久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

提公因式分解因式教案

時間:2019-05-12 17:12:44下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《提公因式分解因式教案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《提公因式分解因式教案》。

第一篇:提公因式分解因式教案

因式分解教案

(提公因式一)

執教 許小明

二零一二年三月三日

●課

§2.2.1 提公因式法

(一)●教學目標

(一)教學知識點

讓學生了解多項式公因式的意義,初步會用提公因式法分解因式.(二)能力訓練要求

通過找公因式,培養學生的觀察能力.(三)情感與價值觀要求

在用提公因式法分解因式時,先讓學生自己找公因式,然后大家討論結果的正確性,讓學生養成獨立思考的習慣,同時培養學生的合作交流意識,還能使學生初步感到因式分解在簡化計算中將會起到很大的作用.●教學重點

能觀察出多項式的公因式,并根據分配律把公因式提出來.●教學難點

讓學生識別多項式的公因式.●教學過程

公因式:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式。怎樣確定多項式的公因式?公因式與多項式的各項有什么關系?

怎樣正確多項式各項的公因式?系數:

1、公因式的系數是多項式各項系數的最大公約數;字母:

2、字母取多項式各項中都含有的相同的字母;指數:

3、相同字母的指數取各項中最小的一個,即字母最低次冪;注:多項式各項的公因式可以是單項式,也可以是多項式。例: 找3x2y2–6xy3的公因式。因為系數:最大公約數3字母:相同字母xy2指數:最低次冪所以,3x2-6x 的公因式是3x 提公因式法-分解因式如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。例1 把9x2–6xy+3xz 分解因式.解:9x2–6 x y + 3x z3x-3x·2y + 3x·z =3x·=3x(3x-2y+z)方法步驟:①找出—公因式;②提出—公因式,(用多項式中每一項除以公因式得提取后的另一個因式)

例2小穎解的有誤嗎?把8 a 3b2 –12ab 3 c+ ab分解因式.解:8 a3b2 –12ab3c+ ab= ab·8a2b-ab·12b2c +ab·1= ab(8a2b-12b2c)當多項式的某一項和公因式相同時,提公因式后剩余的項是1。錯誤例3 把-24x3–12x2+28x 分解因式.解:-24x3–12x2+28x=-(24x3+12x2-28x)=-(4x.6x2+4x.3x-4x.7)2 +3x-7)-4x(6x=當多項式第一項系數是負數,通常先提出“-”號,使括號內第一項系數變為正數,注意括號內各項都要變號。提公因式法分解因式正確的找出多項式各項的公因式。注意:1 多項式是幾項,提公因式后也剩幾項。2 當多項式的某一項和公因式相同時,提公因式后該項剩余1(不能漏寫1)。3 當多項式第一項系數是負數,通常先提出“-”號,使括號內第一項系數變為正數,注意括號內各項都要變號。練習把下列各式分解因式:?25x-5?3 x3-3x2 –9x ?8a 2c+ 2b c ?-4a 3b3+ 6 a2b-2ab?-2x2 –12xy2 +8xy3

想一想:法分解因式乘多項式有什么關系?提公因式法與單項式乘多項是互為逆運算關系.思考題

1、分解因式計算(-2)101+(-2)1002、利用簡便方法計算:4.3x199.8+0.76x1998-1.9x199.83、已知a+b=3, ab=2,求代數式a2b + 2 a2b2 +a b2 的值。

4、把9am+1–21 am+7a m-1分解因式.小結

1、確定公因式的方法:(1)公因式的系數是多項式各項系數的最大公約數。(2)字母取多項式各項中都含有的相同的字母。(3)相同字母的指數取各項中最小的一個,即最低次冪

2、提公因式法分解因式:兩步:第一步,找出公因式;第二步,提公因式,即用多項式除以公因式.1.2.3.

第二篇:提公因式法分解因式的教學設計

提公因式法分解因式的教學設計

教學目標

(一)知識認知要求

進一步讓學生掌握用提公因式法分解因式的方法.(二)能力訓練要求

進一步培養學生的觀察能力和類比推理能力.(三)情感與價值觀要求

通過觀察能合理地進行分解因式的推導,并能清晰地闡述自己的觀點.教學重點

能觀察出公因式是多項式的情況,并能合理地進行分解因式.教學難點

準確找出公因式,并能正確進行分解因式.教學過程

一、創設問題情境,引入新課

上節課我們學習了用提公因式法分解因式,知道了一個多項式可以分解為一個單項式與一個多項式的積的形式,那么是不是所有的多項式分解以后都是同樣的結果呢?本節課我們就來揭開這個謎.二、新課講解

[例2]把a(x-3)+2b(x-3)分解因式.分析:這個多項式整體而言可分為兩大項,即a(x-3)與2b(x-3),每項中都含有(x-3),因此可以把(x-3)作為公因式提出來.解:a(x-3)+2b(x-3)=(x-3)(a+2b)

從分解因式的結果來看,是不是一個單項式與一個多項式的乘積呢? [例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.分析:雖然a(x-y)與b(y-x)看上去沒有公因式,但仔細觀察可以看出(x-y)與(y-x)是互為相反數,如果把其中一個提取一個“-”號,則可以出現公因式,如y-x=-(x-y).(m-n)3與(n-m)2也是如此.解:(1)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)

(2)6(m-n)3-12(n-m)2 =6(m-n)3-12[-(m-n)]2 =6(m-n)3-12(m-n)2 =6(m-n)2(m-n-2).二、做一做

請在下列各式等號右邊的括號前填入“+”或“-”號,使等式成立(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).解:(1)2-a=-(a-2);(2)y-x=-(x-y);(3)b+a=+(a+b);(4)(b-a)2=+(a-b)2;

:(5)-m-n=-(m+n);

三、課堂練習

1.把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)2(y-x)+3(x-y)(6)mn(m-n)-m(n-m)2.補充練習:把下列各式分解因式(1)5(x-y)3+10(y-x)2(2)m(a-b)-n(b-a)

(3)m(m-n)(p-q)-n(n-m)(p-q)(4)(b-a)2+a(a-b)+b(b-a)

四.課時小結

本節課進一步學習了用提公因式法分解因式,公因式可以是單項式,也可以是多項式,要認真觀察多項式的結構特點,從而能準確熟練地進行多項式的分解因式.五、課后作業(略)六.活動與探究

把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)

教學反思:

《數學課程標準》提出學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者,本節課以開放式的課堂形式組織教學,讓學生進行合作學習,共同操作與探索,共同探究、解決問題.在教學中能注意充分調動學生的學習積極性、主動性,堅持做到以人為本,以學生為先,立足于讓學生先看、先想、先說、先練,根據自己的體驗,用自己的思維方式,通過實驗、思考、合作、交流學好知識.

第三篇:提公因式教案

提公因式法教學設計

——李蕓領

教學目標:

1、使學生了解因式分解的意義,理解因式分解的概念及其與整式乘法的區別和聯系。

2、使學生理解提公因式法并能熟練地運用提公因式法分解因式。

3、通過學生自行探求解題途徑,培養學生觀察、分析和創新能力,深化學生逆向思維能力。

教學重點:

因式分解的概念及提公因式法。

教學難點:

正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

教學過程設計:

一、復習提問

乘法對加法的分配律。

二、新課

1.新課引入:用類比的方法引入課題。

在學習分數時,我們常常要進行約分與通分,因此常常要把一個數分解因數(即分解約數)。例如,把15分解成3×5,把42分解成2×3×7。

前面,我們學習的整式除法,除式都是單項式,如果除式是多項式該如何進行運算呢?這就要求我們能將除式和被除式進行分解,然后進行約分,就象分數約分一樣。這樣就引出了“怎樣將一個多項式寫成幾個單項式或多項式的積的形式”這樣一個問題,這就是我們今天將要學習的“因式分解”。所以,因式分解是繼續學生整式運算的需要,是一個工具,我們一定要把這個工具先準備好,將來才能更好地學習后續知識。那么,到底要怎樣進行因式分解呢?在前面我們學習了整式的乘法,幾個整式相乘的結果可能是一個多項式,那么一個多項式如何化成幾個整式乘積的形式呢?下面我們就開始這一章知識的學習。

2.因式分解的概念:

請學生每人寫出一個單項式與多項式相乘、多項式與多項式相乘的例子,并計算出其結果。(老師按學生所說在黑板寫出幾個。)如:m(a+b+c)=ma+mb+mc 2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10 等等。

再請學生觀察它們有什么共同的特點? 特點:左邊:整式×整式;右邊:是多項式??梢?,整式乘以整式,只要有一個因式是多項式,其結果就是多項式。下面,我們把上面的式子反過來寫: ma+mb+mc= m(a+b+c)2x2y-4x2y2+2xy =2xy(x-2xy+1)a2-b2 =(a+b)(a-b)am+an+bm+bn =(a+b)(m+n)-x2+7x-10=(x-5)(2-x)上面這些式子,從形式上看,就是把多項式變形為了一些整式的乘積的形式,我們就把這種多項式的變形叫做因式分解。

定義:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式。

從以上情況,我們發現,因式分解與整式是一個互逆的過程: 如:因式分解:ma+mb+mc=m(a+b+c)。整式乘法:m(a+b+c)=ma+mb+mc。

讓學生說出因式分解與整式乘法的聯系與區別。聯系:同樣是由幾個相同的整式組成的等式。

區別:這幾個相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.兩者是方向相反的恒等變形,二者是一個式子的不同表現形式,一個是多項式的表現形式,一個是兩個或幾個因式積的表現形式.

1、下列各式從左到右哪些是因式分解?(1)x2-x=x(x-1)(√)(2)a(a-b)=a2-ab(×)(3)(a+3)(a-3)=a2-9(×)(4)a2-2a+1=a(a-2)+1(×)(5)x2-4x+4=(x-2)2(√)

因式分解的方法有很多,下面我們學習一種常見的,也是最基本的因式分解方法。

3.提公因式法:

我們看多項式:ma+mb+mc 請學生指出它的特點:各項都含有一個公共的因式m,這時我們把因式m叫做這個多項式各項的公因式.

注意:公因式是各項都含有的公共的因式. 又如:a是多項式a2-a各項的公因式. ab是多項式5a2b-ab2各項的公因式.

2mn是多項式4m2np-2mn2q各項的公因式. 根據乘法的分配律,可得 m(a+b+c)=ma+mb+mc,逆變形,便得到多項式ma+mb+mc的因式分解形式 ma+mb+mc=m(a+b+c).

這說明,多項式ma+mb+mc各項都含有的公因式可以提到括號外面,將多項式ma+mb+mc寫成m(a+b+c)的形式,這種分解因式的方法叫做提公因式法。

定義:一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法。

顯然,由定義可知,提公因式法的關鍵是如何正確地尋找公因式。讓學生觀察上面的公因式的特點,找出確定公因式的萬法:

(1)公因式的系數應取各項系數的最大公約數:

(2)字母取各項的相同字母,而且各字母的指數取小次數。例

2、指出下列各多項式中各項的公因式:(1)ax+ay+a

(a)(2)3mx-6mx(3mx)(3)4a2+10ah

(2a)(4)x2y+xy2

(xy)(5)12xyz-9x2y2

(3xy)

3、把8a3b2-12ab3c分解因式。

分析:分兩步:第一步,找出公因式;第二步,提公因式。先引導學生按確定公因式的方法找出多項式的公因式4ab2。解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc). 說明:

(1)應特別強調確定公因式的兩個條件以免漏取。

(2)開始講提公因式法時,最好把公因式單獨寫出。①以顯提醒;②強調提公因式;③強調因式分解。

4、把3x2-6xy+x 分解因式.

分析:先引導學生找出公因式x,強調多項式中x=x·1. 解:3x2-6xy+x =x·3x-x·6y+x·1 =x(3x-6y+1)說明:當多項式的某一項恰好是公因式時,這項應看成它與1的乘積,提公因式后剩下的應是1,1作為項的系數通??梢允÷?,但如果單獨成一項時,它在因式分解時不能漏掉,這類題常常有些學生犯下面的錯誤,3x2-6xy+x=x(3x-6y),這一點可讓學生利用恒等變形分析錯誤原因.還應提醒學生注意:提公因式后的因式的項數應與原多項式的項數一樣,這樣可以檢查是否漏項。課堂練習一:

把下列各式分解因式:(l)2πR+2πr;(2)3x3+6x2;(3)21a2+7a;(4)15a2+25ab2;(5)x2y+xy2-xy.

5、把-4m3+16m2-26m分解因式.

分析:此多項式第一項的系數是負數,與前面兩例不同,應先把它轉化為前面的情形便可以因式分解了,所以應先提負號轉化,然后再提公因式,提“-”號時,注意添括號法則。解:-4m3+16m2-26m =-(4m3-16m2+26m)=-2m(2m2-8m+13). 說明:通過此例可以看出應用提公因式法分解因式時,應先觀察第一項系數的正負,負號時,運用添括號法則提出負號,此時一定要把每一項都變號;然后再提公因式。課堂練習二:

把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;

三、小結

1.因式分解的意義及其概念

2.因式分解與整式乘法的聯系與區別 3.公因式及提公因式法

4.提公因式法因式分解中應注意的問題

四、作業

教材 P.167中 1;P.170中習題15.4中的第1題。

五、板書設計 標題

1、因式分解定義

4、例題

2、公因式定義

5、小結

3、提公因式法

6、作業

第四篇:提公因式教案

因式分解教案

(提公因式二)

執教 許小明

二零一二年三月三日

●課

§2.2.2 提公因式法

(二)●教學目標

(一)教學知識點

進一步讓學生掌握用提公因式法分解因式的方法.(二)能力訓練要求

進一步培養學生的觀察能力和類比推理能力.(三)情感與價值觀要求

通過觀察能合理地進行分解因式的推導,并能清晰地闡述自己的觀點.●教學重點

能觀察出公因式是多項式的情況,并能合理地進行分解因式.●教學難點

準確找出公因式,并能正確進行分解因式.●教學過程

提公因式法

(二)公因式是多項式形式,怎樣運用提公因式法分解因式?

在下列各式等號右邊的括號前填入“+”或“-”號,使等式成立:2 =___(b-a)2;(1)(a-b)=___(b-a);(2)(a-b)+-3;(4)(a-b)4 =___(b-a)4;-(3)(a-b)3 =___(b-a)+5;(6)(a+b)6 =___(b+a)6.(5)(a+b)5 =___(b+a)++???????2.(8)(a+b)2 =___(-a-b)+(7)(a+b)=___(-b-a);-做一做p50 填空

由此可知規律:(1)a-b 與-a+b互為相反數.(a-b)n=(b-a)n(n是偶數)(a-b)n=-(b-a)n(n是奇數)a+b與-a-b 互為相反數.(-a-b)n=(a+b)n(n是偶數)(-a-b)n=-(a+b)n(n是奇數)(2)a+b與b+a(a+b)n=(b+a)n互為相同數,(n是整數)

練習一1.在下列各式右邊括號前添上適當的符號,使左邊與右邊相等.(1)a+2 = ___(2+a)+(2)-x+2y = ___(2y-x)+2(3)(m-a)2 = ___(a-m)+3-(4)(a-b)3 = ___(-a+b)(5)(x+y)(x-2y)= ___(y+x)(2y-x)-2.判斷下列各式是否正確?(1)(y-x)2 =-(x-y)2否(2)(3+2x)3 =-(2x+3)3否(3)a-2b =-(-2b+a)(4)-a+b=-(a+b)否否(5)(a-b)(x-2y)=(b-a)(2y-x)對

例1.把a(x-3)+2b(x-3)分解因式.分析:多項式可看成a(x-3)與2b(x-3)兩項。公因式為x-3解:a(x-3)+2b(x-3)=(x-3)(a+2b)例2.把a(x-y)+b(y-x)分解因式.分析:多項式可看成a(x-y)與+b(y-x)兩項。其中X-y與y-x互為相反數,可將+b(y-x)變為-b(x-y),則a(x-y)與-b(x-y)公因式為x-y解:a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)例3.把6(m-n)3-12(n-m)2分解因式.分析:其中(m-n)與(n-m)互為相反數.可將-12(n-m)2變為-12(m-n)2,則6(m-n)3與-12(m-n)2公因式為6(m-n)2解:6(m-n)3-12(n-m)2= 6(m-n)3-12(m-n)2=6(m-n)2(m-n-2)例4.把6(x+y)(y-x)2-9(x-y)3分解因式.解:6(x+y)(y-x)2-9(x-y)3= 6(x+y)(x-y)2-9(x-y)3= 3(x-y)2[2(x+y)-3(x-y)]= 3(x-y)2(2x+2y-3x+3y)= 3(x-y)2(-x+5y)=3(x-y)2(5y-x)

練習二分解因式:(1)a(x?y)?b(y?x)(2)5x(a-b)2+10y(b-a)2(3)6(m?n)?12(n?m)32(4)a(a+b)(a-b)-a(a+b)2(5)mn(m+n)-m(n+m)2(6)2(a-3)2-a+3(7)a(x-a)+b(a-x)-c(x-a)小結兩個只有符號不同的多項式是否有關系,有如下判斷方法:(1)當相同字母前的符號相同時,則兩個多項式相等.如: a-b 和-b+a即a-b =-b+a(2)當相同字母前的符號均相反時,則兩個多項式互為相反數.如: a-b 和b-a 即a-b =-(a-b)

第五篇:提公因式法教案

15.4

15.4.1因式分解提公因式法

教學目標:

1、了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形。

2、會確定多項式中各項的公因式,會用提取公因式法分解

多項式的因式。

3、會利用因式分解進行簡便計算。

4、通過與質因數分解的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想;通過對公因式是多項式時的因式分解的學習,培養換元的意識。

教學重難點

教學重點:因式分解的概念及提取公因式法。

教學難點:多項式中公因式的確定和當公因式是多項式時的因式分解。

教學準備:多媒體課件。

教學設計:

(一)新課引入:

1、問題:把15和18分解質因數。

2、回憶:運用所學知識填空

(3)2ab(a2

反之:(1)x2(2)x2-1=

(3)2a3b+2ab2

觀察以下式子的特點:

(1)15=3×5

(2)18=2×32

(3)X2+X=X(X+1)

(4)X2-1=(X+1)(X-1)

(5)2a3b+2ab2+2ab=2ab(a2+b+1)

由分解質因數類比到分解因式。

(二)新知學習:

1、分解因式的概念,與整式乘法的關系。

鞏固概念:判斷下列各式從左到右哪些是因式分解?

(1)m(a+b)=ma+mb

(2)2a+4=2(a+2)

(3)4a2-6ab2+2a=2a(2a-3b2+1)

(4)a2-2a+1=a(a-2)+1

(5)yy?y??10(?10)???100?xx?x?22、確定公因式。

問題:ma+mb+mc 這個多項式有什么特征? 引入公因式

概念。

例1:找出6x3y5-3x2y4的公因式

歸納找公因式的辦法。

課堂練習一:找出下列各多項式中的公因式填在后面括號內。

(1)3mx-6nx2()

(2)x4y3+x3y4()

(3)12x2yz-9x2y2()

(4)5a2-15a3+25a()

3、用提公因式法分解因式。

m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),觀察構成乘積的兩個因式分別是怎樣形成的?

m是這個多項式的公因式,而另一個因式是原多項式除以公因式所得的商式。像這種分解因式的方法叫做提公因式法。

想一想:提公因式法的理論依據是什么?

4、知識運用:

例2:把8a3b2+12ab3c分解因式

解:(略).例3:把-24x3-12x2+28x分解因式。

解:(略)

判斷下列各式分解因式是否正確?如果不對,請加以改正。

(1)2a2+4a+2=2(a2+2a)

(2)3x2y3-6xy2z=3xy(xy2-2yz)

課堂練習二:把下列各式分解因式。

(1)x2+x6(2)12xyz-9x2y2

(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-

1例4:把3a(b+c)-3(b+c)分解因式

判斷正誤:我班一位同學在昨天預習了提公因式法分解因式后做了兩道練習題,請你幫他檢查一下他的解題過程是否正確。如不正確,應怎樣改正。

(1)2x(x+y)2-(x+y)3

解:原式=(x+y)2[2x-(x+y)]

=(x+y)2(2x-x-y)

(2)(y+2)(y+1)-3(y+2)

解:原式=(y+2)(y+1-3)

=(y+2)(y-2)

=y2-4

課堂練習三:將下列各式分解因式。

(1)p(a2+b2)-q(a2+b2)

(2)2a2(y-z)2-4a(z-y)2

例5:先分解因式,再求值。

4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)

5、拓展與提高:

(1)、20112+2011能被2012整除嗎?

(2)、已知2x-y=8,xy=2,求多項式2x4y3-x3y4的值。

(3)、利用因式分解進行計算:23.1×24-46.2×7

(4)、將2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。

97962?29998

(5)、計算:

課堂小結:

⑴什么叫因式分解?

⑵確定公因式的方法:

⑶提公因式法分解因式的步驟: ⑷提公因式法分解因式的步驟: 課后作業:課本P170習題15.4 : 題

課后反思:

第1題;第4題的(1);第6

下載提公因式分解因式教案word格式文檔
下載提公因式分解因式教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    提公因式法教案

    提供因法因式分解 教學流程: 一、導入及板書課題: 復習鞏固整式的乘法。板書課題:提公因式法因式分解 二、學習目標: ? 1.了解因式分解的概念; ? 2.理解公因式的概念,會用提公因式法......

    提公因式法教案

    §1.2.2 提公因式法(二) ●教學目標 (一)教學知識點 進一步讓學生掌握用提公因式法進行因式分解的方法. (二)能力訓練要求 進一步培養學生的觀察能力和類比推理能力. (三)情感與價......

    提公因式法教案

    提公因式法(1) 教學目標: 知識目標: 1、使學生理解什么樣的式子是幾個多項式的公因式; 2、初步會找出幾個多項式的公因式; 3、會用提公因式法分解因式。 情感目標: 讓學生養成獨立......

    分解因式-公式法教案

    §15.5.2.1 公式法(一) 教學目標 (一)教學知識點 運用平方差公式分解因式.(二)能力訓練要求 1.能說出平方差公式的特點. 2.能較熟練地應用平方差公式分解因式. 3.初步會用提公因式法與公式......

    分解因式法 教案2

    新課程網校[WWW.XKCWX.COM] 全力打造一流免費網校! §2.4 分解因式法 課時安排 1課時 從容說課 分解因式法是解某些一元二次方程較為簡便且靈活的一種特殊方法.它是把一個一......

    分解因式教學設計

    《分解因式》教學設計 【教學內容分析】 因式分解的概念是把一個多項式化成幾個整式的積的形式,它是因式分解方法的理論基礎,也是本章中一個重要概念。教材在引入中是結合剪紙......

    分解因式教學設計

    分解因式教學設計 分解因式教學設計1 一、內容和內容解析1.內容用因式分解法解一元二次方程.2.內容解析教材通過實際問題得到方程,讓學生思考解決方程的方法除了之前所學習過......

    分解因式教學設計

    分解因式教學設計 分解因式教學設計1 教材分析因式分解是代數式的一種重要恒等變形?!稊祵W課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少......

主站蜘蛛池模板: 四虎影视4hu4虎成人| 亚洲欧美综合精品久久成人网| 色窝窝亚洲av网在线观看| 成人一区二区三区视频在线观看| 国语自产偷拍精品视频偷拍| av永久免费网站在线观看| 波多野结衣av在线无码中文18| 国产精品美女一区二区视频| 18黄暴禁片在线观看| 欧美午夜成人片在线观看| 国产av无码日韩av无码网站| 欧美成人午夜精品久久久| 色情久久久av熟女人妻网站| 日本熟妇中文字幕三级| 国产综合精品| 亚洲视频无码高清在线| 艳妇臀荡乳欲伦交换av1| 黑人糟蹋人妻hd中文字幕| 天天做天天爱夜夜爽导航| 99视频精品全部在线观看| 动漫精品中文无码通动漫| 亚洲精品无码永久在线观看你懂的| 一本色道久久88精品综合| 成年无码av片完整版| 成人欧美一区二区三区a片| 性欧美视频videos6一9| 人妻在卧室被老板疯狂进入| 无套内内射视频网站| 国产成人综合色在线观看网站| 精品国产一区二区三区av性色| 男人边吃奶边做呻吟免费视频| 久久久g0g0午夜无码精品| 99偷拍视频精品一区二区| 欧亚乱熟女一区二区三区在线| 亚洲日韩中文第一精品| 午夜无码片在线观看影院| 国产麻豆精品一区二区三区v视界| 国产现实无码av| 亚洲精品久久久久一区二区| 国产亚洲欧洲av综合一区二区三区| 国产成年无码v片在线|