第一篇:八年級數學經典難題
經典難題
(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.
求證:CD=GF.(初二)
2、已知:如圖,P是正方形ABCD內點,∠PAD=∠PDA=15度 求證:△PBC是正三角形.(初二)
3、如圖,已知四邊形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分別是AA1、BB1、CC1、DD1的中點.
求證:四邊形A2B2C2D2是正方形.(初二)
4、已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F. 求證:∠DEN=∠F.
經典難題
(二)1、已知:△ABC中,H為垂心(各邊高線的交點),O為外心,且OM⊥BC于M.
(1)求證:AH=2OM;
(2)若∠BAC=600,求證:AH=AO.(初二)
2、設MN是圓O外一直線,過O作OA⊥MN于A,自A引圓的兩條直線,交圓于B、C及D、E,直線EB及CD分別交MN于P、Q. 求證:AP=AQ.(初二)
3、如果上題把直線MN由圓外平移至圓內,則由此可得以下命題:
設MN是圓O的弦,過MN的中點A任作兩弦BC、DE,設CD、EB分別交MN于P、Q.
求證:AP=AQ.(初二)
4、如圖,分別以△ABC的AC和BC為一邊,在△ABC的外側作正方形ACDE和正方形CBFG,點P是EF的中點.
求證:點P到邊AB的距離等于AB的一半.(初二)
經典難題
(三)1、如圖,四邊形ABCD為正方形,DE∥AC,AE=AC,AE與CD相交于F. 求證:CE=CF.(初二)
2、如圖,四邊形ABCD為正方形,DE∥AC,且CE=CA,直線EC交DA延長線于F.
求證:AE=AF.(初二)
3、設P是正方形ABCD一邊BC上的任一點,PF⊥AP,CF平分∠DCE. 求證:PA=PF.(初二)
4、如圖,PC切圓O于C,AC為圓的直徑,PEF為圓的割線,AE、AF與直線PO相交于B、D.求證:AB=DC,BC=AD.(初三)
經典難題
(四)1、已知:△ABC是正三角形,P是三角形內一點,PA=3,PB=4,PC=5. 求:∠APB的度數.(初二)
2、設P是平行四邊形ABCD內部的一點,且∠PBA=∠PDA. 求證:∠PAB=∠PCB.(初二)
3、設ABCD為圓內接凸四邊形,求證:AB·CD+AD·BC=AC·BD.(初三)
4、平行四邊形ABCD中,設E、F分別是BC、AB上的一點,AE與CF相交于P,且
AE=CF.求證:∠DPA=∠DPC.(初二)
經典難題
(五)1、設P是邊長為1的正△ABC內任一點,L=PA+PB+PC,求證:
√3≤L<2.
2、已知:P是邊長為1的正方形ABCD內的一點,求PA+PB+PC的最小值.
3、P為正方形ABCD內的一點,并且PA=a,PB=2a,PC=3a,求正方形的邊長.
4、如圖,△ABC中,∠ABC=∠ACB=80度,D、E分別是AB、AC上的點,∠DCA=30度,∠EBA=20度,求∠BED的度數.
答案
經典難題
(一)4.如下圖連接AC并取其中點Q,連接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,從而得出∠DEN=∠F。
經典難題
(二)1.(1)延長AD到F連BF,做OG⊥AF, 又∠F=∠ACB=∠BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)連接OB,OC,既得∠BOC=1200,從而可得∠BOM=600, 所以可得OB=2OM=AH=AO, 得證。
經典難題
(三)4.證明:作CQ⊥PD于Q,連接EO,EQ,EC,OF,QF,CF,所以PC2=PQ*PO(射影定理),又PC2=PE*PF,所以EFOQ四點共圓,∠EQF=∠EOF=2∠BAD,又∠PQE=∠OFE=∠OEF=∠OQF,而CQ⊥PD,所以∠EQC=∠FQC,因為∠AEC=∠PQC=90°,故B、E、C、Q四點共圓,所以∠EBC=∠EQC=1/2∠EQF=1/2∠EQF=∠BAD.∴CB∥AD,所以BO=DO,即四邊形ABCD是平行四邊形,∴AB=DC,BC=AD.
經典難題
(四)2.作過P點平行于AD的直線,并選一點E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得: AEBP共圓(一邊所對兩角相等)。可得∠BAP=∠BEP=∠BCP,得證。
經典難題
(五)2.順時針旋轉△BPC 60度,可得△PBE為等邊三角形。
既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一條直線上,即如下圖:可得最小PA+PB+PC=AF。
3.順時針旋轉△ABP 90度,可得如下圖:
第二篇:初二數學難題
初中數學難題
一:如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90,D為AB上一點.(1)△ACE與△BCD全等嗎?為什么?(2)等式AD+BD=DE成立嗎?請說明理由.BD第22題圖AC22
E二:已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G。
⑴求證:BF=AC;
⑵求證:CE=
1BF; 2
三:如圖已知:梯形ABCD中,AB∥CD,E為AD中點,且BC=AB+CD。求證:BE⊥CE。
四:如圖,平行四邊形ABCD中,BE平分∠ABC交AD于點E,且CE平分∠DCB,若BC長是10,求平行四邊形ABCD的周長,并說明理由。A E D B
C
五:如圖,已知CE、CB分別是△ABC和△ADC的中線,且AB=AC.求證:CD=2CE.
六:如圖,已知AB∥ED,AE∥BD,AF=CD,EF=BC.求證:∠C=∠F
七:如圖,已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求證:AB=AC,AD=AE.
第三篇:《難題》數學日記
傍晚,我在奧林匹克書中看到一道難題:果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天后,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?
最新的小學生經典《難題》數學日記:我沒有被這道題嚇倒,難題能激發我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給“20×3”棵蘋果樹和20棵梨樹施肥。而實際他每天只給50棵蘋果樹施肥,差了10棵,最后共差了80棵,從這里可以得知,老王師傅已經施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
第四篇:初二下冊數學難題
一、填空題
1、某天的最高溫度為12oC,最低溫度為aoC,則這天的溫差是_______.2、用代數式表示比m的4倍大2的數為______.3、小彬上次數學成績80分,這次成績提高了a%,這次數學成績為_______.4、有三個連續自然數,中間的一個數為k,則其它兩個數是____._____.5、如果a=2b, b=4c,那么代數式
6、若
7、若.8、2x-3是由_______和________兩項組成。
9、若-7xm+2y與-3x3yn是同類項,則m=_______, n=________.10、把多項式11x-9+76x+1-2x2-3x合并同類項后是________.二、選擇題
11、已知2x6y2和-()
A、-1 B、-2
C、-3
D、-4
12、當x=()A、-3 B、-5
C、3
D、5
13、m-[n-2m-(m-n)]等于()A、-2m B、2m
C.4m-2n D.2m-2n
14、用代數式表示“x的2倍與y的平方的差”是()A.(2x-y)2 B.x-2y2 C.2x2-y2 D.2x-y2
15、下列是同類項的一組是()
A.–ab2與 B.xyz與8xy C.3mn2與4 D.16、下列運算正確的是()
A.2x+2y=2xy B.5x+x=5x2 C.–3mn+mn=-2mn D.8a2b-7a2b=1
17、下列等式中成立的是()A.–a+b=-(a+b)B.3x+8=3(x+8)C.2-5x=-(5x-2)
D.12-4x=8x
18、已知一個三位數,它的百位數字是a,十位數字是b, 個位數字是c,則這個三位數字是(A.abc B.a+b+c
C.100a+10b+c
D.100c+10b+a
19、已知a-b=5, c+d=-3, 則(b+c)-(a-d)的值為()A.2 B.–2
C.–8 D.8)
20、點a、b在數軸上的位置關系如圖所示,化簡 的結果等于(A.2a B.–2a C.2b D.–2b
三、計算 21、23、四、先化簡、再求值
25、五、解答題
26、按如圖所示方式在餐桌上擺碗
1)一張餐桌上放6個碗,3張餐桌上放______個碗.2)按照上圖繼續排列餐桌,完成下表24、2a-[a + 2(a-b)] + b
22、a+(5a-3b)-(a-2b))
27、已知:甲的年齡為m歲,乙的年齡比甲的年齡的3倍少7歲,丙的年齡比乙的年齡的 還多3歲,求甲、乙、丙年齡之和.28、甲、乙兩地相距100千米,一輛汽車的行駛速度為v千米/小時.(1)用代數式表示這輛汽車從甲地到乙地需行駛的時間?
(2)若速度增加5千米/小時,則需多少時間?速度增加后比原來可早到多少時間?分別用代數式表示.(3)當v=50千米/時,分別計算上面各個代數式的值,
第五篇:世界7大數學難題
世界七大數學難題
這七個“千年大獎問題”是: NP完全問題、霍奇猜想、龐加萊猜想、黎曼假設、楊-米爾斯理論、納衛爾-斯托可方程、BSD猜想 千年大獎問題
美國麻州的克雷(Clay)數學研究所于2000年5月24日在巴黎法蘭西學院宣布了一件被媒體炒得火熱的大事:對七個“千年數學難題”的每一個懸賞一百萬美元。
其中有一個已被解決(龐加萊猜想),還剩六個.(龐加萊猜想,已由俄羅斯數學家格里戈里·佩雷爾曼破解。)
“千年大獎問題”公布以來,在世界數學界產生了強烈反響。這些問題都是關于數學基本理論的,但這些問題的解決將對數學理論的發展和應用的深化產生巨大推動。認識和研究“千年大獎問題”已成為世界數學界的熱點。不少國家的數學家正在組織聯合攻關。可以預期,“千年大獎問題”將會改變新世紀數學發展的歷史進程。P問題對NP問題
在一個周六的晚上,你參加了一個盛大的晚會。由于感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鐘,你就能向那里掃視,并且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因式分解為3607乘上3803,那么你就可以用一個袖珍計算器容易驗證這是對的。人們發現,所有的完全多項式非確定性問題,都可以轉換為一類叫做滿足性問題的邏輯運算問題。既然這類問題的所有可能答案,都可以在多項式時間內計算,人們于是就猜想,是否這類問題,存在一個確定性算法,可以在多項式時間內,直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克于1971年陳述的。
霍奇(Hodge)猜想
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對于所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。龐加萊(Poincare)猜想
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想象同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
在2002年11月和2003年7月之間,俄羅斯的數學家格里戈里·佩雷爾曼在發表了三篇論文預印本,并聲稱證明了幾何化猜想。
在佩雷爾曼之后,先后有3組研究者發表論文補全佩雷爾曼給出的證明中缺少的細節。這包括密西根大學的布魯斯·克萊納和約翰·洛特;哥倫比亞大學的約翰·摩根和麻省理工學院的田剛;以及理海大學的曹懷東和中山大學的朱熹平。
2006年8月,第25屆國際數學家大會授予佩雷爾曼菲爾茲獎。數學界最終確認佩雷爾曼的證明解決了龐加萊猜想。黎曼(Riemann)假設
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7??等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布并不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關于一個精心構造的所謂黎曼蔡塔函數z(s)的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對于開始的1,500,000,000個解驗證過。證明它對于每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。楊-米爾斯(Yang-Mills)存在性和質量缺口
量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基于楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和筑波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、并且在他們的對于“夸克”的不可見性的解釋中應用的“質量缺口”假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。
納維葉-斯托克斯方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在于對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。貝赫和斯維訥通-戴爾猜想