完全平方公式教學(xué)案例[最終定稿]

    完全平方公式教學(xué)案例 張春艷 一、教學(xué)目標(biāo) : 經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力;在變式中,拓展提高; 重點(diǎn):正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步......

主站蜘蛛池模板: 一群黑人大战亚裔女在线播放| 日本丶国产丶欧美色综合| 亚洲国产av一区二区三区四区| а天堂8中文最新版在线官网| 羞羞色男人的天堂| 亚洲小说区图片区色综合网| 久久久中文字幕日本无吗| 日韩人妻无码精品-专区| 日日摸天天摸97狠狠婷婷| 国产精品美女久久久久| 亚洲 中文 欧美 日韩 在线| 久久精品aⅴ无码中文字字幕不卡| 亚洲处破女av日韩精品波波网| 国模小黎自慰gogo人体| 成人欧美一区二区三区黑人免费| 成年男女免费视频网站| 人妻少妇久久久久久97人妻| 日本狂喷奶水在线播放212| 成 人 黄 色 免费 网站无毒| 久久99精品久久久久久不卡| 又大又粗欧美成人网站| 亚洲色欲天天天堂色欲网| 国产乱码一区二区三区免费| 又大又爽又黄无码a片| 国产精品久久久十八禁| 日韩内射美女人妻一区二区三区| 妺妺窝人体色www在线小说| 亚洲欧美日韩中文在线制服| av中文字幕一区人妻| 宅男66lu国产在线观看| 国产男女性潮高清免费网站| 久久综合久久香蕉网欧美| 亚洲日韩欧美国产另类综合| 中文午夜人妻无码看片| 亚洲精品乱码久久久久久蜜桃| 97超碰人人爱香蕉精品| 好想被狂躁无码视频在线字幕| 亚洲av永久精品无码桃色| 国产在线精品欧美日韩电影| 国产欧美成人一区二区a片| 午夜片无码区私人影院|