第一篇:2017北師大版數學第九冊《分數的基本性質》word版教案.doc
(北師大版)五年級數學教案 上冊分數的基本性質
教學目標:
1、經歷探索分數的基本性質的過程,理解分數的基本性質。
2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點:
掌握分數的基本性質。
教學難點:
抽象概括分數的基本性質。
教學過程:
(一)創設情境,引起學生參與興趣
教師出示三只可愛的小猴圖片,故事引入
有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切12塊,分給第三只小猴三塊。
同學們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學生發表自己的意見)
教師出示三塊大小一樣的餅,通過師生分餅,觀察驗收后得出結論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道有什么規律嗎?
(二)探究新知
1、動手操作、形象感知
(1)折 請同學們拿出三張同樣大的長方形紙,把每張紙都看作一個整體。用手分別平均折成4份、8份、16份。
(2)畫 在折好的長方形紙上,分別把其中的3份、6份、12份畫上陰影。
(3)剪 把長方形中的陰影部分剪下來。
(4)比 把剪下的陰影部分重疊,比一比結果怎樣。
2、觀察比較、探究規律
(1)通過動手操作,誰能說一說圖中陰影部分用分數表示各是幾分之幾?
(2)你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(3)既然這三個分數相等,那么、和 的大小怎樣?我們可以用什么符號把它們連接起來?
板書: =
=
(4)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題。
(5)學生匯報討論情況。
(6)啟發點撥。
A.通過從左到右的觀察、比較、分析,你發現了什么?
B.分數的分子、分母都乘以或除以相同的數,分數的大小不變。這里“相同的數”是不是任何的數都可以呢?請舉例說明。
板書:(零除外)
C.你認為這句話中哪些詞語比較重要?
(都、相同的數、零除外)
(7)把 和 化成分母是12而大小不變的分數。
A. 思考:要把 和 化成分母是12而大小不變的分數,分子怎么變?變化的依據是什么?
B. 讓學生討論后獨立解答。
(8)討論:猴王運用什么規律來分餅的?如果小猴子要8塊,猴王怎么分才公平呢?
(9)質疑。讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師質答疑。
(三)隨堂練習
1.口答 :在下面的()內填上合適的數(學生口答后,要求說出是怎樣想的?)
= = = =
2.判斷對錯,并說明理由。
(1)=()
(2)=()
(3)=()
(4)=()
(四)小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
板書設計:
分數的基本性質 3/4=6/8=12/16 分數的分子和分母都乘或除以相同的數(0除外),分數的大小不變。
第二篇:北師大版五年級數學《分數基本性質》說課稿
《分數基本性質》說課稿
尊敬的各位評委、老師: 大家好!
我說課的內容是北師版教材,小學數學五年級上冊第三單元第四節《分數基本性質》。下面我將從說教材、說教法、說學法、說教學過程和說板書設計五個方面來完成我的說課。
一、說教材
《分數的基本性質》是在學生學習了分數與除法的關系以及除法中商不變的規律的基礎上進行教學的,教材通過兩個活動,幫助學生探索分數基本性質,同時又為以后要學習的約分、通分、分數計算打下良好的基礎。
根據新課標的要求以及教材內容,我從以下三個方面確立教學目標:
1.歷經探索分數基本性質的過程,理解分數的基本性質。,能運用分數的基本性質把分數化成指定分母(或分子)而大小不變的分數。2.讓學生歷經探索分數基本性質的過程,培養學生觀察、操作、比較、分析、討論、概括等方面的能力。
3、使學生經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
根據教學目標,我將教學重點定為:理解和掌握分數的基本性質。
根據學生的實際情況,教學難點為:歸納和應用分數的基本性質。
二、說教法 根據教材內容和學生的年齡特點,我采用了多媒體演示法、遷移教學法、啟發式教學法、引導發現法,讓學生通過具體的實際操作獲取知識,激發學生的學習興趣。通過啟發引導,讓學生的思維活動在教師的引導下層層展開,使他們聽有所思,做有所獲。為了突出教學效果,優化課堂教學,我采用多媒體(圖片、圖形、具體實物)輔助教學,將抽象的數學知識直觀形象的展示在學生眼前。
三、說學法 在教學中,學生始終是學習主體,教師要交給學生有效的學習方法,使學生學會學習。在本課的教學中,依據教學內容,通過自主探究、動手實踐、合作交流的學習方法,使學生理解、掌握、歸納和應用分數的基本性質。這樣充分調動了學生學習的積極性,使學生不僅學會而且樂學。
四、說教學程序 根據本節課的教學目標,我設計“復習導入(約3分)---探索新知(約15)---鞏固應用(約20)---課堂總結(約2)”四個環節進行教學。具體過程如下:
(一)、復習導入: 首先給出幾個分數,(1/2
2/4
4/8)讓學生說出它們的意義,然后,復習商不變規律以及除法與分數之間的關系,出示相應的填一填。()÷15=6÷3=90/()
“同學們,除法有商不變的規律,那么分數又會有怎樣的性質呢?今天,我們就一起來探索分數基本性質。”(板書課題)
這樣設計,通過復習舊知識為學習新知提供遷移的基礎,同時增強學生學習新知識的信心和欲望。
(二)、探索新知
首先出示教材“做一做”中(1)的圖。“同學們你能用分數表示圖中陰影嗎?”,由于課前已經復習了分數的意義,所以學生會很快的寫出三個分數分別是:3/4 6/8
12/16(板書)。此時,我會借助圖形的直觀性問學生:“你能得到一組相等的分數嗎?”學生觀察后會找出:3/4 = 6/8 = 12/16(板書=號)。”它們為什么相等呢?”根據直觀的圖形,學生會說:因為陰影部分的面積相等。“那么你能通過數字的特點來說明他們為什么相等嗎?”學生通過觀察比較,會發現3/4的分子分母同時乘2結果是6/8,如果都乘4結果正好等于12/16。
接著出示“做一做”中(2)的圖,利用活動一的方法,學生會填出三個分數學是:8/12 4/6 2/3(板書),然后讓學生自主探究找到另一組相等的分數 8/12 = 4/6 = 2/3(板書),學生通過觀察發現8/12的分子分母都除以2結果是4/6,如果都除以4結果正好等于2/3。
(通過數形結合法,使學生初步感知兩組分數的相等關系,并為觀察發現分數的基本性質提供豐富的學習材料。這樣巧妙的設計,將抽象的數學概念具體化,使學生輕松的學習新知識)。
“請同學們觀察上面兩組相等的分數,你發現了什么?”引導學生分別觀察這兩組相等的分數,尋找每組分數分子、分母的變化規律。學生展開充分的交流討論后,發現分數的分子與分母同時擴大或縮小相同的倍數,分數的大小不變。我適當的加以修正,師生共同得出:分數的分子和分母都乘或除以相同的數(),分數的大小不變。“都乘或除以一個數,這個數能否為0?為什么?”學生討論后會發現:當分數的分子和分母同時乘0,分母為0.分數沒有意義;當分數的分子和分母同時除以0,0不能做除數,所以這個數不能為0。(板書:0除外)這才是完整的分數基本性質(板書)“你能舉例子說明分數的基本性質嗎?”學生舉例,教師指導。
(這樣設計,通過師生之間相互交流補充,歸納出分數的基本性質,加深學生對這一知識的理解和記憶,使新知識及時納入學生的知識結構中。)
最后,新授小結
“同學們,通過觀察、比較,交流,討論,我們歸納出分數的基本性質:分數的分子和分母都乘或除以相同的數(0除外),分數的大小不變。這里的“都”強調的是分子分母同時乘或除以一個數,一個怎樣的數呢?
一個不為0的數!”
(這一環節,教師及時總結本課重點內容:分數基本性質,同時強調關鍵詞“都”和“0除外”,有助于學生進一步理解掌握分數基本性質,使知識及時內化到學生的認知結構中。)
(三)鞏固練習練習是學生鞏固新知,形成技能的基本途徑,為了更好的完成教學目標,使不同層次的學生都得到不同程度的發展,我設計了以下幾個層次的練習。
1、基本練習:教材43頁“試一試” 讓學生獨立思考,交流自己的思考過程,集體訂正,鞏固對知識的掌握。
2、提高練習:教材44頁“練一練”的第3題。讓學生獨立思考,小組交流,集體訂正。進一步鞏固對知識的掌握,發展學生思維的靈活性。
3、拓展練習:教材44頁第4題。讓學生先說說想法,全班交流,教師適當指導。(這樣的設計 由淺入深、環環相扣,既鞏固了本節課的知識,又培養了學生解決問題的能力,發展了學生思維的靈活性。)
(四)課堂總結:“通過今天的學習,你們有哪些收獲?”學生談收獲,教師適時總結。(這樣設計,讓學生先總結,梳理思路,使學生對本課所學的分數基本性質有一個整體感知,便于形成良好的認知結構。同時還培養了學生的抽象概括能力。)
五說板書設計:這樣的板書設計,突出了教學的重點,解決了教學難點。使教學內容一目了然,便于學生理解掌握。
分數基本性質
分數基本性質:分數的分子和分母都乘或除以
3/4 = 6/8 = 12/16
8/12 = 4/6 = 2/3 相同的數(零除外),分數的大小不變。
第三篇:分數基本性質
《分數基本性質》教學設計
教學內容
人教版新課標教科書小學數學第十冊第75~77頁例
1、例2。教案背景
本課題是人教版五年級數學下冊第四單元的內容,分數的基本性質在分數教學中占有十分重要的地位,它是約分、通分的理論依據,而約分、通分又是分數四則運算的重要基礎。只有理解和掌握分數的基本性質,能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數四則運算。因此,分數的基本性質是分數的意義和性質這一單元的教學重點之一。掌握分數與除法的關系,以及除法中被除數、除數同時擴大或同時縮小相同的倍數商不變的規律,是學好分數基本性質的基礎。
教學目標
1、知識與技能目標:
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
2、過程與方法目標:
(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。(2)培養學生的觀察、比較、歸納、總結概括能力
(3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3、情感態度與價值觀目標:
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。
(2)鼓勵學生敢于發現問題,培養學生勇于解決問題的學習品質
教材分析
本節教材圍繞著分數基本性質的得出與應用,安排了兩道例題。通過例
1,概括出分數基本性質。通過例2,運用、鞏固分數的基本性質。考慮到分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。這是分數與整數的區別。因此,教材在例1中,先讓學生通過折紙、涂色,感悟1/
2、2/
4、4/8三個分數的分子、分母雖然不同,但是分數的大小是相等的。接著引導學生探究三個分數的分子和分母是按照什么規律變化的。先從左往右看,再反過來從右往左看,引導學生發現三個分數的分子和分母是怎樣變化的。然后,要求學生自己進一步舉例驗證,并根據這些例子歸納出變化的規律。在此基礎上,教材給出了分數的基本性質。由于分數和整數除法有著內在聯系,分數的分子相當于除法中的被除數,分母相當于除數,分數值相當于除法中的商,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。充分利用這一聯系,有利于促進學習的遷移。因此,教材在導出分數的基本性質之后,又提出了一個問題,讓學生根據分數與除法的關系以及整數除法中商不變的性質,來說明分數的基本性質。為了幫助學生在運用的過程中鞏固和加深對分數基本性質的理解,教材安排了例2,引導學生運用分數的基本性質,按指定的分母把兩個分數都化成分母相同而大小不變的分數。這樣不僅可以幫助學生掌握分數的基本性質,而且也能為后面學習約分、通分做好準備。練習中適當減少了單純依靠計算解決的練習題,增加了聯系現實生活,可以依據分數基本性質解決的實際問題。如練習十四的第2題、第5題、第9題和第10題。有利于通過應用,促進學生掌握分數的基本性質,也有利于培養學生的數學應用意識。在本節教材中,還穿插安排了一個“生活中的數學”欄目,介紹了分數在日常生活中的一些應用。涉及洗手液的使用方法、足球比賽的進程、照相機的曝光速度。這些例子,有助于引起學生的興趣,關注分數在現實生活中的種種應用。教學重點
探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。教學難點
自主探究、歸納概括分數的基本性質。
教法
引撥法,多媒體教學法,實驗法,歸納法,談話法等。學法
猜想驗證實驗法,討論法,小組合作法等。學生分析
五年級學生對于抽象的數學學習會感覺枯燥無味,所以要使學生對于本
節課有很好的收獲,就必須得給本節課的學習加以趣味性,并且讓學生經歷知識的形成過程,以幫助學生鞏固所學知識。
教學過程:
一、故事引人,揭示課題: 師:同學們,你們喜歡看《喜羊羊與灰太狼》的故事嗎? 生:喜歡。
師:老師這里有一個慢羊羊村長分餅的故事。羊村的小羊最喜歡吃村長
做的餅。有一天,村長做了三塊大小一樣的餅分給小羊們吃,它先把第一塊餅的1/2分給懶羊羊。再把第二塊餅的2/4分給喜羊羊。最后把第三塊餅的4/8分給美羊羊。懶羊羊不高興地說:“村長不公平,他們的多,我的少。”
師:孩子們,村長公平嗎?小朋友們,你知道哪只羊分得多? 生1:不公平,美羊羊分得多。
生2:公平,因為他們分得一樣多。
二、探究新知,解決問題
(一)驗證猜想
師:到底誰的猜想是正確地呢?讓我們一起來驗證一下。
1、折一折,畫一畫,剪一剪,比一比(1)折
請同學們拿出三張同樣大小的正方形紙,把每張紙都看作單位“1”。用
手分別平均折成2份、4份、8份。
(2)畫
在折好的正方形紙上,分別把其中的2份、4份、8份畫上陰影。(3)剪 把正方中的陰影部分剪下來。
(4)比 把剪下的陰影部分重疊,比一比結果怎樣。要求:
1)三人為一小組,小組中每人選擇一個不同的分數,先折一折,再畫一
畫,剪一剪的方法把它表現出來。
2)三人做好之后,將三副圖進行比較,看看能發現什么? 3)學生匯報。
請這一小組同學談談發現:通過比較,三副圖陰影部分面積一樣,因而
三個分數一樣大。
4)教師課件出示1/
2、2/
4、4/8相等的過程。
2、師:三只小羊分得的餅同樣多,仔細觀察這三個分數什么變了?什么沒變?
小組合作,學生仔細觀察,討論,學生匯報小結:它們的分子和分母變化了,但分數的大小沒變。
(二)初步概括分數基本性質 算一算:
1、師: 這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請三人為一組,討論這個問題。
2、學生小組合作,觀察,討論。
自學提示:
A、從左到右觀察,想一下,這三個分數的分子、分母怎樣變化才能得到下一個分數,且分數的大小不變呢。
B、從右到左觀察,想一下,這三個分數的分子、分母怎樣變化才能得
到下一個分數,且分數的大小不變呢。
3、小組匯報 生:我發現了1/2的分子與分母同時乘以2得到了2/4,1/2的分子和分
母同時乘以4得到了4/8。
請二名同學重復。
師:你們想得一樣嗎?我把1/2的分子分母同時乘2得到了2/4,1/2的
分子和分母同時乘4又得到了4/8。在這個分數中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5,分數的大小變嗎?同時乘以6.8呢?那你們能不能根據這個式子來總結一個規律呢?(課件同時出示變化過程)
生回答:一個分數的分子分母同時乘相同的數,分數的大小不變。請一至二名同學回答。
師板書:分數的分子分母同時乘 相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾? 師: 這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往左觀察,你們又會發現什么呢?(點擊課件出示)請一同學回答,生:我們發現了4/8的分子與分母同時除以2得了2/4,4/8的分子與分母同時除以4得到了1/2。課件點擊出示同時變化過程。師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以5大小會變嗎?同時除以8.6呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的數,分數的大小不變。(二名學生重復)師板書:或者除以
師:你能根據剛才總結的規律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
4、(1)師:根據分數的這一變化規律,你認為這個式子對嗎?為什么?(課件出示下列式子)
43=4433??=169(強調“相同的數”)5 4 52252???(強調“同時”)
學生回答,并說明理由。
(2)師:分數的分子、分母都乘以或除以相同的數,分數的大小不變。這里“相同的數”是不是任何的數都可以呢?我們一起來看這樣一個分數。(課件出示式子: ?0 40 343????)
師:這個式子成立嗎? 生:不成立,師:為什么 生:因為0不能作除數,師:0不能作除數,所以這個式子是錯誤的。
師:我再說一個式子,我不乘以0了,我除以0,這個式子成立嗎?(課件 出示:4 3 除以0。)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。師:對,因為分數的分子、分母都乘0,則分數成為 0 0,在分數里分母不能為0,所以分數的分子、分母不能同時乘0,又因為在除法里零不能作除數,所以分數的分子、分母也不能同時除以0。所以這兩個式子都是不成立的?我們剛才總結的分數的分子分母同時乘或者除以相同的數,要0除外。(師板書0除外)
師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢? 生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題:分數的基本性質)
師:我相信懶羊羊學會了分數的基本性質,那就不會生氣了,那咱們同學們千萬不要犯它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。生齊讀二遍。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。我們一起來看例2.三、運用規律、自學例題
1、例2:把2/3 和10/24化成分母是12而大小不變的分數。(課件出示)請一同學讀題。
2、分組討論
問:分子分母應怎樣變化?變化的依據是什么?
3、讓生獨立完成,完成后和同位的同學說一說你是怎樣想的。
每題請二名同學回答,(課件點擊出示答案)
4、分數的基本性質與商不變性質
師:能否用商不變性質來說明分數的基本性質? 生:因為 被除數÷除數= 除數 被除數
(除數不能為0)
所以被除數與除數同時擴大或縮小相同的倍數,就相當于分子、分母同
時擴大或縮小相同的倍數(0除外)。因此,商不變就相當于分數的大小不變。
四、課堂運用(課件出示)
1、判斷。(手勢表示,并說明理由。)
(1)分數的分子、分母都乘以或除以相同的數,分數的大小不變。()(2)把 25 15 的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
(3)4 3 的分子乘以3,分母除以3,分數的大小不變。()
(4)()
3、找朋友游戲:
拿出課前發的分數紙,并看清手中的分數。與 2 1 相等的,舉起自已的分數后請到右邊,與 32 相等的到左邊,與 4 3 相等的到講臺。
五、拾撿碩果,拓展延伸
1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節課你都收獲了哪些東西?
2、拓展延伸:
村長運用什么規律來分餅的?如果沸羊羊要四塊,村長怎么分才公平呢?如果要五塊呢
教學反思
我講的這節課內容是人教版五年級教材《分數的基本性質》,本節課的主要目標是:使學生理解分數基本性質,并會用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。在課堂中,我充分利用學生的生活經驗,設計生動有趣的故事《羊村村長分餅》,激發學生的學習興趣,展開課堂教學。
1、教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數學的嚴謹性。設計以“猜想--觀察--驗證--概括--深化--提高”的環節,把知識的形成過程展現在學生的面前,使學生在掌握分數的基本性質的同時,感知到數學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數學知識與生活的緊密聯系,同時教給學生學會學習,學會思考的方法。在師生共同協作的過程中,達到課堂教學方法的最優化,提高了課堂教學效益。
2、在推導規律的過程中,抓住分數的分子、分母按怎樣的規律變化而分數大小不變這一點,通過動手操作、實踐, 引導學生自己去發現、證實并歸納:分數的分子分母同時乘以或除以一個相同的數(零除外),分數的大小不變。在這關鍵處,教師又進一步發動全班討論,把問題引向縱深,這種教學模式既重視學生自主參與,相互合作的發揮,又有利于學生展現自己知識的建構過程,不僅知其結果,而且更了解自己得出結果的過程和先決條件,促進知識與能力的同步發展。
3、教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息
技術,又把傳統教學手段有機地結合,讓資源充分、有效地發揮作用,優化教師的教學手段,提高課堂教學效率。
第四篇:北師大版五年級數學分數基本性質教案設計
2009年教學設計數學科
《分數的基本性質》教學設計
一.教材簡析:
分數的基本性質是以分數大小相等這一概念為基礎的。因為分數與整數不同,兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。教學時,可引導學生觀察一組相等分數的分子、分母是按什么規律變化的,再結合分數的意義歸納出分數的基本性質。由于分數和整數除法存在著內在聯系,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。
二.設計理念:
分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了“猜想——試驗分析——合情推理——探究創造”的教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了“方法比知識更重要”這一新的教學價值觀,構建了新的教學模式。《數學課程標準》指出:“學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。”這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。
三.教學目標:
1.使學生理解和掌握分數的基本性質,能應用“性質”解決一些簡單問題.
2.培養學生觀察、分析、思考和抽象、概括的能力. 3.滲透“形式與實質”的辯證唯物主義觀點,使學生受到思想教育.
四.教學重點:使學生理解和掌握分數的基本性質,培養學生的抽象、概括的能力。
五.教學難點 : 讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
六.教具準備:每生三張正方形紙
七.課時安排:1課時
八.教學方法:演示法、觀察法、討論法、交流法。九.教學過程:
一、故事導入。
師讓一生讀故事。
生:唐僧師徒四人在西三取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?下面我們用折紙的方面來看一下它們之間有什么樣的關系?
二、新授
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把二分之一、四分之二、八分之四涂上顏色,并標出二分之一、四分之二、八分之四。
2、仔細觀察三張紙的涂色部份,你們能發現什么?
師:同位分工合作完成。現在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發現?
請二至三位同學說一說。
師:我們都發現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答,師出示算式。
師:現在你們知道孫悟空為什么笑了嗎?請同學回答。師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)下面請同學們把這個式子從左往右地觀察,看一下每個分數的分子分母怎樣變化?才得到下一個分數。
生:我發現了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規律呢?
生回答:一個分數的分子分母同時擴大相同的倍數,它們分數的大小不變。
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
師: 這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發現什么呢?
生:我們發現了八分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的數,分數的大小不變。
師板書:或者除以
師:你能根據剛才總結的規律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
師指著板書說明:我們說分子分母同時乘或除以相同的數,分數的大小不變,那是不是包括所有的數呢?我們一起來看這樣一個分數。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,師:為什么
生:因為0不能作除數,師:0不能作除數,所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:八分之四乘以0,打上問號)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。
師:對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話
生:0除外
師板書:0除外
師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題)
師:我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要犯它那樣的錯誤了。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。我們一起來看課本,讓生獨立完成,完成后和同位的同學說一說你是怎樣想的。
三、練習
1、師:看來同學們能分數的基本性質掌握得很不錯了,下面我們一起來完成課本做一做中的1、2題。
(生獨立完成,師指名回答。)
3、完成課本49頁練一練中1.2的題。
四、小結
師:今天這節課你都學會了哪些知識?
小結:這節課我們學習了分數基本性質,而且我們還學會了根據分數的基本性質把一個分數轉化成和它相等的另外一個分數。
板書設計:
分數的基本性質 1 / 2 = 2 / 4 = 4 / 8
分數的分子和分母都乘或除以相同的數(0除外),分數的大小不變。
第五篇:分數的基本性質教案
精選分數的基本性質教案4篇
作為一名無私奉獻的老師,就有可能用到教案,教案有助于學生理解并掌握系統的知識。那么什么樣的教案才是好的呢?以下是小編為大家整理的分數的基本性質教案4篇,希望能夠幫助到大家。
分數的基本性質教案 篇1教學目標:
1、理解分數的基本性質。
2、初步掌握分數的基本性質。
3、培養學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。
教學重點:理解與掌握分數的基本性質。教材分析:分數的基本性質是在學習了商不變性質及分數與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據,是分數四則運算的重要基礎知識,是學生準確進行分數加減法計算的依據。
設計意圖:通過復習商不變的性質和分數與出發的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數基本性質與商不變性質打下了基礎。
在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數學事實,來引導學生觀察、思考,激發學生的求知欲,調動學生學習的積極性。
通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數學概念轉變為學生易于理解概念,激發學生的學習興趣,結合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數變化的規律,即分于分母都乘以或除以相同的數,分數和大小不變。通過電腦出示的畫象的逐步引入,使學生加深對分數基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發展學生的邏輯思維。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。
第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發展學生的智能。在聯系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。
教學過程: 復習舊知,導入新課 被除數 除數= 根據120 30=3 填數(120 3)(40 3)=()(120 ___)(40 10)=4(復習商不變性質)驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 =)教師再演示,引導學生發現、、、三個分數的大小相等。觀察什么在變,什么不變。把單位1平均分的分數和取的分數,也就是分數的分子和分母發生了變化,而分數的大小不便,為什么分數的分子、分母在變,而分數的大小不變?它們的變化規律是什么?(引導學生帶著問題去思考)新授,探索新知 啟發引導,揭示規律(1)= = = =
從左往右觀察,探索分數的分子、分母的變化規律,引導學生去思考。討論得出:分數的分子墳墓都乘以相同的數,分數的大小不變。,分數的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規律:分子、分母都除以相同的數,分數的大小不變。歸納性質 誰能把上面的分數的分子分母都乘以或除以相同的數。兩句話合成一句話來說。分數的分子分母都乘以或除以相同的數,分數的大小不變。這里指的相同的數是指什么數? 指出:分母是0的分數是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數可以是自然數,也可以是小數,也可以是分數。
請全班同學將結語說完整,全班讀。小結:就是我們今天學習的內容:分數的基本性質。看書質疑。勾出關鍵詞語,幫助理解掌握。(在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標得以順利地實施。)鞏固練習在括號里填上適當的數使等式成立 幾組相等分數的天空練習
(用計算機將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)
3、請找我的好朋友練習。(以游戲的形式來進行)
要求:(1)將幾張寫有分數的卡片發給幾位同學,請 他們看清楚上面的分數。
(2)練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數大小相等的同學走出來,看誰最快最好。(先將卡片上的分數用大屏幕顯示出來,便于全班同學練習。)
4、判斷對錯(1)= =()(2)= =()(3)= =()(4)= =()
(這道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)
5、思考練習題 = 課堂總結 總結本課內容,復述分數的基本性質。
分數的基本性質教案 篇2教學前的思考:
一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學生提供“猜想”素材。“猜想、驗證”不但是科學研究的方法,也是一種很好的數學學習方法。由此我聯想到“性質”的學習過程是否也可以讓學生在猜想、驗證中主動生成。
二、學生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設計了讓學生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調動學生的多種感觀,充分感知數學事實,引導學生觀察、思考,激發學生的求知欲,活躍課堂氣氛,為“驗證”“性質”作好鋪墊。
三、得出結論后,滲透“形式與實質”的辯證觀點:揭示“性質”后,教師讓學生回顧故事內容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質”的辯證觀點。
教學設計:
一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)
師:今天老師很高興和同學們在一起共同學習,同學們心情怎樣?
生:高興!
師: 老師給大家帶來了一個禮物,請同學們仔細欣賞。(教師出示Flash動畫故事,學生欣賞。同時教師提出欣賞要求,)
師:(欣賞后)同學們,你知道哪個和尚吃的多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
師:到底誰回答得對呢?上完這節課你們一定能得到準確的答案.(通過欣賞為學生提供素材,設懸念,留給學生獨立思考的空間)
二 用事實“驗證”,完整性質。
1.實際操作列等式證實分數大小相等。
師:請同學們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契)
師:比較一下陰影部分的大小,結果怎樣?陰影部分相等,說明這三個分數怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明這三個分數怎樣?
生:三個分數相等。
(隨著學生的回答,老師將板書的三個分數用“=”連接。)
2.觀察課件證實分數大小相等。
師:(出示課件)老師有三個同樣大小的長方形,誰能用分數表示出黃色部分呢?
師:這三個分數所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數間用“=”連接。)
3.初步概括分數基本性質.師:仔細觀察兩個等式,每個等式的三個分數什么變了?什么沒變?
生:第一個等式中的三個分數分子、分母都變了,但分數的大小沒變。(師進行評價)
師:同學們從左到右觀察第一個等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變的?
(教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規律敘述出來呢?(師指名口述)
生1:從左往右看,分數的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數,但三個分數的大小沒有變。(生2進行了補充)
師:你們觀察的真仔細!請大家給點掌聲好嗎?
(學生掌聲起,激情高長,課堂教學充滿活力。)
師:(出示課件)請看大屏幕,老師是這樣敘述的“分數的分子、分母都乘上同一個數,分數大小不變”。
師:同學們從左到右仔細觀察第二個等式,這三個分數的分子、分母發生了怎樣的變化,才保證了分數大小不變呢?誰能用一句話把這個變化規律敘述出來?
(小組討論后,同法讓學生小結規律,并請同學給予評價,讓學生抒發自己的見解,體現課堂教學的民主化。然后教師在課件中補充“或除以”三個字。)
4、完整分數基本性質:
師:(出示課件)請同學們填空:
(教師請一位會操作鼠標的同學在課件中填空)
師:第3題()里可以填多少個數?第4題呢?
生:可以填無數個。
師:()里填任何數都行嗎?哪個數不行?(學生交流后老師指名回答)
生:不能填零。
師:為什么不能填零?
生:分數的分母不能為零。
(教師對學生的回答進行評價)
師:所以我們總結的這條規律必須加上一個條件“零除外”
(教師在課件中填上“零除外”三個紅色的字,以便引起學生的`注意。)
師:這個變化規律就是“分數的基本性質”。(指名照課件主讀出性質)
三 深入理解分數基本性質
1.學生自學,深入理解性質。
師:請同學們把書翻到108頁,自讀分數的基本性質。
師歸問:分數的基本性質里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數大小不變”也很重要?為什么“零除外”也很重要?
生:因為都乘上或除以相同的數(0除外),分數的大小才不會變化。(同學評價)
2.學生獨立完成做一做1。(完成后小組內互相評價)
3.找出與
相等的分數:
(教師出示課件,請一位同學在課件中連線,教師進行評價)
4.請同學們自學并完成例2、(教師巡視,個別進行輔導)
……
四 照應Flash動畫故事,滲透“形式與實質”的辯證觀點
教師在黑板上出示自制的三個同樣大小的圓餅
師:現在誰知道三個和尚,誰吃的多呢?(學生爭先恐后的想回答老師提出的問題)
生:三個和沿吃的一樣多。
師:同學們以后思考問題一定要多動腦筋,了解實質后才能得出正確答案,我們不能從形式上看著事物去做出判斷。
……
五 課堂小結:這節課你有什么收獲?(學生板書課題)
教學后的感悟:
1.教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數學的嚴謹性。設計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環節,把知識的形成過程展現在學生的面前,使學生在掌握分數的基本性質的同時,感知到數學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數學知識與生活的緊密聯系,同時教給學生學會學習,學會思考的方法。在師生共同協作的過程中,達到課堂教學方法的最優化,提高了課堂教學效益。
2.猜想素材有利于激發學生主動學習的興趣和熱情,有利于學生思維的碰撞,開啟了學生發自內心的探索學習。
3.教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息技術,又把傳統教學手段有機地結合,讓資源充分、有效地發揮作用,優化教師的教學手段,提高課堂教學效率。
分數的基本性質教案 篇3(一)激趣引思、提出要求
同學們,你們聽過阿凡提的故事嗎?今天老師也帶來了一則阿凡提的故事。讓我們一一看!誰來讀一讀?(指名讀)你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話呢?
有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!
(二)自主探究,發現規律
1、出示例1的四幅圖。
我們先來看一道題目。分別用分數表示每個圖里的涂色部分。
(1)誰來說第一個?
全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?
同學們,你們比較比較這幾幅圖的陰影部分,想想看,你發現了什么呢?也就是說,哪3個分數是相等的呢?
(2)師:這里有個1/2,你能說一個和1/2相等的分數嗎?
2/4、4/8、8/16......還有吧,是不是還可以說出好多好多啊?
那,這些分數是不是相等呢?咱們口說無憑,咱們來做個小實驗證明它門是相等的,好不好?
先別急,先來看看有哪些實驗要求。
咱們這個實驗的目的上一什么?驗證什么?
咱們實驗的方法有哪些呢?
實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排
1、實驗目的:驗證猜想
2、方法:折一折、分一分、畫一畫、算一算......3、要求:小組合作,明確分工,操作有序
我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!
學生操作,老師巡視指導。
集體交流結果。
咱們剛才通過做實驗,發現這些分數的大小怎樣?也就是分數的大小不變。這些分數的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規律呢?你發現了什么?能不能告訴老師。
把你的發現先和同桌交流交流。
生1:我發現由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。
師:還有誰想說說你的發現?
生2:我發現由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。
師:換一組數據來說說自己的發現?
生:由到,分子、分母都被縮小了3倍,它們的大小不變。
師:剛才同學們都說了自己的發現,想想看,要使分數的大小不變分數的分子和分母應該怎樣變化就能使分數的大小不變了呢?
師:為什么要0除外?
師:這就是咱們今天學習的“分數的基本性質”(板書課題)
師:誰來說說看,分數的基本性質是什么呢?
生:一個分數的分子和分母同時乘或除以一個相同的數(0除外),它們的大小不變。
我們一齊讀一遍。
師:這個分數的基本性質跟咱們以前學的什么知識有點相似啊?除法中商不變的性質你還記得嗎?
同學們想想看,這兩個性質之間有什么關系呢?
根據分數與除法的關系,被除數相當于分數的分子,除數相當于分數的分母,在除法當中有商不變的性質,那在分數中也有它的基本性質。
師:好,那現在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?
師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數不僅可以指整數,還可以指小數。
(三)鞏固練習,強化記憶
好,那下面咱們就用今天學的知識來做幾道題,好不好?
1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。
集體交流。
2、下面我們來填空補缺想理由。(出示練一練第二題)
他們這樣填是根據什么?
3、出示練習十一第二題
獨立完成,集體訂正。
(四)課堂作業,運用知識
練習十一第三題
(五)課堂,認識自己
今天這節課,你學到了什么?
分數的基本性質教案 篇4教材簡析:
分數的基本性質是以分數大小相等這一概念為基礎的。因為分數與整數不同,兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。教學時,可引導學生觀察一組相等分數的分子、分母是按什么規律變化的,再結合分數的意義歸納出分數的基本性質。由于分數和整數除法存在著內在聯系,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。
設計理念:
分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創造的教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。
《數學課程標準》指出:學生是學習數學的主人,教師是數學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。
教學目標:
1、使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題.
2、培養學生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育.
教學重點:
使學生理解和掌握分數的基本性質,培養學生的抽象、概括的能力。
教學難點:
讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教具準備:
每生三張正方形紙
教學方法:
演示法、觀察法、討論法、交流法。