第一篇:工業控制系統_自動化_中英文翻譯_畢業論文
外文資料翻譯
工業控制系統和協同控制系統
當今的控制系統被廣泛運用于許多領域。從單純的工業控制系統到協同控制系統(CCS),控制系統不停變化,不斷升級,現在則趨向于家庭控制系統,而它則是這兩者的變種。被應用的控制系統的種類取決于技術要求。而且,實踐表明,經濟和社會因素也對此很重要。任何決定都有它的優缺點。工業控制要求可靠性,完整的文獻記載和技術支持。經濟因素使決定趨向于協同工具。能夠親自接觸源碼并可以更快速地解決問題是家庭控制系統的要求。多年的操作經驗表明哪個解決方法是最主要的不重要,重要的是哪個可行。由于異類系統的存在,針對不同協議的支持也是至關重要的。本文介紹工業控制系統,PlC controlled turn key系統,和CCS工具,以及它們之間的操作。引言:
80年代早期,隨著為HERA(Hadron-Elektron-Ring-Anlage)加速器安裝低溫控制系統,德國電子同步加速器研究所普遍開始研究過程控制。這項新技術是必需的,因為但是現有的硬件沒有能力來處理標準過程控制信號,如4至20毫安的電流輸入和輸出信號。而且軟件無法在0.1秒的穩定重復率下運行PID控制回路。此外,在實現對復雜的低溫冷藏系統的開閉過程中,頻率項目顯得尤為重要。
有必要增加接口解決總線問題并增加運算能力,以便于低溫控制。因為已安裝的D / 3系統[1] 只提供了與多總線板串行連接,以實現DMA與VME的連接并用其模擬多總線板的功能。溫度轉換器的計算功能來自一個摩托羅拉MVME 167 CPU和總線適配器,以及一個MVME 162 CPU。其操作系統是VxWorks,而應用程序是EPICS。
由于對它的應用相當成功,其還被運用于正在尋找一個通用的解決方案以監督他們的分布式PLC的公共事業管理。
德國電子同步加速器研究所對過程管理系統的篩選
集散控制系統(D/ 3):
市場調查表明:來自GSE的D / 3系統被HERA低溫冷藏工廠選中。因為集散控制系統(D/ 3)的特性,所以這決定很不錯。在展示端和I / O端擴展此系統的可能將有助于解決日益增加的
HERA試驗控制的要求。制約系統的大小的因素不是I / O的總數,通信網絡的暢通與否。而通信網絡的暢通與否取決于不存檔的數據總量,不取決于報警系統中配置的數據。
擁有DCS特點(Cube)的SCADA系統:
相對于Y2K問題促使我們尋找一個升級版或者代替版來代替現有的系統而言,以上提到的D / 3系統有一些硬編碼的限制。由于急需給Orsi公司提供他們的產品,Cube開始起作用了[2]。該項目包括安裝功能的完全更換。這包括D / 3,以及德國電子同步加速器研究所的集成總線SEDAC和VME的溫度轉換器。該項目很有前景。但是因為HERA試驗原定時間是有限制的,所以技術問題和組織問題也迫使計劃提前。在供應商網站上的最后驗收測試又出現了戲劇性的性能問題。有兩個因素引起了這些問題。第一個跟低估在1赫茲運行的6級溫度轉換
器的CPU負荷有關。第二個由現有D / 3系統復雜的功能造成的額外負荷引起的。每個數字和模擬輸入和輸出通道在D / 3系統里的自身報警限值也被低估了。所有的附加功能都必須添加進去。最后,所有網絡負載的報警限值,尤其是SCADA系統,也促使網絡生成了限制。
最后,與Orsi公司的合同被取消了。升級的D / 3系統是唯一可能的解決辦法。在2003年3月,此系統最后被付諸實踐。
現在,相比“純粹”SCADA系統的異質環境,Cube有同質配置環境的優勢。SCADA(PVSS-Ⅱ):
在HERA加速器上的H1實驗中,實驗人員為升級他們的低速控制系統,決定使用PVSS-Ⅱ。現有的系統是由H1合作組的幾名成員開發的,而現在卻難以維持了。在CERN由聯合控制項目[4]進行的廣泛調查促使他們做出使用PVSS作為代替品的決定。PVSS是一個“純粹”的監控和數據采集系統(SCADA系統)。其核心元素叫做事件管理器。它收集的數據主要是由I/ O設備提供。它還提供附加的管理服務,如:控制經理,數據庫管理,用戶界面,API經理以及在建的HTTP服務器。該PVSS腳本庫允許執行復雜的序列以及復雜的圖形。相比其他SCADA系統PVSS帶有一個基本特點:它提供了API給設備的數據。
SCADA系統的一個主要缺點是其中的兩個數據庫,一個為PLC’s服務,另一個為SCADA系統服務,這兩個數據庫必須維持。集成環境將努力克服這個限制。EPICS:
在德國電子同步加速器研究所,EPICS從問題解決系統演化成了全集成控制系統。從成為低溫控制系統的數據收集器和數量控制器,EPICS成為了德國電子同步加速器研究所公用事業集團使用的核心系統。此外,通過 Industry Pack(IP)模塊的手段,它還能運用于通過VME板卡的任何數據。EPICS通過其完整的功能,運用于沒有由D / 3系統控制的低溫冷藏系統。所有大約50個輸入輸出控制器運作大約25000業務處理記錄。作為一個SCADA系統的EPICS:
該公共事業組(水,電,壓縮空氣,加熱和調溫)使用各種散布在整個德國電子同步加速器研究所網站上的PLC。IOC向客戶提供接口并采集數據。此外,如通道歸檔和圖形顯示(dm2k)會被使用。默認名決議和目錄服務器(域名服務器)用于連接 在TCP客戶端和服務器應用程序。所有這些都是基本的SCADA功能。所有的配置文件(圖形工具,報警處理程序和歸檔)提供了一種靈活的配置方案。德國電子同步加速器研究所公用事業集團已制定了一套工具來創建IOC數據庫和配置文件。這樣,控制組提供的服務保持EPICS工具,而用戶可以精力集中在被控制的設備上了。作為一個DCS系統的EPICS:
作為SCADA系統的基本組成部分,EPICS還提供完整的輸入輸出控制器(IOC)。IOC提供所有功能DCS系統要求,如:實施每個記錄的標準的屬性;執行每個記錄時的報警檢查過程;控制記錄,如PID。靈活的命名方案,默認的顯示和每個記錄的報警屬性緩和了運作工具和IOC之間的連接。靈活的數據采集模式,支持調查模式以及發布訂閱模式。后者大大降低了信息擁堵的情況。PLC’s:
PLC’s同樣提供豐富的功能,因為以前它是獨一無二的控制系統。此外,定期執行一個確定功能的基本特征也讓他們通過以太網通信,包括內置的HTTP
服務器和不同集合的通訊方案。除了通信處理器,顯示器能和PLC’s連接。智能I / O:
I / O設備上的新發展允許在更小的群體中集群I / O并把這些集群I / O渠道鏈接到控制系統。PLC’s對于分布式I / O已不再重要。PLC’s和智能I / O子系統的差別正在消失。
功能
持續不斷的問題,如為什么控制系統的加速器和其他高度專業化的設備聯合協同發展。但是,在極少數情況下,只通過商業的立場時難以回答的。在這里,我們試圖總結不同控制方法的基本功能。
前端控制器:
對控制系統的核心要素之一,是前端控制器。PLC’s可用于實施控制功能的設備。它的缺點就是復雜,難以達到控制屬性。例如確定通信協議和最后在顯示、報警和歸檔方案,一個控件的所有屬性像P,I和D參數,還有報警限制及其他附加的屬性必須得到解決。另外,這些嵌入式屬性修改是很難尋覓,因為其中涉及兩個或兩個以上軌道系統這可能是一個有力的論據是,為什么控制回路主要實施在IOC層面,而不是PLC’s層面。
I / O和控制回路
復雜的控制算法和控制回路和域名DCS控制系統一樣。對顯示和控件的屬性的支持是必不可少的。
頻率/國家計劃
在控制系統中,頻率程序可以運行任何處理器。運行時環境取決于相關代碼。控制系統程序直接履行運行前端處理器的監控。為復雜的啟動和關閉處理程序設立的頻率程序也可以運行工作站。國家機器的基本功能在IEC 61131中得到了落實。編碼發電機可以產生C代碼。
硬件支持
對現場總線和起源于I / O的Ethernet的支持是為SCADA系統服務的一個基本功能。所有SCADA系統在市場商業運作中是可行的。配置特定驅動器和數據轉換器的集成硬件在商業環境中是一個難點。開放API或腳本支持有時有助于整合用戶的硬件。如果不向控制系統提供這些工具,就很難整合客戶硬件。新的工業標準,如OPC,和OPC設施聯系,還和控制系統之間互相聯系。這種功能的基本條件是強調操作系統。在這種情況下,OPC更趨向于微軟的DCOM標準。基于控制系統的UNIX很難互相連接。只有支持多平臺的控制系統可以在異構環境中發揮主要作用。
由于為客戶或專業硬件的支持有限,所以新的控制系統有理由得到發展。顯示和操作
除了前后系統,操作接口在控制系統的兼容過程中有重要的作用。因為個人呢工具由不同的團隊開發,所以協作實現的工具包可能變動。
1圖形
天氣顯示是任何控制系統的廣告招牌。商業天氣顯示也有著豐富的功能
和許多特色。開始使用所有這些特征,所有這些功能的使用人會發現,所有個別屬性的圖形對象要分別指定。一個輸入通道不只由物業的價值決定的,而且更由包括像展出范圍和報警值決定的。一再分辨所有性能可能是個非常乏味的工作。有些系統產生圖形原型對象。這些原型圖形或模板很復雜,但需要一個專家來生產。
DCS或自定義天氣顯示程序使用常見的I / O點屬性集。這個預定義的命名方案填寫標準的屬性值,因此只需要進入記錄,或設備名稱進入配置工具。報警系統
警報可以很好的區分不同的控制系統架構。實現I / O對象的這些系統在前后端電腦提供警報檢查。只能讀懂I / O點的系統在I / O處理過程中添加了警報檢查。I / O對象途徑在前后端系統的本土項目語言安插了警報檢測。,I / O點導向系統通常要在他們的腳文本語言中實現這種功能。這是通常效率較低且容易出錯,因為所有屬性必須被單獨配置,這導致了一系列特性。不僅為每個I / O點的錯誤狀態結束是個人的I / O點,但報警限值和每個報警的輕重,應當限制定義為I / O點,如果它希望能夠改變運行值。
這種影響在SCADA和DCS系統之間也形成了影響。SCADA系統本就讀不懂報警系統。DCS系統的優勢在于管理人員既可以登記警報狀態,從而提前得到信息,控制蔓延到在控制系統周圍的變化。后一種情況是唯一可能的系統。趨勢和歸檔
趨勢已成為控制系統架構中的一個重要的業務。趨勢是必要的跟蹤誤差條件。實現的數據存儲有能力儲存完整控制目標,大部分的趨勢工具標量數據存檔。附加特性如條件趨向或相關情節在個人實施起了影響。
4編程接口
關于開放編程接口,PLC’s和DCS系統有相同策略。他們運行可靠,因為他們沒有辦法整合 可定制的合作去干涉內部處理。因此,客戶定制精品,這個極其昂貴的。
由于SCADA系統必須能夠 與多種I / O子系統連接已經在API上建立了I / O子系統以整合 自定義功能。
協作系統尤其需要一定的開放性以實現各種發展組織的要求。所有級別的編程接口,例如前后端I / O,前后端處理過程和網絡等,是強制性的。
5冗余
如果冗余是指管理所有國家,I / O所有值無縫道岔當前正在運行,它是一個域,只有少數集散系統。自定義或CCS實施不提供這種功能。也許是因為巨大努力和事實,它是只需要在罕見的事例。此外,處理器冗余,或多余的網絡,或I / O子系統是為一定的商業集散控制系統指定的。
先進的安全要求是由多余的PLC子系統覆蓋。這些安裝在(核)電廠。個人保護系統(PPS)的要求有時候會由冗余的PLC’s來滿足。在過程控制中,冗余的PLC’s只在少數情況下使用。
6命名空間
在供應鏈系統中,SCADA系統的單位名稱空間形容成警報部分。有些SCADA系統(如PVSS – II)提供在少數情況下的控制對象或結構化數據。這些對象由一系列特性(包括I / O點)和一套方法(宏或函數)組成。這些途徑的其一是UniNified工業控制系統(UNICOS)在歐洲核子研究中心[5]。
DCS系統和大多數習慣性/協作系統是有記錄的,或是設備為主。不同之處是,通常一個記錄被連接到一個單一I / O點,提供這樣的執行記錄,如個人工程單元,顯示和警報限值。設備為本的方法允許連接幾個I / O點。而(EPICS的)記錄只服務于一組特定的內置功能。
命名等級不特定于實施類型。它們可用于一些系統。分層命名方案是肯定可取的。
實施策略
表現完各種可能的控制方法后,該是查看控制系統的完成情況了。
從I / O級開始,他們必須決定是否需要商業解決。特殊的I / O不總是需要定制解決方案。信號可以被轉換成標準的信號,但是這并不適用于所有的信號。信號水平可能需要定制的發展,這必須納入整體控制架構。信號不能被連接到標準I / O接口,也許有可能發展的I / O控制器的
允許實施現場總線接口,這能夠整合商業控制系統。整合水平是不可能定制前端控制器,如VME,開始發揮作用了。
Turn Key 系統:
在工業中,有個明顯的趨勢就是產生了Turn Key 系統。它允許對整個系統進行模塊化設計。個別元件分包給幾個公司進行本地測試。一旦交付施工現場,驗收測試就已經過去了,第二個階段,整合融入全球控制系統的子系統開始。雖然控制回路的詳細規格等,是現在子系統合同的一部分。客戶必須明確多少信息子系統可以被使用。
大多數Turn Key系統與PLC一起交付使用。瑞士光源(SLS)的建立過程已顯示,這也是基于I/ O系統運行的VME運行 CCS的,這樣才可以成功啟用[6]。
基于系統的PLC:
基于系統的PLC是Turn Key系統成果。下一個明顯的方法看起來可能是除了商業PLC,就是商業SCADA系統。優勢就是明顯和PLC一樣:沒有穩定的軟編程器,僅有配置,支持和良好的文件系統。在德國電子同步加速器研究所,我們成功地建立了控制組和公共事業組之間的關系。盡管是EPICS編碼,但其最大的優勢就是能調整雙方的特殊要求。
工業解決方案:
一旦工業開始支持協作控制系統,CCS的解決方案和商業之間的差異將漸漸變小。在KEK,公司簽訂合同為KEK-B升級提供程序員。這些程序員進行了書面驅動程序和應用程序代碼的EPICS培訓。因此,KEK-B控制系統是工業用和民用升級軟件的混合體。這是CCS實施中工業參與的另一個例子。
成本:
自從個人電腦出現后,“一臺個人電腦的總成本是多少?”這樣的問題一直使人忙碌。所有的答案不盡相同的極端。現在的問題什么是一個控制系統的TCO可能作出類似的結果。如果你進入商業領域,你要支付的初始證照費用,而通常這是由供應商或分包商支付的,你付錢進行的軟件支持,可能或可能不會包括你更新證照的費用。
如果你去尋求合作方式,你可能與公司簽合同或完成一切。而“時間與金錢說”在工業中同樣成立。你親自完成可能更自由靈活,但是有點難度。你 可以依靠合作,以提供新的功能和版本,或者你可以為自己作出貢獻。主要的區別就是要為控制系統計入長期成本。
德國電子同步加速器研究所粗略估計,控制應用程序,如支持商業模式的D / 3,和支持協作模式的EPICS幾乎是相同的。在該軟件支持和升級證照的費用,相當于1.5倍的FTE’s。FTE’s是關于人力資源的內容,對于支持新的硬件和升級EPICS是必要的。
結論
根據控制項目不同的規模和要求,整合的商業解決方案和基于協作應用程序的解決方案在百分之零到一百都有可能。這適用于長遠的技術支持。在安全問題上的特殊需要或人力資源的缺乏可能會擴大商機。接口專業硬件,掌控在手的談判或商業解決方案的初始成本有可能促使大規模的合作。只要如EPICS的協作途徑,保持最新并運行如商業方案一樣穩定和強勁,它們就能在互補共生的控制世界中占有一席之地。
INDUSTRIAL AND COLLABORATIVE CONTROL SYSTEMS
-A COMPLEMENTARY SYMBIOSIS –
Looking at today?s control system one can find a wide variety of implementations.From pure industrial to collaborative control system(CCS)tool kits to home grown systems and any variation in-between.Decisions on the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the complete picture.Any decision has it?s advantages and it?s drawbacks.Reliability, good documentation and support are arguments for industrial controls.Financial arguments drive decisions towards collaborative tools.Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions.The experience of many years of operations shows that which solution is the primary one does not matter, there are always areas where at least part of the other implementations exist.As a result heterogeneous systems have to be maintained.The support for different protocols is essential.This paper describes our experience with industrial control systems, PLC controlled turn key systems, the CCS tool kit EPICS and the operability between all of them.-
INTRODUCTION
th Process controls in general started at DESY in the early 80with the installation of the cryogenic control system for the accelerator HERA(Hadron-Elektron-Ring-Anlage).A new technology was necessary because the existing hardware was not capable to handle standard process controls signals like 4 to 20mA input and output signals and the software was not designed to run PID control loops at a stable repetition rate of 0.1 seconds.In addition sequence programs were necessary to implement startup and shutdown procedures for the complex cryogenic processes like cold boxes and compete compressor streets.Soon it was necessary to add interfaces to field buses and to add computing power to cryogenic controls.Since the installed D/3 system[1] only provided an documented serial connection on a multibus board, the decision was made to implement a DMA connection to VME and to emulate the multibus board?s functionality.The necessary computing power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVME 162.The operating system was VxWorks and the application was the EPICS toolkit.Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLC?s.A SELECTION OF PROCESS CONTROL SYSTEMS AT DESY
DCS(D/3)
As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant.The decision was fortunate because of the DCS character of the D/3.The possibility to expand the system on the display-and on the I/O side helped to solve the increasing control demands for HERA.The limiting factor for the size of the system is not the total number of I/O but the traffic on the communication network.This traffic is determined by the total amount of archived data not by the data configured in the alarm system.The technical background of this limitation is the fact that archived data are polled from the display servers whereas the alarms are pushed to configured destinations like alarm-files,(printer)queues or displays.SCADA Systems with DCS Features(Cube)
The fact that the D/3 system mentioned above had some hard coded limitations with respect to the Y2K problem was forcing us to look for an upgrade or a replacement of the existing system.As a result of a call for tender the company Orsi with their product Cube came into play [2].The project included a complete replacement of the installed functionality.This included the D/3 as well as the integration of the DESY field bus SEDAC and the temperature conversion in VME.The project started promising.But soon technical and organizational problems were pushing the schedule to it?s limits which were determined by the HERA shutdown scheduled at that time.The final acceptance test at the vendors site showed dramatic performance problems.Two factors could be identified as the cause of these problems.The first one was related to the under estimated CPU th load of the 6grade polynomial temperature conversion running at 1 Hz.The second one was the additional CPU load caused by the complex functionality of the existing D/3 system.Here it was underestimated that each digital and analog input and output channel had it?s own alarm limits in the D/3 system.In a SCADA like system as Cube the base functionality of a channel is to read the value and make it available to the system.Any additional functionality must be added.Last not least the load on the network for polling all the alarm limits – typically for a SCADA system – was also driving the network to it?s limits.Finally the contract with Orsi was cancelled and an upgrade of the D/3 system was the only possible solution.It was finally carried out in march 2003.In any case it should be mentioned that the Cube approach had the advantage of a homogeneous configuration environment(for the Cube front end controllers)– compared with heterogeneous environments for ?pure? SCADA systems.SCADA(PVSS-II)The H1 experiment at the HERA accelerator decided to use PVSS-II for an upgrade of their slow control systems[3].The existing systems were developed by several members of the H1 collaboration and were difficult to maintain.The
decision to use PVSS as a replacement was driven by the results of an extensive survey carried out at CERN by the Joint Controls Project [4].PVSS is a ?pure? Supervisory And Data Acquisition System(SCADA).It provides a set of drivers for several field buses and generic socket libraries to implement communication over TCP/IP.The core element is the so called event manager.It collects the data(mostly by polling)from the I/O devices and provides an event service to the attached management services like: control manager, database manager, user interface, API manager and the built in HTTP server.The PVSS scripting library allows to implement complex sequences as well as complex graphics.Compared with other SCADA systems PVSS comes with one basic feature: it provides a true object oriented API to the device?s data.One major disadvantage of SCADA systems is the fact that two databases, the one for the PLC and the one for the SCADA system must be maintained.Integrated environments try to overcome this restriction.EPICS
EPICS has emerged at DESY from a problem solver to a fully integrated control system.Starting from the data collector and number cruncher for the cryogenic control system, EPICS made it?s way to become the core application for the DESY utility group.In addition it is used wherever data is available through VME boards or by means of Industry Pack(IP)modules.For those cryogenic systems which are not controlled by the D/3 system EPICS is used with it?s complete functionality.In total about 50 Input Output Controller(IOC)are operational processing about 25 thousand records.1 EPICS as a SCADA System
The utility group(water, electrical power, compressed air, heating and air conditioning)is using a variety of PLC?s spread out over the whole DESY site.EPICS is used to collect the data from these PLC?s over Profibus(FMS and DP)and over Ethernet(Siemens H1 and TCP).The IOC?s provide the interfaces to the buses and collect the data.The built in alarm checking of the EPICS records is used to store and forward alarm states to the alarm handler(alh)of the EPICS toolkit.In addition tools like the channel archiver and the graphic display(dm2k)are used.The default name resolution(by UDP broadcast)and the directory server(name server)are used to connect client and server applications over TCP.All of these are basically SCADA functions.The textual representation of all configuration files(for the IOC, the graphic tool, the alarm handler and the archiver)provides a flexible configuration scheme.At DESY the utility group has developed a set of tools to create IOC databases and alarm configuration files from Oracle.This way the controls group provides the service to maintain the EPICS tools and the IOC?s while the users can concentrate on the equipment being controlled.EPICS as a DCS System
Besides the basic components of a SCADA system EPICS also provides a full flavoured Input Output Controller(IOC).The IOC provides all of the function a DCS system requires, such as: a standard set of properties implemented in each record, built in alarm checking processed during the execution of each record;control records like PID etc.;configuration tools for the processing engine.The flexible naming scheme and the default display and alarm properties for each record ease the connection between the operator tools and the IOC?s.The flexible data acquisition supports the poll mode as well as the publish subscribe mode.The latter reduces the traffic drastically.PLC?s
PLC?s provide nowadays the same rich functionality as it was known from stand alone control systems in the past.Besides the basic features like the periodic execution of a defined set of functions they also allow extensive communication over Ethernet including embedded http servers and different sets of communication programs.Besides the communication processors, display processors can be linked to PLC?s to provide local displays which can be comprised as touch panels for operator intervention and value settings.These kind of PLC?s are attractive for turn key systems which are commissioned at the vendors site and later integrated into the customers control system.Intelligent I/O
New developments in I/O devices allow to ?cluster? I/O in even smaller groups and connect theses clustered I/O channels directly to the control system.PLC?s are not any more necessary for distributed I/O.Simple communication processors for any kind of field buses or for Ethernet allow an easy integration into the existing controls infrastructure.Little local engines can run IEC 61131 programs.The differences between PLC?s and intelligent I/O subsystems fade away.FUNCTIONALITY
The ever lasting question why control systems for accelerators and other highly specialized equipment are often home grown or at least developed in a collaboration but only in rare cases commercial shall not be answered here.We try to summarize here basic functionalities of different controls approaches.Front-end Controller
One of the core elements of a control system is the front-end controller.PLC?s can be used to implement most of the functions to control the equipment.The disadvantage is the complicated access to the controls properties.For instance all of the properties of a control loop like the P, I and D parameter, but also the alarm limits and other additional properties must be addressed individually in order to identify them in the communication protocol and last not least in the display-, alarm-and archive programs.In addition any kind of modifications of these
embedded properties is difficult to track because two or more systems are involved.This might be one strong argument why control loops are mainly implemented on the IOC level rather than PLC?s.1 I/O and Control Loops
Complex control algorithms and control loops are the domain of DCS alike control systems.The support for sets of predefined display and controls properties is essential.If not already available(like in DCS systems)such sets of generic properties are typically specified throughout a complete control system(see namespaces).2 Sequence/ State programs
Sequence programs can run on any processor in a control system.The runtime environment depends on the relevance of the code for the control system.Programs fulfilling watchdog functions have to run on the front-end processor directly.Sequence programs for complicated startup and shutdown procedures could be run on a workstation as well.The basic functionality of a state machine can be even implemented in IEC 61131.Code generators can produce ?C? code which can be compiled for the runtime environment.3 Supported Hardware
The support for field buses and Ethernet based I/O is a basic functionality for SCADA type systems it is commercially available from any SCADA system on the market.The integration of specific hardware with specific drivers and data conversion is the hard part in a commercial environment.Open API?s or scripting support sometimes help to integrate custom hardware.If these tools are not provided for the control system it is difficult – if not impossiblewhich are extremely expensive – or forget about it and use the system as a black box.Since SCADA systems by definition must be able to communicate with a variety of I/O subsystems they already have some built in API?s which allow to integrate custom functionality.Specially collaborative systems need a certain openness to fulfill all the requirements from various development groups.Programming interfaces on all levels like font-end I/O, front-end processing, networking etc.are mandatory.A clear advantage for this type of system.Redundancy
If redundancy means the seamless switch which takes over all the states and all the values of the I/O and all states of all programs currently running, it is a domain of only a few DCS systems.Custom or CCS implementation do not provide this kind of functionality.Maybe because of the immense effort and the fact that it is only required in rare cases.Besides processor redundancy, redundant networks or I/O subsystems are available for certain commercial DCS systems.Again – a domain which is not covered by SCADA or CCS implementations.Advanced safety requirements may be covered by redundant PLC subsystems.These are for instance installed in(nuclear)power plants.Requirements for Personal Protection Systems(PPS)can sometimes only be fulfilled by redundant PLC?s.In process controls redundant PLC?s are only used in rare cases.6 Namespace
The flat namespace of SCADA systems has already been described in the alarm section.Some SCADA systems(like PVSS-II)provide the notion of control objects or structured data which is a rare case.In all other cases so called field objects must be specified.These are objects which consist of a list of properties(implemented as I/O points)and a set of methods(implemented asmacros or function calls).One of these approaches is the UniNified Industrial COntrol System(UNICOS)at CERN [5].DCS systems and most of the custom/ collaborative systems are record – or device oriented.The difference being that typically one record is connected to a
single I/O point and provides this way all sub features of a record implementation like individual engineering units, display-and alarm limits.The device oriented approach allows to connect several I/O points.The major difference being the fact that an object oriented device implementation provides methods and states for a device while(EPICS)records only serve a certain set of built in functions.Naming hierarchies are not specific to a type of implementation.They are available for some systems of any kind.For sure hierarchical naming schemes are desirable.IMPLEMENTATION STRATEGIES
After having shown all the possible controls approaches it is time to have a look at the implementation of control systems.Starting from the I/O level one has to decide whether commercial solution are required, feasible or wanted.Special I/O does not always require custom solution for the font-end controller.Signals can be converted into standard signals but this does not apply for all kinds of signals.Resolution, repetition rates and signal levels might require custom developments which must be integrated into the overall control architecture.Even if the signals can not be connected to standard I/O interfaces it might be possible to develop I/O controllers which implement a field bus interface which allow the integration with commercial control systems.Once this level of integration is not possible custom front-end controllers like VME crates come into play.Besides the decision whether special I/O requires dedicated custom solutions one has to decide who will do which part of the work? Does for instance the necessity of VME crates prohibit the delivery of a ?turn key? system built by industry? Or does a PLC based front-end system require a commercial SCADA system for high level controls? Turn Key Systems
It is a clear trend in industry to deliver turn key systems.It allows a modular design of the whole system.Individual components can be subcontracted to several companies and tested locally.Once delivered to the construction site the primary acceptance tests have already been passed and the second phase, to integrate the subsystem into the global control system begins.While the detailed specification of control loops etc.is now part of the subsystems contract, the customer has to specify clearly how much information of the subsystem must be made available, what the data structures will look like and which connection(field bus/ Ethernet)will be used.Most turn key systems are delivered with PLC?s.The construction of the Swiss Light Source(SLS)has shown that also a VME based I/O system running a CCS – in this case EPICS – can be successfully commissioned [6].PLC Based Systems
PLC based systems are a consequence of the turn key ansatz.The next obvious approach might be to look besides commercial PLC?s also for commercial SCADA systems.The advantage is clearly the same like for the PLC: stable software, no programming – only configuration, support and good documentation.At DESY we have successfully established a relation between the controls group which provides a CCS service based on EPICS and the utility group which uses the EPICS configuration tools to set up their control environment.The big advantage though being that the EPICS code can be adjusted to the special requirements from both sides.Industrial Solutions
The difference between CCS solutions and commercial solutions is fading away as soon as industry starts to deliver and support collaborative control systems.At KEK a company was contracted to supply programmers for the KEK-B upgrade.These programmers were trained in writing drivers and application code for EPICS.As a result the KEK-B control system is a mixture of software developed partly by industry and partly in house.This is another example for an industrial involvement for a CCS implementation.COST
The question: “Was is the total cost of ownership(TCO)of a PC?” has kept people busy since PC?s exist.The answers vary to all extremes.The question what is the TCO of a control system might give similar results.If you go commercial you have to pay for the initial licenses the implementation which is typically carried out by the supplier or by a subcontractor, and you pay for the on going software support which might or might not include the update license fee.If you go for a collaborative approach, you might contract a company or implement everything on your own.A question of ?time and money? as industry says.You will have more freedom and flexibility for your implementations but also a steeper learning curve.You can rely on the collaboration to provide new features and versions or you can contribute yourself.A major difference calculating the long term costs for a control system.At DESY one can roughly estimate that the(controls application)-support for a commercial approach – here D/3is nearly the same.The software support and upgrade license fee is equivalent to one and a half FTE?s – which is about the manpower necessary to support new hardware and to upgrade EPICS.CONCLUSIONS
Depending on the size and the requirements for a controls project the combination of commercial solutions and solutions based on a collaborative approach is possible in any rate between 0 and 100 percent.This applies for all levels from implementation to
long term support.Special requirements on safety issues or a lack of manpower might turn the scale commercial.The necessity to interface special hardware, special timing requirements, the ?having the code in my hands? argument or the initial costs for commercial solutions will turn the scale collaborative.As long as collaborative approaches like EPICS stay up to date and run as stable and robust as commercial solutions, both will keep their position in the controls world in a complementary symbiosis.
第二篇:土木工程畢業論文中英文翻譯
外文翻譯
班級:xxx 學號:xxx 姓名:xxx
一、外文原文:
Structural Systems to resist lateral loads Commonly Used structural Systems With loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts.Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts.Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved.Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows: 1.Moment-resisting frames.2.Braced frames, including eccentrically braced frames.3.Shear walls, including steel plate shear walls.4.Tube-in-tube structures.5.Core-interactive structures.6.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems.Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.The method of combining these elements is the very essence of the design process for high-rise buildings.These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights.This is not to say that imaginative structural design can create great architecture.To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed
without the genius and the leadership of a talented architect.In any event, the best of both is needed to formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here.The essence of the design process is distributed throughout the discussion.Moment-Resisting Frames Perhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints.Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads.In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces.Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs;analysis by the so-called portal method of the cantilever method has no place in today’s technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis.Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.Braced Frames The braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings.The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints.It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety.Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs.And again, center-to-center dimensions are used commonly in the preliminary analysis.Shear walls The shear wall is yet another step forward along a progression of ever-stiffer structural systems.The system is characterized by relatively thin, generally(but not always)concrete elements that provide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width.Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element.Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high.The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade.The system has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls.Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls.Framed or Braced Tubes The concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings.The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration.Because those columns that resist
lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high.The analysis of tubular structures is done using three-dimensional concepts, or by two-dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes.The concept has limited recent applications of framed tubes to the shear of 60 stories.Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses.This system finds application in buildings perhaps 40stories and higher.However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall;the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems.Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers.Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided.Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location.Tube-in-Tube Structures The tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces.The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube.The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness.The tubes need not be of the same character;that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy.In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders(i.e, the webs of the framed tube)while the flexural component is associated with the axial shortening and lengthening of columns(i.e, the flanges of the framed tube).In a
braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane(i.e, the floor slabs),then axial stresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube.However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring.This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems.This is easiest to under-stand where the inner tube is conceived as a braced(i.e, shear-stiff)tube while the outer tube is conceived as a framed(i.e, shear-flexible)tube.Core Interactive Structures Core interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame.Indeed, the system is used often wherein the shear stiffness of the outer tube is zero.The United States Steel Building, Pittsburgh, illustrates the system very well.Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure.Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations;these columns are perhaps 15% stiffer as they follow the elastic curve of the braced core.Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about
5/8 of the height of the tube.The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero.The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building.The AT&T headquarters is an example of an astonishing array of interactive elements: 1.The structural system is 94 ft(28.6m)wide, 196ft(59.7m)long, and 601ft(183.3m)high.2.Two inner tubes are provided, each 31ft(9.4m)by 40 ft(12.2m), centered 90 ft(27.4m)apart in the long direction of the building.3.The inner tubes are braced in the short direction, but with zero shear stiffness in the long direction.4.A single outer tube is supplied, which encircles the building perimeter.5.The outer tube is a moment-resisting frame, but with zero shear stiffness for the center50ft(15.2m)of each of the long sides.6.A space-truss hat structure is provided at the top of the building.7.A similar space truss is located near the bottom of the building 8.The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outer tube goes to zero at the base of the building.Cellular structures A classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes.While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening.The shortening of a column under load is given by the expression
△=ΣfL/E For buildings of 12 ft(3.66m)floor-to-floor distances and an average compressive stress of 15 ksi(138MPa), the shortening of a column under load is 15(12)(12)/29,000 or 0.074in(1.9mm)per story.At 50 stories, the column will have shortened to 3.7 in.(94mm)less than its unstressed length.Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between.the two systems need to have this differential deflection reconciled.Major structural work has been found to be needed at such locations.In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pre-stress
the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns.二、原文翻譯:
抗側向荷載的結構體系
常用的結構體系
若已測出荷載量達數千萬磅重,那么在高層建筑設計中就沒有多少可以進行極其復雜的構思余地了。確實,較好的高層建筑普遍具有構思簡單、表現明晰的特點。
這并不是說沒有進行宏觀構思的余地。實際上,正是因為有了這種宏觀的構思,新奇的高層建筑體系才得以發展,可能更重要的是:幾年以前才出現的一些新概念在今天的技術中已經變得平常了。
如果忽略一些與建筑材料密切相關的概念不談,高層建筑里最為常用的結構體系便可分為如下幾類:
1. 抗彎矩框架。
2. 支撐框架,包括偏心支撐框架。3. 剪力墻,包括鋼板剪力墻。4. 筒中框架。5. 筒中筒結構。6. 核心交互結構。
7. 框格體系或束筒體系。
特別是由于最近趨向于更復雜的建筑形式,同時也需要增加剛度以抵抗幾力和地震力,大多數高層建筑都具有由框架、支撐構架、剪力墻和相關體系相結合而構成的體系。而且,就較高的建筑物而言,大多數都是由交互式構件組成三維陳列。
將這些構件結合起來的方法正是高層建筑設計方法的本質。其結合方式需要在考慮環境、功能和費用后再發展,以便提供促使建筑發展達到新高度的有效結構。這并不是說富于想象力的結構設計就能夠創造出偉大建筑。正相反,有許多例優美的建筑僅得到結構工程師適當的支持就被創造出來了,然而,如果沒有天賦甚厚的建筑師的創造力的指導,那么,得以發展的就只能是好的結構,并非是偉大的建筑。無論如何,要想創造出高層建筑真正非凡的設計,兩者都需要最好的。
雖然在文獻中通常可以見到有關這七種體系的全面性討論,但是在這里還值得進一步討論。設計方法的本質貫穿于整個討論。設計方法的本質貫穿于整個討論中。
抗彎矩框架
抗彎矩框架也許是低,中高度的建筑中常用的體系,它具有線性水平構件和垂直構件在接頭處基本剛接之特點。這種框架用作獨立的體系,或者和其他體系結合起來使用,以便提供所需要水平荷載抵抗力。對于較高的高層建筑,可能會發現該本系不宜作為獨立體系,這是因為在側向力的作用下難以調動足夠的剛度。
我們可以利用STRESS,STRUDL 或者其他大量合適的計算機程序進行結構分析。所謂的門架法分析或懸臂法分析在當今的技術中無一席之地,由于柱梁節點固有柔性,并且由于初步設計應該力求突出體系的弱點,所以在初析中使用框架的中心距尺寸設計是司空慣的。當然,在設計的后期階段,實際地評價結點的變形很有必要。
支撐框架
支撐框架實際上剛度比抗彎矩框架強,在高層建筑中也得到更廣泛的應用。這種體系以其結點處鉸接或則接的線性水平構件、垂直構件和斜撐構件而具特色,它通常與其他體系共同用于較高的建筑,并且作為一種獨立的體系用在低、中高度的建筑中。
尤其引人關注的是,在強震區使用偏心支撐框架。
此外,可以利用STRESS,STRUDL,或一系列二維或三維計算機分析程序中的任何一種進行結構分析。另外,初步分析中常用中心距尺寸。
剪力墻
剪力墻在加強結構體系剛性的發展過程中又前進了一步。該體系的特點是具有相當薄的,通常是(而不總是)混凝土的構件,這種構件既可提供結構強度,又可提供建筑物功能上的分隔。
在高層建筑中,剪力墻體系趨向于具有相對大的高寬經,即與寬度相比,其高度偏大。由于基礎體系缺少應力,任何一種結構構件抗傾覆彎矩的能力都受到體系的寬度和構件承受的重力荷載的限制。由于剪力墻寬度狹狹窄受限,所以需要以某種方式加以擴大,以便提從所需的抗傾覆能力。在窗戶需要量小的建筑物外墻中明顯地使用了這種確有所需要寬度的體系。
鋼結構剪力墻通常由混凝土覆蓋層來加強以抵抗失穩,這在剪切荷載大的地方已得到應用。這種體系實際上比鋼支撐經濟,對于使剪切荷載由位于地面正上方區域內比較高的樓層向下移特別有效。這種體系還具有高延性之優點,這種特性在強震區特別重要。
由于這些墻內必然出同一些大孔,使得剪力墻體系分析變得錯綜復雜。可以通過桁架模似法、有限元法,或者通過利用為考慮剪力墻的交互作用或扭轉功能設計的專門計處機程序進行初步分析
框架或支撐式筒體結構:
框架或支撐式筒體最先應用于IBM公司在Pittsburgh的一幢辦公樓,隨后立即被應用于紐約雙子座的110層世界貿易中心摩天大樓和其他的建筑中。這種系統有以下幾個顯著的特征:三維結構、支撐式結構、或由剪力墻形成的一個性質上差不多是圓柱體的閉合曲面,但又有任意的平面構成。由于這些抵抗側向荷載的柱子差不多都被設置在整個系統的中心,所以整體的慣性得到提高,剛度也是很大的。
在可能的情況下,通過三維概念的應用、二維的類比,我們可以進行筒體結構的分析。不管應用那種方法,都必須考慮剪力滯后的影響。
這種最先在航天器結構中研究的剪力滯后出現后,對筒體結構的剛度是一個很大的限制。這種觀念已經影響了筒體結構在60層以上建筑中的應用。設計者已經開發出了很多的技術,用以減小剪力滯后的影響,這其中最有名的是桁架的應用。框架或支撐式筒體在40層或稍高的建筑中找到了自己的用武之地。除了一些美觀的考慮外,桁架幾乎很少涉及與外
墻聯系的每個建筑功能,而懸索一般設置在機械的地板上,這就令機械體系設計師們很不贊成。但是,作為一個性價比較好的結構體系,桁架能充分發揮它的性能,所以它會得到設計師們持續的支持。由于其最佳位置正取決于所提供的桁架的數量,因此很多研究已經試圖完善這些構件的位置。實驗表明:由于這種結構體系的經濟性并不十分受桁架位置的影響,所以這些桁架的位置主要取決于機械系統的完善,審美的要求,筒中筒結構:
筒體結構系統能使外墻中的柱具有靈活性,用以抵抗顛覆和剪切力。“筒中筒”這個名字顧名思義就是在建筑物的核心承重部分又被包圍了第二層的一系列柱子,它們被當作是框架和支撐筒來使用。配置第二層柱的目的是增強抗顛覆能力和增大側移剛度。這些筒體不是同樣的功能,也就是說,有些筒體是結構的,而有些筒體是用來支撐的。
在考慮這種筒體時,清楚的認識和區別變形的剪切和彎曲分量是很重要的,這源于對梁的對比分析。在結構筒中,剪切構件的偏角和柱、縱梁(例如:結構筒中的網等)的彎曲有關,同時,彎曲構件的偏角取決于柱子的軸心壓縮和延伸(例如:結構筒的邊緣等)。在支撐筒中,剪切構件的偏角和對角線的軸心變形有關,而彎曲構件的偏角則與柱子的軸心壓縮和延伸有關。
根據梁的對比分析,如果平面保持原形(例如:厚樓板),那么外層筒中柱的軸心壓力就會與中心筒柱的軸心壓力相差甚遠,而且穩定的大于中心筒。但是在筒中筒結構的設計中,當發展到極限時,內部軸心壓力會很高的,甚至遠遠大于外部的柱子。這種反常的現象是由于兩種體系中的剪切構件的剛度不同。這很容易去理解,內筒可以看成是一個支撐(或者說是剪切剛性的)筒,而外筒可以看成是一個結構(或者說是剪切彈性的)筒。
核心交互式結構:
核心交互式結構屬于兩個筒與某些形式的三維空間框架相配合的筒中筒特殊情況。事實上,這種體系常用于那種外筒剪切剛度為零的結構。位于Pittsburgh的美國鋼鐵大樓證實了這種體系是能很好的工作的。在核心交互式結構中,內筒是一個支撐結構,外筒沒有任何剪切剛度,而且兩種結構體系能通過一個空間結構或“帽”式結構共同起作用。需要指出的是,如果把外部的柱子看成是一種從“帽”到基礎的直線體系,這將是不合適的;根據支撐核心的彈性曲線,這些柱子只發揮了剛度的15%。同樣需要指出的是,內柱中與側向力有關的軸向力沿筒高度由拉力變為壓力,同時變化點位于筒高度的約5/8處。當然,外柱也傳
遞相同的軸向力,這種軸向力低于作用在整個柱子高度的側向荷載,因為這個體系的剪切剛度接近于零。
把內外筒相連接的空間結構、懸臂梁或桁架經常遵照一些規范來布置。美國電話電報總局就是一個布置交互式構件的生動例子。
1、結構體系長59.7米,寬28.6米,高183.3米。
2、布置了兩個筒,每個筒的尺寸是9.4米×12.2米,在長方向上有27.4米的間隔。
3、在短方向上內筒被支撐起來,但是在長方向上沒有剪切剛度。
4、環繞著建筑物布置了一個外筒。
5、外筒是一個瞬時抵抗結構,但是在每個長方向的中心15.2米都沒有剪切剛度。
6、在建筑的頂部布置了一個空間桁架構成的“帽式”結構。
7、在建筑的底部布置了一個相似的空間桁架結構。
8、由于外筒的剪切剛度在建筑的底部接近零,整個建筑基本上由兩個鋼板筒來支持。
框格體系或束筒體系結構:
位于美國芝加哥的西爾斯大廈是箱式結構的經典之作,它由九個相互獨立的筒組成的一個集中筒。由于西爾斯大廈包括九個幾乎垂直的筒,而且筒在平面上無須相似,基本的結構體系在不規則形狀的建筑中得到特別的應用。一些單個的筒高于建筑一點或很多是很常見的。事實上,這種體系的重要特征就在于它既有堅固的一面,也有脆弱的一面。
這種體系的脆弱,特別是在結構筒中,與柱子的壓縮變形有很大的關系,柱子的壓縮變形有下式計算:
△=ΣfL/E 對于那些層高為3.66米左右和平均壓力為138MPa的建筑,在荷載作用下每層柱子的壓縮變形為15(12)/29000或1.9毫米。在第50層柱子會壓縮94毫米,小于它未受壓的長度。這些柱子在50層的時候和100層的時候的變形是不一樣的,位于這兩種體系之間接近于邊緣的那些柱需要使這種不均勻的變形得以調解。
主要的結構工作都集中在布置中。在Melbourne的Rialto項目中,結構工程師發現至少有一幢建筑,很有必要垂直預壓低高度的柱子,以便使柱不均勻的變形差得以調解,調解的方法近似于后拉伸法,即較短的柱轉移重量到較高的鄰柱上。
第三篇:中英文翻譯--工業機器人-精品
Industrial robots There are variety of definitions of the term robot.Depending on the definition used, the number of robot installations worldwide varies widely.Numerous single-purpose machines are used in manufacturing plants that might appear to be robots.These machines are hardwried to perform a single function and cannot be reprogrammed to preform a different function.Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted.this definition was developed by the Robot Institute of America.A robot is a reprogrammable multifunctional mainipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.Note that this definition contains the words reprogrammable and multifunctional.It is these two characteristics that separate the ture industrial robot from the various single-purpose machines used in modern manufacturing firms.The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufactureing tasks.The term “multifunctional” means that the robot can, through reprogramming and the use of different end-effectors, perform a number of different manufacturing tasks.Definitions written around these two critical characteristics are becoming the accpted definitions among manufacturing professionals.The first articulated arm came about in 1951 and was used by the U.S.Atomic Energy Commission.In 1954, the first programmable robot was designed by George Devol.It was based on two important technologies:(1)Numerical control(NC)technology.(2)Romote manipulator technology.Numerical contorl technology provided a form of machine control ideally suited to robots.It allowed for the control of motion by stored programs.These programs contain date points to which the sequentially moves, timing signals initiate action and to stop movement, and logic staements to allow for decision making.Remote manipulator technology allowed a machine to be more than just another NC machine.It allowed such machines to become robots that can perform a variety of manufacturing tasks in both inaccessible and unsafe environments.By merging these two technologies, Devol developed the first industrial robot, an unsophisticated programmable materials handling machine.The first commerically produced robot was developed in 1959.In 1962, General Motors Corporation.This robot was produced by Unimation.A major step forword in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milacron.The T-3 robot was the first commercially produced industrial robot controlled by a minicomputer.Numerical control and remote manipulator technology prompted the wide-scale development and use of industrial robots.But major technological developments do not take place simply because of such new capabilities.Something must provide the impetus for taking advantage of these capabilities.In the case of industrial robots, the impetus was economics.The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms.At the same time, foreign competition became a serious problem for U.S.manufacturers.Foreign manufacturers who had undertaken automation on a wide-scale basis, such as those in Japan, began to gain an increasingly large share of the U.S.and world market for manufactured goods, particularly automobiles.Through a variety of automation techniques including robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S.manufacturers.Consequently, in order to survive, U.S.manufacturers were forced to consider any technological developments that could help improve productivity.It became imperative to produce better products at lower costs in order to be competitive with foreign manufacturers.Other factors such as the need to find better ways of performing dangerous manufacturing tasks contributed to the development of industial robots.However, the principal rationale has always been, and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans.Welding and parting are examples of applications where robots can be used more safely than humans.Even though robots are closely associated with safety in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines.Robot work envelops should be accurately calculated and a danger zone surrounding the envelope clearly marked off.Red flooring strips and barries can be used to keep human workers out of a robot’s work envelope.Even with such precautions it is a good idea to have an automatic shutdown system in situations where robots are used.Such a system should have the capacity to sense the need for an automatic shutdown of operations.Fault-tolerant computers and redundant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe enviroment.About componets of a robot system, the componets of a robot system could be discussed either from a systems point of view.Physically, we could divide the system, and controller(computer).Likewise, the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist, gripper, and tool.Most of these terms require little explanation.Consequently, we will describe the components of a robot system from the point of view of information transfer.That is, what information or signal enters the component;what logical or arithmetic operation does the component perform;and what information or signal does the component produce? It is important to note that the same physical component may performs many different information processing operations(e.g., a central computer performs many different calculations on different data).Likewise, two physically separate components many perform identical informations(e.g., the shoulder and elbow actuators both convert signals to motion in very similar ways).中文:
工業機器人
有許多關于機器人這個術語的定義。采用不同的定義,全世界各地機器人的數量就會發生很大的改變。在制造工廠中使用的許多但用途機器可能會看起來像機器人。這些機器是硬連線的,用來完成單一的工作,不能通過重新編程的方法去完成不同的工作。這種單用途的機器不能滿足被人們日益廣泛接受的關于工業機器人的定義。這個定義是由美國機器人協會提出的: 機器人是一個可以改編程序的多功能操作器,被設計用來按預先編制的,能夠完成多種作業的運動程序運送材料,零件,工具或者專用設備。
注意在這個定義中包含有“可以改編程序”和“多功能”這兩個詞。正是這兩個詞將真正的機器人與現代制造工廠中使用的單一用途的機器區分開來。“可以改編程序”這個術語意味著兩件事:機器人根據編寫的程序工作,以及可以通過重新編程來適應不同種類的制造工作的需要。
“多功能”這個詞意味著機器人能通過編程和使用不同的末端執行機構,來完成不同的制造工作。圍繞著兩個關鍵特征所撰寫的定義正在變成為制造業的專業人員接受的定義。
第一個帶有活動關節的手臂于1951年被研制出來,由美國原子能委員會使用。在1954年,第一個可以編程的機器人由喬治·狄弗設計出來。他基于下面來兩項重要技術:
(1)數字控制(NC)技術。(2)遠程操作器技術。
數字控制技術提供了一種非常適合機器人的機器控制技術。它可以通過存儲的程序對運動進行控制。這些程序包含機器人進行順序運動的數據,開始運動和停止運動的時間控制信號,以及作出決定所需要的邏輯語句。
遠程操作器技術使得一臺機器的性能超出一臺數控機器。它可以使這種機器能夠在不容易進入和不安全的環境中完成各種制造任務。通過融合了上述兩種技術,狄弗研制出第一個機器人,它是一個不復雜的,可以編程的物料運送機器人。
第一臺商業化生產的機器人在1959年研制成功。通用汽車公司在1962年安裝了第一臺用于生產線上的工業機器人,它是尤尼梅森公司生產的。在1973年,辛辛提那·米蘭克朗公司研制出T-3工業機器人,在機器人的控制方面取得了較大的進展。T-3機器人是第一臺商業化生產的采用計算機控制的機器人。
數字控制技術和遠程操作器技術推動了大范圍的機器人研制和應用。但是主要的技術進步并不僅僅是由于這些新的應用能力而產生的,而是必須有利用這些能力所得到的效益來提供動力。就工業機器人而言,這個動力是經濟性。
在20世紀70年代中,工資的快速增長大大增加了制造業的企業中的人工費用。與此同時,來自國外的競爭成為美國制造業所面臨的嚴重考驗。諸如日本等外國的制造廠家在廣泛的應用了自動化技術之后,其工業產品,特別是汽車,在美國和世界市場中占據了日益增大的份額。
通過采用包括機器人在內的各種自動化技術,從70年代開始,日本的制造廠家能夠比沒有采用自動化技術的美國制造廠家生產更多的和更便宜的汽車。隨后,為了生存,美國制造廠家進行競爭,必須以比較低的成本,生產出更好的產品。其他的因素,注入尋找能夠更好的完成帶有危險性的制造工作的方式也促進了工業機器人的發展。但是,主要的理由一直是,而且現在仍然是提高生產率。
機器人的一個優點是它們可以在相對于人類來說是危險的環境中工作。采用機器人進行焊接和切斷工作室比由人工來完成這些工作更安全的例子。盡管機器人與工作地點的安全密切相關,它們本身也可能是危險的。
應該仔細的設計和配置機器人和機器人單元,使它們不會傷害人類和其他機器。應該精確的計算出機器人的工作范圍,并且在這個范圍的四周清晰地標出危險區域。可以采用在地上劃出紅顏色的線和設置障礙物以阻止工人進入機器人的工作范圍。
即使有了這些預防措施,在使用機器人的場地中設置一個自動停止工作的系統仍然不失為一個好主意。機器人這個系統應該具有能夠檢測出是否有需要自動停止工作的要求的能力。為了保證能有一個安全的環境,應當安裝容錯計算機和冗余系統來保證在適當的時候停止機器人的工作。
關于機器人系統的組成部分,可以從物質的觀點也可以從系統的觀點來討論機器人系統的組成部分。從物質上看,我們可以將機器人分為機器人,電源系統和控制器(計算機)。機器人本身可以像人一樣被分為基座,肩,肘,腕,抓持器和工具。這些術語中的大部分不需要做任何解釋。
因此,我們將根據信息傳遞的觀點來描述機器人系統的組成部分。也就是,什么信息或者信號進入計算機的組成部分,這個組成部分進行何種邏輯或者算術運算,這個組成部分產生什么信息或者信號?應該認識到,同一個組成部分可以完成許多不同的信息處理工作(例如,中心計算機可以根據不同的數據進行許多不同種類的計算),這一點是很重要的。與之相似,在結構上分開的兩個組成部分可以進行相同的信息操作(例如,肩部和肘部的執行機構用非常相似的方式將信息轉換為運動)。
注:出自《機械工程專業英語》
第四篇:煤礦自動化控制系統
煤礦自動化控制系統 >> 主、副井提升自動控制系統
主、副井提升自動控制系統一、系統概述:
礦井提升機常被人們稱為礦山的咽喉,是礦山最重要的關鍵設備,是地下礦井與外界的唯一通道,肩負著提升煤炭、礦石、下放材料、升降人員和設備等的重要運輸責任,其電控技術的發展對促進礦井生產效率的提高和安全作業,無疑具有極其重大的影響。近年來,隨著我國經濟的快速發展和對礦山資源需求的高速增長,對礦山生產技術提出了越來越高的要求。因此為使用現代化信息技術,充分發揮煤礦管理信息網絡和各生產控制系統應有的功效,實現監管控一體化的理想格局,并達到減員增效的目的;我公司特為現礦井提升機配置新型工業監控系統,組成原煤生產運輸的集中監控系統,由地面計算機統一管理,對主副井提升電控系統進行自動化控制。
二、系統功能原理圖:
(主井定量裝載提升系統圖)(副井操車提升系統圖)
(定量裝載流程圖)
(箕斗提升及卸載流程圖)
(箕斗定量裝載上位機主畫面圖)
三、系統功能:
我國目前正在服務的礦井提升機的電控系統主要有以下四種方案:交直交變頻調速系統、轉子電路串電阻的交流調速系統、直流發電機與直流電動機組成的GM直流調速系統和晶閘管整流裝置供電的V-M直流調速系統。公司本系統以安全、可靠、高效、經濟為出發點,以可靠性原則為依據,使系統不僅適用于煤礦井下有瓦斯,煤塵爆炸危險的惡劣環境,也適用于地面惡劣環境,而且它可完成提升行程的測量和設定;本系統實現了對提升過程的程序控制,精度高,甚至可以取消爬行段;實現了速度、電流以及矢量的數字交換等,對提升機進行閉環調節;實現行程、速度等重要參數及提升狀態的監視;具有良好的控制監視系統;實現了顯示、記錄和打印等有關數據的全部自動化,并能和全礦井監控系統聯網運行。在配備一至二名巡檢員之后,各點無需再配備專門人員,所有監控均由集控室來操作完成。因此該系統明顯降低了設備故障率、簡化了操作、減輕了工人勞動強度、提高了生產運行的安全可靠性、最大限度地縮減裝卸載的時間,達到了提高產量,實現增效的目的。
四、系統組成與特點:
1、本集控系統由監控主站和上井口PLC(提升)、下井口PLC(定量或信號)的監控分站、視頻監控子系統組成。
2、地面監控主站:監控主站由上位工控機、不間斷電源、信號傳輸接口和集控軟件、視頻監控子系統等部分組成。該主站可單機監控各設備,并可通過以太網接口與全礦網絡聯接。主站設在地面集控室,為2臺工業PC機。
上位機系統:上位機系統含工控機、大屏幕LCD、打印機、不間斷電源等,2臺工控機的配置完全相同,組成同時工作的冗余系統。平時,可1臺作為操作員站工作于監控方式、另1臺作為工程師站工作于管理方式,也可2臺都工作于監控方式,均可實現對運輸系統設備的監控和開、停各運輸系統。
組態軟件:上位機組態軟件選用SIMENS公司WINCC6.0(正版)實時監控組態軟件,工作于Window 2000平臺,完成所需的圖形監控、動態圖形顯示、歷史數據采集、狀態趨勢圖、自診斷、報警等諸多功能。集控系統的組網功能,上位PC機可通過以太網接口與全礦綜合自動化網絡連接,實現信息共享。
3、監控分站:在上井口和下井口分別設 KJD24Z 可編程控制機,實現各系統設備的監控及自動控制; 通過PROFIBUS總線接口與監控主站連接。此可編程控制機為本系統的核心主控單元,它采用高性能進口西門子PLC技術,從根本上提高了系統的工作可靠性及使用壽命。其多 CPU 并行處理技術、多重抗干擾技術、模塊化結構和高防護等級設計,配以電源繼電器箱、各種傳感器保護裝置、通信信號裝置以及與驅動裝置相應的控制設備構成適用于各種類型提升系統的高可靠性電控成套設備。并具備完善的保護和通信信號聯絡功能。
4、變頻、高開通信軟件:選用本公司開發的實時監控通信軟件,工作于PC平臺,通過RS485總線完成對高開柜的保護模塊(PA150微機綜合保護)及高壓變頻控制器的數據采集及控制任務,及時將所需的數據、歷史數據記錄、故障及動作記錄參數融入WINCC組態系統中,實現實時在線式的遠程監控功能。
5、高開柜、低壓配電柜:高開室內安裝多臺高開柜,采用雙回路供電,其中2臺是進線柜,1臺PT柜,電機啟動柜(根據電機臺數確定);高開柜內使用小車式高壓BC開關,具有運行穩定,更換方面,維護簡單等特點;高開柜的線路和設備保護選用PA150微機綜合保護裝置,具有檢測精度高,保護動作反應快,數據處理記錄功能強大等特點。在集控室配置多臺GGD低壓配電柜,采用雙回路供電,低壓配電柜主要為提升電控保護系統和盤型閘泵站電機提供電源,同時也為小型負荷提供電源。
6、提升系統保護及數據采集:采用智能數據采集技術、其通過采集模塊以RS485總線與可編程控制機進行通信,實時在線不間斷地采集現場保護數據;本系統保護不但動作靈敏度高、反應及時;而且在安裝施工及維護中,大大節約電纜的使用量、減少施工工程進度和日常維護量。
7、提升系統故障保護: ⑴、立即安全制動故障。該類故障綜合在硬軟件安全電路中, 安全電路正常時吸合, 有緊急故障時釋放, 一旦安全電路釋放, 就會立即封鎖變頻器、跳制動油泵, 并控制油壓系統電磁閥實施安全制動、抱安全閘。主要安全制動故障有: ① 轉動系統故障。如主回路和控制回路電源故障, 主電機過熱、堵轉, 變頻器故障等;②過卷故障;③超速故障。如等速、超速、減速段定點超速和連續超速等;④ 緊急故障;⑤ 液壓制動系統故障。如制動油泵跳, 系統油壓高等;⑥錯向;⑦測速軸編碼器斷線;⑧松繩故障。
⑵、先電氣制動、后安全制動故障。故障發生后, 轉動系統會自動進行減速, 當速度降到爬行速度時會立即轉為緊急制動。故障主要有事故停車和閘瓦磨損等。⑶、完成本次開車后, 不允許再次開車故障。開車前如出現這類故障, 則開不起車;如在運行過程中出現, 則允許本次開車完成, 但不允許下次開車, 除故障解除。故障主要有電機過熱報警、液壓站油溫過高等。
8、視頻監控子系統:在提升系統重要崗點安裝防爆廣角度紅外攝像頭,進行現場信息采集,以光纖為載體傳入集控室主機柜,經視頻分配器輸出至各監視器和顯示服務器,實現了各崗點設備運行狀態和生產情況的24小時全天候監控,發現問題可以及時處理,有效降低了事故發生率,提高了生產效率。9.系統特點主要概括:
⑴、主、副井提升信號及自動裝卸載各自具有集控、自動、手動三種工件方式,手動方式用于裝卸載的調試和檢修。信號在檢修狀態只有慢車信號。
⑵、自動裝載定量、定容、定時保護及顯示。
⑶、故障自動報警功能,及傳感器的故障自診斷。
⑷、提升次數記憶功能和提升信號的斷電記憶功能。
⑸、有工業光纖環網冗余通訊功能。
⑹、上、下井口信號間的閉鎖功能、檢測箕斗的裝卸載位置異常功能。
⑺、防止二次裝載保護功能。
⑻、主、副井提升信號及自動裝卸載有上位機系統、能監測各個設備的運行狀態、故障記憶查詢、產量的累計及報表、空載、滿載、超載的標定,及定量斗假余煤的校零功能。
⑼、與絞車控制回路的閉鎖功能、及PROFIBUS-DP軟件通訊回路閉鎖。
⑽、有聯絡呼叫功能。⑾、有井上下煤倉煤位的連續實時監測功能。
⑿、有與全礦井綜合自動化的以太網接口。
⒀、系統有供電電源的絕緣監測與電壓監測功能。
⒁、箕斗的卸載狀態監視功能,檢測箕斗是否卸空。
⒂、有對裝載皮帶的溫度、煙霧、跑偏、堆煤、斷帶及拉線急停等八大保護功能。
⒃、有對動力負荷的保護上位機監測功能,如缺相,短路,堵轉,過載,相不平衡,漏電等故障進行監測保護。
⒄、整個系統的通過網絡訪問維護功能。
五、依據的標準及規范:
GB3836.1-2000爆炸性氣體環境用電氣設備 第1部分:通用要求 GB3836.2-2000爆炸性氣體環境用電氣設備 第1部分:隔爆型“d”
GB3836.4-2000爆炸性氣體環境用電氣設備 第1部分:本質安全型“i” GB4942.2 低壓電器外殼防護等級
MT209 煤礦通信、檢測、控制用電工電子產品通用技術要求 煤礦安全規程(2004)
第五篇:行政管理專業畢業論文中英文翻譯
新公共管理的現狀
歐文·E·休斯
(澳大利亞莫納什大學管理系)
毫無疑問,世界上許多國家,無論是發達國家還是發展中國家,在20世紀80年代后期和90年代初期都開始了一場持續的公共部門管理變革運動。這場改革運動至今仍在很多方面繼續對政府的組織和管理產生著影響。人們對于這些改革的看法眾說紛紜,莫衷一是。批評家尤其是英國和美國的批評家們認為,新模式存在著各種各樣的問題,而且也不具有國際普遍性的改革意義,公共管理不可能被稱為范式。批評幾乎涵蓋了變化的各個方面。大多數批評都屬于學術上的吹毛求疵。不同的思想流派討論著細枝末節;學術期刊上的文章也越來越抽象,遠離現實。同時,公共管理者在實踐中不斷推動和實施著這項變化和改革。正如我在其他文章中所認為的那樣,在大多數國家,傳統的公共行政模式已經為公共管理模式所取代。公共部門的變革回應了幾個相互聯系的重大現實問題,包括:職能公共部門提供公共服務的低效率;經濟理論的變化;私營部門相關變化產生的影響,尤其是全球化作為一種經濟力量的興起;技術變化使得分權同時又能更好地控制全局成為可能。行政管理可以分為三個鮮明的發展階段:前傳統階段、公共行政傳統模式階段和公共管理改革階段。每個階段都有自己的管理模式。從上一個階段過渡到下一個階段并非輕而易舉,從傳統的公共行政到公共管理的過渡至今尚未完成。但這只是時間的問題。因為新模式背后的理論基礎非常強大。這場變革運動以“新公共管理”著稱,盡管這個名稱引起了爭論,然而它不但在蓬勃發展著,而且是對大多數發達國家已經采取的管理模式的最佳表述。傳統的行政模式相對于它所處的時代是一項偉大的改革,但是,那個時代已經過去了。
一、前傳統模式
很顯然,在19世紀末官僚體制理論尚未健全之前,已經存在著某種形式的行政管理。公共行政已經有很長的歷史了,它與政府這一概念以及文明的興起一樣歷史悠久。正如格拉登(Glad2den)指出的那樣,行政的某種模式自從政府出現之后就一直存在著。首先是創始者或領導者賦予社會以可能,然后是組織者或行政者使之永恒。行政或事務管理是所有社會活動中的中間因素,雖然不是光彩奪目,但對社會的持續發展卻是至關重要的。公認的行政體制在古埃及就已經存在了,其管轄范圍從每年的尼羅河泛濫引起的灌溉事務到金字塔的建造。中國在漢朝就采用了儒家規范,認為政府應當是民選的,不是根據出身,而是根據品德和能力,政府的主要目標是謀取人民的福利。在歐洲,各種帝國——希臘、羅馬、神圣羅馬、西班牙等首先是行政帝國,它們由中央通過各種規則和程序進行管理。韋伯認為,中世紀“現代”國家的發展同時伴隨著“官僚治理結構的發展”。盡管這些國家以不同的方式進行管理,但它們具有共同的特點,這可以稱為前現代。也就是說,早期的行政體制本質上是人格化的,或者說是建立在韋伯所說的“裙帶關系”的基礎上,也就是說以效忠國王或大臣等某個特定的人為基礎,而不是非人格化的;以效忠組織或國家為基礎而不是以個人為基礎。盡管存在著這么一種觀點,即認為行政管理本身不為人贊許的特點僅僅來自于傳統模式,但早期的做法常常導致謀求個人利益的貪污行為或濫用職權。在早期行政體制下,我們現在看來覺得很奇怪的做法曾是當時執政政府職能的普遍行為。那些一心走仕途的人往往依靠朋友或親戚獲取工作或買官,這就是說先以錢來收買海關官員或稅收官員,然后再向客戶伸手要錢,從而既回收了最初的買官投資成本,又可以大賺一筆。美國19世紀的“政黨分肥制度”意味著在執政黨發生了變化的同時,政府中的所有行政職位也發生了變化。前現代官僚體制是“個人的、傳統的、擴散的、同類的和特殊的”,而按照韋伯的論證,現代官僚體制應當是“非人格化的、理性的、具體的、成就取向的和普遍的”。個人化政府往往是低效率的:裙帶關系意味著無能的而不是能干的人被安排到領導崗位上;政黨分肥制常常導致腐敗,此外還存在著嚴重的低效率。傳統行政模式的巨大成功使得早期做法看起來很奇怪。專業化、非政治化行政在我們看來是如此順理成章,以至難以想象到會有別的制度存在。西方的行政制度即使簡單到通過考試選拔官員的想法,也是直到1854年英國的諾思科特—屈維廉報告出臺后才開始建立,盡管這種制度在中國早已通行很久了。
二、傳統的公共行政模式
在19世紀末期,另外一種模式開始在全世界流行,這就是所謂的傳統行政模式。它的主要理論基礎來源于幾個國家的學者,即,美國的伍德羅·威爾遜和德國的馬克斯·韋伯,人們把他們和官僚制模式相聯系;弗雷德里克·泰勒系統地闡述了科學管理理論,該理論也來源于對美國私營部門的運用,為公共行政提供了方 法。與其他理論家不同,泰勒沒有著力關注公共部門,可是他的理論卻在該領域具有廣泛影響。這三位理論家是傳統公共行政模式的主要影響者。對于其他國家來說,還要加上諾思科特和屈維廉,他們對美國之外的國家的行政尤其是威爾遜的行政體制產生了重要影響。在19世紀中期,諾思科特和屈維廉最先提出了通過考試和品德來任命官員的主張,并提出了無偏見和行政中立的觀點。傳統的行政模式有以下幾個主要特點: 1.官僚制。政府應當根據等級、官僚原則進行組織。德國社會學家馬克斯·韋伯對官僚制度有一個經典的、清晰的分析。雖然這種官僚制思想在商業組織和其他組織中采用過,但它在公共部門得到了更好和更長久的執行。
2.最好的工作方式和程序都在詳盡全面的手冊中加以規定,以供行政人員遵循。嚴格地遵守這些原則將會為組織運行提供最好的方式。
3.官僚服務。一旦政府涉足政策領域,它將成為通過官僚體制提供公共產品和服務的提供者。
4.在政治、行政二者的關系中,行政管理者一般認為政治與行政事務是可以分開的。行政就是貫徹執行指令,而任何事關政策或戰略事務的決定都應當由政治領導者做出,這可以確保民主責任制。
5.公共利益被假定為公務員個人的惟一動機,為公眾服務是無私的付出。6.職業化官僚制。公共行政被看作是一種特殊活動,因而要求公務員保持中立、默默無聞、終身雇用以及平等地服務于任何一個政治領導人。
7.行政任務的書面含義是執行他人的指令而不承擔由此而致的個人責任。通過對比早期的行政模式,我們可以更好地理解韋伯體系的主要優點和不同點。韋伯制度和它以前的各種模式最重要的區別在于:以規則為基礎的非人格化的制度取代了人格化的行政管理制度。一個組織及其規則要比組織中的任何個人都重要。官僚制度就其運作以及如何對客戶做出反應方面必須是非人格化的。正如韋伯所論證的那樣“:將現代公職管理歸并為各種規定深深地觸及了它的本質。現代公共行政理論認為,以法令形式來命令執行某些事務的權威已被合法地授予了公共機關。這并沒有授予某機構具體情況下通過指令實施某種事務的權力。它只能是抽象地管制某種事務。與此形成鮮明對比的是,通過個人特權和賦予特許權管制所有事務。后者的情況完全是由世襲制支配的,至少就這些事務不是不可 3 被侵犯的傳統而言是這種情況。”
這一點非常重要。早期的行政管理以人際關系為基礎,個人要忠誠于親戚、保護人、領導人或政黨,而不是對體制負責。有時,早期行政管理在政治上是比較敏感的,因為行政機關的人員是任命的,他們更是政客的臂膀或主流階級。但是,它也常常是專制的,專制的行政可能是不公平的,特別是對那些不能夠或者不愿意投入個人政治游戲的人來說更是如此。一個以韋伯原則為基礎的非人格化的制度可以完全消除專制——至少在理想情況下是如此。檔案的存在、前例原則的參照和法律依據意味著在相同的環境中總是會做出相同的決策。在這種情況下不僅效率更高,而且公民和官僚等級制中的人員都知道自己所處的立場。
其他的差別均與此相聯系。在各種規定和非人格化的基礎上,會很自然地形成嚴格的等級制度。等級制度及其規定在個人離開組織后保持不變。雖然韋伯強調的是整個制度,但他也注意到了官僚制組織中的個人任期和條件。
傳統行政模式獲得了極大的成功,它為全世界各國政府所廣泛采用。無論是從理論上還是從實踐上看,它都顯示出了優勢。與以前腐敗盛行的制度相比,它更具效率,而且職業化公務員的思想對個人以及業余服務都是一個巨大的進步。然而,該模式現在也暴露出了問題,這些問題表明該模式即使不能說已經過時了,也可以說即將過時。
公共行政的理論支柱已經難以描述政府現實了。政治控制理論已經問題重重。行政意味著遵從他人的指令,因此要求有一個秩序井然的收發方法。指令的發出者與實施者之間有一個明確的劃分。但是這并不現實,并且隨著公共服務規模和領域的擴大而愈加不可能。傳統模式的另一理論支柱——官僚制理論也不再被認為是組織的特別有效形式。正式的官僚體制可能有它的優勢,但人們也認為它往往培養墨守成規者而不是創新者;鼓勵行政人員規避風險而不是勇于冒險,鼓勵他們浪費稀缺資源而不是有效利用。韋伯曾把官僚制看成是“理想類型”,但現在這種理想類型卻培養了惰性、喪失進取心、導致平庸和低效率,這些被認為是公共部門的特有病。它也由此遭受批評。實際上“,官僚”這個詞在今天更多地被看成是低效率的同義詞。
三、新公共管理模式
20世紀八九十年代,在公共部門出現了一種針對傳統行政模式的缺陷的新 管理方法。這種方法可以緩解傳統模式的某些問題,同時也意味著公共部門運轉方面發生了引人注目的變化。這種新的管理方法有很多名稱“:管理主義”、“新公共管理”“、以市場為基礎的公共行政”“、后官僚制典范”或“企業型政府”。到90年代后期,人們越來越傾向于使用“新公共管理”的概念。
盡管新公共管理的名稱眾多,但對于公共部門管理發生的實際變化而言,人們還是有一種共識。第一,無論這種模式叫什么,它都代表著一種與傳統公共行政不同的重大變化,它更為關注結果的實現和管理者的個人責任。第二,它明確表示要擺脫古典官僚制,從而使組織、人事、任期和條件更加靈活。第三,它明確規定了組織和人事目標,這就可以根據績效指標測量工作任務的完成情況。同樣,還可以對計劃方案進行更為系統的評估,也可以比以前更為嚴格地確定政府計劃是否實現了其預定目標。第四,高級行政管理人員更有可能帶有政治色彩地致力于政府工作,而不是無黨派或中立的。第五,政府更有可能受到市場的檢驗,將公共服務的購買者與提供者區分開,即將“掌舵者與劃槳者區分開”。政府介入并不一定總是指政府通過官僚手段行事。第六,出現了通過民營化和市場檢驗、簽訂合同等方式減少政府職能的趨勢。在某種情況下,這是根本性的。一旦發生了從過程向結果轉化的重要變革,所有與此相連的連續性步驟就都是必要的。
霍姆斯(Holmes)和尚德(Shand)對這次改革的特點作了一個特別有用的概括。他們把新公共管理視作范式,這種好的管理方法具有以下特點:(1)這是一種更加富有戰略性或結構導向型的決策方法(強調效率、結果和服務質量)。(2)分權式管理環境取代了高度集中的等級組織結構。這使資源分配和服務派送更加接近供應本身,由此可以得到更多相關的信息和來自客戶及其他利益團體的反饋。(3)可以更為靈活地探索代替直接供應公共產品的方法,從而提供成本節約的政策結果。(4)關注權威與責任的對應,以此作為提高績效的關鍵環節,這包括強調明確的績效合同的機制。(5)在公共部門之間和內部創造一個競爭性的環境。(6)加強中央戰略決策能力,使其能夠迅速、靈活和低成本地駕馭政府對外部變化和多元利益做出反應。(7)通過要求提供有關結果和全面成本的報告來提高責任度和透明度。(8)寬泛的服務預算和管理制度支持和鼓勵著這些變化的發生。
新公共管理并沒有認為實現某結果有一條最好的途徑。管理者在被賦予責任之前并沒有被告知如何獲得結果。決定工作方式是管理者的一個職責,如果沒有 5 實現預定的目標,管理者對此應當承擔責任。
四、結論
政府管理在過去的一百五十年里經歷了三種模式。首先是人格化或前現代行政模式,當該模式日益暴露其缺陷以及出于提高效率的目的,它就被第二種模式即傳統的官僚行政模式所取代。同樣,當傳統行政模式問題重重時,它就為第三種模式即新公共管理取代,從政府轉向替代性市場。20世紀80年代以來,市場的主導地位就如同20世紀20年代到60年代官僚制度居主導地位一樣。在任何一種政府制度中,官僚和市場都是共存的,只是在某個階段一種形式占主導地位,而在另一階段,另一種形式占主導地位。新公共管理時代是官僚制日益削弱而市場在公共行政領域占據統治地位的時期。
在現實中,市場和官僚體制相互需要,相互補充。新公共管理不可能完全代替官僚制,正如1989年以前的東歐,官僚制不可能代替市場一樣。但新公共管理運動表明的是,早期傳統官僚制的許多功能都可以而且現在經常由市場來執行。在一個官僚制作為組織原則日益削弱的環境下,市場解決方案就會被推出。當然不是所有的市場藥方都能成功,但這不是問題的核心。政府將從新公共管理這一工具箱中探尋到解決方案。如果這些方案行之無效,政府就會從同一來源中尋找其他方案。政府管理背后的理論基礎已經發生了變革,我們完全可以用“范式”這一術語來描述它。在公共行政學術界,有許多對新公共管理持否定態度的批評家。但是他們的批評對迅速開展的政府改革影響很小。在新公共管理模式之后,會出現另一種新的模式,但肯定不會回到傳統的行政模式。The New Public Management Situation
Owen E.Hughes Monash University Management(Australia)
No doubt, many countries in the world, and both developed countries and developing countries, in the late 1980s and early 1990s began a continuous public sector management reform movement.The reform movement is still in many aspects government continue to the organization and management of the influence.People in these reforms view repudiating them.Critics especially in Britain and the United States, critics say the new mode of various problems exist, but also does not have the international prevailing reform of public management, could not be called paradigm.Criticism from almost every aspect of the change.Most of the academic criticism belong to the mouth.Different schools of thought in detail discussion, The academic journal articles and abstraction, from reality.At the same time, in the practice of public management and implementation of the reform and the change.As I in other articles in the thought, in most countries, the traditional public administrative mode for public management mode has been replaced.The reform of public department responded to the realities of several interrelated problems, including: the function of public sector provide public services of low efficiency, Economic theory of change, Private sector related changes impact of globalization, especially as a kind of economic power, Technology changes made decentralization and better control globally becomes possible.The administrative management can be divided into three stages: the development of distinct phases, and public administration before traditional pattern and public management reform stage.Each stage has its own management mode.From a stage of transition to the next stage is not easy, from the traditional public administration to public administration has not yet completed the transition.But it was only a matter of time.Because the new mode of theoretical basis is very strong.The new public management movement “, ”although this name, but it is not only a debate in the booming, and in most developed countries have taken the best management mode of expression.The traditional administrative mode than it's age is a great reform, but that time has passed.A traditional pattern Obviously, in the late 19th century bureaucracy system theory, not sound already exists some form of administrative management.Public administration has a long history, and it is the concept of a government and the rise of civilization as history.As the case Glad2den Osama bin laden(point), a model of administrative since the government appears has existed.First is endowed with founder or leader, then is the social or administrative person to organizers of eternity.Administration management or business is all in social activities, although not among factors, but the glow of social sustainable development is of vital importance.Recognized administrative system in ancient Egypt is already exists, its jurisdiction from the Nile flooding caused by the year to build the pyramids irrigation affairs.China is adopted in the han dynasty, Confucian norms that government should be elected, not according to the background, but according to the character and ability, the government's main goal is to seek the welfare of the people.In Europe, various empirebegan to establish in China, although the system has long passage.The traditional public administrative pattern In the late 19th century, additionally one kind of pattern on the world popular, this is the so-called traditional administrative pattern.Its main theoretical basis from several countries, namely, the American scholars and Germany Woodrow Wilson of Max Weber's, people put their associated with bureaucracy model, Frederick Tyler systematically elaborated the scientific management theory, the theory of the private sector from America, for public administration method was provided.And the other theorists, Taylor without focusing on public sector, but his theory was influential in this field.The three traditional public administration mode is theorist of main effect.In other countries, plus G..M.Trevelyan and North America, the state administration of administrative system, especially the Wilson has produced important influence.In the 19th century, the north G..M.Trevelyan and put forward through the examination and character, and appointed officials put forward bias and administrative neutral point of view.The traditional administrative pattern has the following features: 1.The bureaucracy.The government shall, according to the principle of bureaucratic rank and organization.The German sociologist Max Weber bureaucracy system of a classic, and analysis.Although the bureaucracy in business organizations and other tissues, but it is in the public sector got better and longer.2.The best way of working and procedures are in full manual detail codes, for administrative personnel to follow.Strictly abide by these principles will run for the organization provides the best way.3.Bureaucratic service.Once the government policy areas in, it will be through the bureaucracy to provide public products and service providers.4.In political and administrative two relations, political and administrative managers generally think of administrative affairs can be separated.Administration is the implement instruction, and any matter policy or strategic affairs shall be decided by the political leaders, which can ensure that the democratic system.5.Public interests are assumed to individual civil servants, the only motive for public service is selfless paying.6.Professional bureaucracy.Public administration is viewed as a kind of special activities, thus requirements, obscure, civil servants neutral equal employment and lifelong service to any political leaders.7.The administrative task is to carry out the meaning of the written instructions and not others assume the personal responsibility.Through the comparison of the early administrative pattern, we can better understand the main advantages and Webber system differences.Webber system and it is the most important mode of various before the difference: the rule-based impersonal system replaced the personification of administrative management system.An organization and its rules than any of the people are important organization.Bureaucracy is its operation and how to respond to customer must is personified.As Weber has demonstrated that the modern office management “, will be incorporated into various regulations deeply touched it.The modern public administration by law theory, to command certain affairs authority has been awarded the legitimate public authority.This does not grant an institution specific cases through some instructions.It only matters is abstractly control some issues.In contrast, through personal privileges and give concession regulation of all affairs.The latter is completely dominated by the hereditary system, at least these affairs is not the traditional infringement is this situation.” It is very important.Early administration based on personal relationships, be loyal to relatives, protect, leaders or political, rather than on the system.Sometimes, the early administration is politically sensitive, because of the administrative organs of the staff is appointed, they also politicians arms or mainstream class.However, it is often autocratic, autocratic administration may be unfair, especially for those who can't or unwilling to input personal and political game.One of the basic principles for with weber impersonal system to completely eliminate autocraticbureaucracy theory is no longer considered particularly effective form of organization.Formal bureaucracy could have its advantages, but people think it often training to routineer and innovators, Encourage executives rather than risk aversion risk-taking, encourage them to waste instead of effective use of scarce resources.Webb was the bureaucracy is regarded as an ideal type “, ”but now this ideal type is inert, cultivate the progressive, leads to low efficiency, these mediocrity and is believed to be the public sector of the special disease.It is also criticized.Actually, the word “bureaucracy in today's more likely as low efficiency of synonyms.The new public management mode In the 1980s, the public sector is a traditional administrative pattern of new management methods of defects.This method can alleviate some of the problems of traditional pattern, also means that the public sector operation aspects has changed significantly.The new management method has many names: management of ”individualism“, ”the new public administration“, based on the market of public administration ”, after the bureaucracy model “or” entrepreneurial government “.To the late 1990s, people tend to use ”and the concept of new public administration“.Although the new public management, but for many of the names of public management of department of actual changes happened, people still have a consensus.First, no matter what, it is called mode with traditional represents a significant change of public administration, different more attention and managers of the individual responsibility.Second, it is clear to get rid of the classical bureaucracy, thereby organization, personnel, term and conditions more flexible.Third, it stipulates the organization and personnel, and it can target according to the performance indicators measuring task completion.Also, to plan the assessment system for more than ever before, and also can be more strictly determine whether the government plans to achieve its objectives.Fourth, the senior executives are more likely to color with political government work, rather than independent or neutral.Fifth, the more likely the inspection by the market, buyers of public service provider and distinguish ”helmsman, with the rower to distinguish“.Government intervention is not always refers to the government by means of bureaucracy.Sixth, appeared through privatization and market means such as inspection, contract of government function reduce trend.In some cases, it is fundamental.Once happened during the transformation from the important changes to all connected with this, the continuity of the steps are necessary.Holmes and Shand as a useful characteristics of generalization.They put the new public management paradigm, the good as management method has the following features:(1)it is a more strategic or structure of decision-making method(around the efficiency, quality and service).(2)decentralization type management environment replaced concentration level structure.The resource allocation and service delivery closer to supply, we can get more itself from the customers and related information and other interest groups.(3)can be more flexible to replace the method of public products supply directly, so as to provide cost savings of the policy.(4)concerned with the responsibility, authority as the key link of improving performance, including emphasize clear performance contract mechanism.(5)in the public sector, and between internal to create a competitive environment.(6)strengthen the strategic decision-making ability, which can quickly, flexible and low cost to manage multiple interests outside change and the response.(7)by request relevant results and comprehensive cost reports to improve transparency and responsibility.(8)general service budget and management system to support and encourage the change.The new public management and realize a result that no one in the best way.Managers in endowed with responsibility and without being told to get results.Decision is a management job duties, if not for achieving goals, managers should assume responsibility.Conclusion The government management over the past 150 years experienced three modes.First is the personification of modern administrative mode, or when the pattern of its defects and increasingly exposed to improve efficiency, it is the second mode of traditional bureaucracy model is replaced.Similarly, when the traditional administrative mode problems, it is the third model is the new public management, from the government to alternative market.Since 1980s, the dominance of the market as the 1920s to 1960s dominant bureaucracy.In any kind of government, market and bureaucratic system are coexisting, just a form at some stage dominant, and in another stage of another kind of form, the dominant.The new public management is increasingly weakened and bureaucracy in the public administration field market dominant period.In reality, the market and bureaucracy, mutual complement each other.The new public management may not be completely replace the bureaucracy, as in 1989, the eastern Europe before bureaucracy could not instead of the market.But the new public management movement is early traditional bureaucracy, many functions can be and often by market now.In a bureaucracy system for organizational principle is weakened environment, market solutions will be launched.Of course not all market prescription can succeed, but this is not the issue.The government of new public management will be a toolbox dowsed solutions.If the scheme of the ineffective, the government will from the same source for other solutions.The theory behind the government management has already happened, we can use the term ”paradigm" to describe it.In public administration academia, many of the new public management denial of critics.But their criticism of the government reform quickly.In the new public management mode, another a kind of new mode, but certainly not returned to the traditional administrative pattern.