久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

立體幾何中不等式問題的證明方法

時間:2019-05-15 14:10:29下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《立體幾何中不等式問題的證明方法》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《立體幾何中不等式問題的證明方法》。

第一篇:立體幾何中不等式問題的證明方法

例談立體幾何中不等式問題的證明方法

立體幾何中的不等式問題具有很強的綜合性,解決這類問題既要有較強的空間想象能力,又要有嚴密的邏輯思維能力,因此有一定的難度.下面我們介紹幾種有關的解題方法.

1.利用最小角定理

例1.在直二面角??l??中,A??,B??,點A,B不全在棱l上,直線AB與平面?,?所成的角分別為?,?,求證:????90?.

證:如圖1,當AB與?,?都不垂直時,分別在?,?內作AC?l于C,BD?l于D,則AC??,BD??,??BAD??,?ABC??.

由最小角定理得?ABC??ABD,??????BAD??ABC??BAD??ABD?90.

當AB??或AB??時,易知????90?.

綜上即得????90?.

2.利用三角知識

例2.已知三棱錐P?ABC的側棱PA、PB、PC兩兩垂直,求證:0???BAC?90?,0??ABC?90,0??CAB?90. ?????

證:如圖2,則在?ABC中,由余弦定理得

cos?BAC?AB?AC?BC

2AB?AC

22222 222

2??(PA?PB)?(PA?PC)?(PB?PC)2AB?AC??PA2AB?AC?0,?0??BAC?90.

同理可證0??ABC?90,0??CAB?90.

3.利用一元二次方程根的判別式

例3.已知球O的半徑為定值r,它的外切圓錐的全面積為S,求證:S?8?r. 證:如圖3,作球O的外切圓錐的軸截面PAB,設球O

與圓錐底面直徑AB及母線PA分別切于點E和F.再設

AE?AF?t,則由?PAE∽?POF,2????

PEPF

?

AEOF

PF

?

4tr,由此有PF?

2rtt?r,?S??t??t(PF?t)?

2rt

t?r,即2?t4?St2?r2S?0.

時取等號.

∵t2為實數,???S2?8?r2S?0,即S?

8?r2,當且僅當t?

4.利用基本不等式

例4.已知三棱錐P?ABC的側面PAB、PBC、PCA兩兩垂直,且這三個側面與底面ABC所成的二面角分別為?、?、?,求證:cos?cos?cos??

9證:如圖4,由題設易得CP?平面PAB,在側面PAB內過點P作PE?AB于E,則CE?AB,∴?CEP??.設PA?a,PB?b,PC?c,則

PE?

?cos??

?CE??,同理,cos??,cos??

?

?cos?cos?cos?

?

?

5.利用函數的單調性

例5.如圖5,A、B是球O面上的兩點,?O是過A、B的大圓,?O1是過A、B的任意小圓,記l大為?O中劣弧?AB的長,記l小為?O1中 劣弧?AB的長,求證:l大?l?。?/p>

證:設OA?R,O1A?r(R?r),?AOB?2?,?AO1B?2?.在等腰?AOB和等腰?AO1B中,由OA?OA1,知0?2??2???,即0??????/2.

?AB?2Rsin?,AB?2rsin?,?Rsin??rsin?,即

sin?sin?

?

rR

①.

設f(x)?

sinxx

(0?x?

?),則f?(x)?

xcosx?sinx

x,再令g(x)?xcosx?sinx(0?x?

?

?),則g?(x)?cosx?xsinx?cosx??xsinx?0.

∴g(x)在(0,?)上為減函數,故g(x)?g(0)?0,即xcosx?sinx?0,從而,當

0?x?時,有f?(x)?0,?f(x)在(0,?

?)上也為減函數.

?0?????,?rR

sin?

??

?

sin?

?,即

sin?sin?

?

??

②,由①、②兩式可得

??

?2?R?2?r?l大?l?。?/p>

6.利用平面幾何知識

?

例6.已知P、Q是正四面體ABCD內部的兩點,求證:?PAQ?60.

證:如圖6,過點A、P、Q作正四面體ABCD的截面

AEF.若E、F都不是?BCD的頂點,不妨設E、F分別是

棱BD、CD上異于端點的點,此時?P、Q兩點在?AEF內,??PAQ??EAF.又??ABE≌?CBE,?AE?CE.

?

而?EFC??EDF?60??BCF??ECF,?EF?CE?AE.

同理可得EF?AF,?EF是?AEF中最小的邊,故必有?EAF?60,??PAQ??EAF?60.

?

?

若E、F中有一個是?BCD的頂點,不妨設點F在D處.于是有,?PAQ??EAF??BAF?60.

?

第二篇:立體幾何證明方法

立體幾何證明方法

一、線線平行的證明方法:

1、利用平行四邊形。

2、利用三角形或梯形的中位線

3、如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線就和交線平行。(線面平行的性質定理)

4、如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。(面面平行的性質定理)

5、如果兩條直線垂直于同一個平面,那么這兩條直線平行。(線面垂直的性質定理)

6、平行于同一條直線的兩條直線平行。

二、線面平行的證明方法:

1、定義法:直線與平面沒有公共點。

2、如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。(線面平行的判定定理)

3、兩個平面平行,其中一個平面內的任何一條直線必平行于另一個平面。

三、面面平行的證明方法:

1、定義法:兩平面沒有公共點。

2、如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。(面面平行的判定定理)

3、平行于同一平面的兩個平面平行

4、經過平面外一點,有且只有一個平面和已知平面平行。

5、垂直于同一直線的兩個平面平行。

四、線線垂直的證明方法

1、勾股定理。

2、等腰三角形。

3、菱形對角線。

4、圓所對的圓周角是直角。

5、點在線上的射影。6利用向量來證明。

7、如果一條直線和一個平面垂直,那么這條直線就和這個平面內任意的直線都垂直。

8、如果兩條平行線中的一條垂直于一條直線,則另一條也垂直于這條直線。

五、線面垂直的證明方法:

1、定義法:直線與平面內任意直線都垂直。

2、點在面內的射影。

3、如果一條直線和一個平面內的兩條相交直線垂直,那么這條直線垂直于這個平面。(線面垂直的判定定理)

4、如果兩個平面互相垂直,那么在一個平面內垂直于它們交線的直線垂直于另一個平面。(面面垂直的性質定理)

5、兩條平行直線中的一條垂直于平面,則另一條也垂直于這個平面

6、一條直線垂直于兩平行平面中的一個平面,則必垂直于另一個平面。

7、兩相交平面同時垂直于第三個平面,那么兩平面交線垂直于第三個平面。

8、過一點,有且只有一條直線與已知平面垂直。

9、過一點,有且只有一個平面與已知直線垂直。

六、面面垂直的證明方法:

1、定義法:兩個平面的二面角是直二面角。

2、如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。(面面垂直的判定定理)

3、如果一個平面與另一個平面的垂線平行,那么這兩個平面互相垂直。

4、如果一個平面與另一個平面的垂面平行,那么這兩個平面互相垂直。

第三篇:立體幾何證明問題

證明問題

例1.如圖,E、F分別是長方體邊形

.-的棱A、C的中點,求證:四邊形是平行四

例2.如圖所示,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD與E、F、G.求證:AE⊥SB.例3.如圖,長方體∠求證:

=90°.⊥

PQ

-中,P、Q、R分別為棱、、BC上的點,PQ//AB,連結,例4.已知有公共邊AB的兩個全等的矩形ABCD和ABEF不同在一個平面內,P、Q分別是對角線AE、BD上的點,且AP=DQ,如圖所示.求證:PQ//平面

CBE.例5.如圖直角三角形ABC平面外一點S,且SA=SB=SC,且點D為斜邊AC的中點.(1)求證:SD⊥平面ABC.(2)若AB=AC,求證BD⊥平面

SAC.例6.如圖,在正方體

-中,M、N、E、F分別是棱、、、的中點.求證:平面AMN//平面

EFDB.例7.如圖(1)、(2),矩形ABCD中,已知AB=2AD,E為AB的中點,將ΔAED沿DE折起,使AB=AC.求證:平面ADE⊥平面

BCDE.

第四篇:證明不等式方法

不等式的證明是高中數學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法

比較法是證明不等式的最基本方法,具體有“作差”比較和“作商”比較兩種?;舅枷胧前央y于比較的式子變成其差與0比較大小或其商與1比較大小。當求證的不等式兩端是分項式(或分式)時,常用作差比較,當求證的不等式兩端是乘積形式(或冪指數式時常用作商比較)

例1已知a+b≥0,求證:a3+b3≥a2b+ab

2分析:由題目觀察知用“作差”比較,然后提取公因式,結合a+b≥0來說明作差后的正或負,從而達到證明不等式的目的,步驟是10作差20變形整理30判斷差式的正負。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

證明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 設a、b∈R+,且a≠b,求證:aabb>abba

分析:由求證的不等式可知,a、b具有輪換對稱性,因此可在設a>b>0的前提下用作商比較法,作商后同“1”比較大小,從而達到證明目的,步驟是:10作商20商形整理30判斷為與1的大小

證明:由a、b的對稱性,不妨解a>b>0則

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

練習1 已知a、b∈R+,n∈N,求證(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其變式證明不等式是常用的方法,常用的基本不等式及變形有:

(1)若a、b∈R,則a2+b2≥2ab(當且僅當a=b時,取等號)

(2)若a、b∈R+,則a+b≥ 2ab(當且僅當a=b時,取等號)

(3)若a、b同號,則 ba+ab≥2(當且僅當a=b時,取等號)

例3 若a、b∈R,|a|≤1,|b|≤1則a1-b2+b1-a2≤

1分析:通過觀察可直接套用: xy≤x2+y2

2證明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,當且僅當a1+b2=1時,等號成立

練習2:若 ab0,證明a+1(a-b)b≥

33綜合法

綜合法就是從已知或已證明過的不等式出發,根據不等式性質推算出要證明不等式。

例4,設a0,b0,a+b=1,證明:(a+1a)2+(B+1b)2≥252

證明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左邊=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

練習3:已知a、b、c為正數,n是正整數,且f(n)=1gan+bn+cn

3求證:2f(n)≤f(2n)

4分析法

從理論入手,尋找命題成立的充分條件,一直到這個條件是可以證明或已經證明的不等式時,便可推出原不等式成立,這種方法稱為分析法。

例5:已知a0,b0,2ca+b,求證:c-c2-ab<a<c+c2-ab

分析:觀察求證式為一個連鎖不等式,不易用比較法,又據觀察求證式等價于 |a-c|<c2-ab也不適用基本不等式法,用分析法較合適。

要證c-c2-ab<a<c+c2-ab

只需證-c2-ab<a-c<c2-ab

證明:即證 |a-c|<c2-ab

即證(a-c)2<c2-ab

即證 a2-2ac<-ab

∵a>0,∴即要證 a-2c<-b 即需證2+b<2c,即為已知

∴ 不等式成立

練習4:已知a∈R且a≠1,求證:3(1+a2+a4)>(1+a+a2)

25放縮法

放縮法是在證明不等式時,把不等式的一邊適當放大或縮小,利用不等式的傳遞性來證明不等式,是證明不等式的重要方法,技巧性較強常用技巧有:(1)舍去一些正項(或負項),(2)在和或積中換大(或換?。┠承╉?,(3)擴大(或縮?。┓质降姆肿樱ɑ蚍帜福┑取?/p>

例6:已知a、b、c、d都是正數

求證: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:觀察式子特點,若將4個分式商為同分母,問題可解決,要商同分母除通分外,還可用放縮法,但通分太麻煩,故用放編法。

證明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

綜上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

練習5:已知:a<2,求證:loga(a+1)<1

6換元法

換元法是許多實際問題解決中可以起到化難為易,化繁為簡的作用,有些問題直接證明較為困難,若通過換元的思想與方法去解就很方便,常用于條件不等式的證明,常見的是三角換元。

(1)三角換元:

是一種常用的換元方法,在解代數問題時,使用適當的三角函數進行換元,把代數問題轉化成三角問題,充分利用三角函數的性質去解決問題。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求證0<A<

1證明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

復習6:已知1≤x2+y2≤2,求證:12 ≤x2-xy+y2≤

3(2)比值換元:

對于在已知條件中含有若干個等比式的問題,往往可先設一個輔助未知數表示這個比值,然后代入求證式,即可。

例8:已知 x-1=y+12=z-23,求證:x2+y2+z2≥431

4證明:設x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反證法

有些不等式從正面證如果不好說清楚,可以考慮反證法,即先否定結論不成立,然后依據已知條件以及有關的定義、定理、公理,逐步推導出與定義、定理、公理或已知條件等相矛盾或自相矛盾的結論,從而肯定原有結論是正確的,凡是“至少”、“唯一”或含有否定詞的命題,適宜用反證法。

例9:已知p3+q3=2,求證:p+q≤

2分析:本題已知為p、q的三次,而結論中只有一次,應考慮到用術立方根,同時用放縮法,很難得證,故考慮用反證法。

證明:解設p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3將p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2練習7:已知a+b+c>0,ab+bc+ac>0,abc>0.求證:a>0,b>0,c>0

8數學歸納法

與自然數n有關的不等式,通??紤]用數學歸納法來證明。用數學歸納法證題時的兩個步驟缺一不可。

例10:設n∈N,且n>1,求證:(1+13)(1+15)…(1+12n-1)>2n+12

分析:觀察求證式與n有關,可采用數學歸納法

證明:(1)當n=2時,左= 43,右=52

∵43>52∴不等式成立

(2)假設n=k(k≥2,k∈n)時不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么當n=k+1時,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要證①式左邊>2k+32,只要證2k+12·

2k+22k+1>2k+32②

對于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即當n=k+1時,原不等式成立

由(1)(2)證明可知,對一切n≥2(n∈N),原不等式成立

練習8:已知n∈N,且n>1,求證: 1n+1+1n+2+…+12n>132

49構造法

根據求證不等式的具體結構所證,通過構造函數、數列、合數和圖形等,達到證明的目的,這種方法則叫構造法。

1構造函數法

例11:證明不等式:x1-2x <x2(x≠0)

證明:設f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的圖像表示y軸對稱

∵當x>0時,1-2x<0,故f(x)<0

∴當x<0時,據圖像的對稱性知f(x)<0

∴當x≠0時,恒有f(x)<0 即x1-2x<x2(x≠0)

練習9:已知a>b,2b>a+c,求證:b-b2-ab<a<b+b2-ab

2構造圖形法

例12:若f(x)=1+x2,a≠b,則|f(x)-f(b)|< |a-b|

分析:由1+x2 的結構可知這是直角坐標平面上兩點A(1,x),0(0,0)的距離即 1+x2 =(1-0)2+(x-0)2

于是如下圖,設A(1,a),B(1,b)則0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

練習10:設a≥c,b≥c,c≥0,求證 c(a-c)+c(b-c)≤ab

10添項法

某些不等式的證明若能優先考慮“添項”技巧,能得到快速求解的效果。

1倍數添項

若不等式中含有奇數項的和,可通過對不等式乘以2變成偶數項的和,然后分組利用已知不等式進行放縮。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(當且僅當a=b=c時等號成立)證明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

當且僅當a=b,b=c,c=a即a=b=c時,等號成立。

2平方添項

運用此法必須注意原不等號的方向

例14 :對于一切大于1的自然數n,求證:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

證明:∵b > a> 0,m> 0時ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添項

例15:在△ABC中,求證sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算術平均值添項sin π

3證明:先證命題:若x>0,y<π,則sinx+siny≤2sin x+y2(當且僅當x=y時等號成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反復運用這個命題,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

練習11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等號成立的條件添項

例16 :已知a、b∈R+,a≠b且a+b=1,求證a4+b4> 18

分析:若取消a≠b的限制則a=b= 12時,等號成立

證明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等號不成立∴③中等號不成立∴ 原不等式成立

1.是否存在常數c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y對任意正數x,y恒成立? 錯解:證明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故說明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下證不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要證不等式xx+2y+xx+2y≤23,因為x,y是正數,即證3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即證3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+,求證:x2y2+y2z2+z2x2x+y+z ≥ xyz

錯解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

錯因:根據不等式的性質:若a >b> 0,c >d >0,則ac bd,但 ac>bd卻不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化簡得:x2y2+y2z2+z2x2≥xyz(x+y+z),兩邊同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 設x+y>0,n為偶數,求證yn-1xn+xn-1yn≥

1x 1y

錯證:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n為偶數,∴ xnyn >0,又xn-yn和xn-1-yn-

1同號,∴yn-1xn+xn-1yn≥ 1x-1y

錯因:在x+y>0的條件下,n為偶數時,xn-yn和xn-1-yn-1不一定同號,應分x、y同號和異號兩種情況討論。

正解:應用比較法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 當x>0,y>0時,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 當x,y有一個是負值時,不妨設x>0,y<0,且x+y>0,所以x>|y|

又n為偶數時,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

綜合①②知原不等式成立

第五篇:立體幾何常見證明方法

立體幾何方法歸納小結

一、線線平行的證明方法

1、根據公理4,證明兩直線都與第三條直線平行。

2、根據線面平行的性質定理,若直線a平行于平面A,過a的平面B與平面A相交于b,則 a//b。

3、根據線面垂直的性質定理,若直線a與直線b都與平面A垂直,則a//b。

4、根據面面平行的性質定理,若平面A//平面B,平面C與平面A和平面B的交線分別為直線 a與直線 b,則a//b。

????????

5、由向量共線定理,若AB?xCD,且AB、CD不共線,則向量AB所在的直線a與向量cd所在的直線b平行,即a//b。

二、線面平行的證明方法

1、根據線面平行的定義,證直線與平面沒有公共點。

2、根據線面平行的判定定理,若平面 A內存在一條直線b與平面外的直線a平行,則a//A。(用相似三角形或平行四邊形)

3、根據平面與平面平行的性質定理,若兩平面平行,則一個平面內的任一直線與另一個平面平行。

4、向量法,向量c與平面A法向量垂直,且向量c所在直線c不在平面內,則c//A。

三、面面平行的證明方法

1、根據定義,若兩平面沒有公共點,則兩平面平行。

2、根據兩平面平行的判定定理,一個平面內有兩相交直線與另一平面平行,則兩平面平行。

或根據兩平面平行的判定定理的推論,一平面內有兩相交直線與另一平面內兩相交直線平行,則兩平面平行。

3、垂直同一直線的兩平面平行。

4、平行同一平面的兩平面平行。

5、向量法,證明兩平面的法向量共線。

四、兩直線垂直的證明方法

1、根據定義,證明兩直線所成的角為90°

2、一直線垂直于兩平行直線中的一條,也垂直于另一條.3、一直線垂直于一個平面,則它垂直于平面內的所有直線.4、根據三垂線定理及逆定理,若平面內的直線垂直于平面的一條斜線(或斜線在平面內的射影),則它垂直于斜線在平面內的射影(或平面的斜線).5、向量法.五、線面垂直的證明方法

1、根據定義,證明一直線與平面內的任一(所有)直線垂直,則直線垂直于平面.2、根據判定定理,一直線垂直于平面內的兩相交直線,則直線垂直于平面.3、一直線垂直于兩平行平面中的一個,也垂直于另一個.4、兩平行直線中的一條垂直于一個平面,另一條也垂直于這個平面.5、根據兩平面垂直的性質定理,兩平面垂直,則一個平面內垂直于它們交線的直線垂直于另一個平面.6、向量法,證明平面的法向量與表示該直線的向量共線.六、面面垂直的證明方法

1、根據面面垂直的定義,兩平面相交所成的二面角為直二面角,則兩平面垂直。

2、根據面面垂直的判定定理,一平面經過另一平面的一條垂線,則兩平面垂直。

3、一平面垂直于兩平行平面中的一個,也垂直于另一個。

4、向量法,證明兩平面的法向量垂直(即法向量的數量積為零)。

七、兩異面直線所成角的求法

1、根據定義,平移其中一條和另一條相交,然后在三角形中求角。

2、利用中位線,將兩異面直線平移至一特殊點(中位線的交點)然后在三角形中求角。

3、cos?=cos?1cos?2

4、向量法.八、直線與平面所成角的求法

1、根據定義,作出直線與平面所成角,然后在直角三角形中求角。

2、轉化為距離(sin?=h/l)

3、向量法,求出平面的法向量,然后求平面的斜線與法向量的夾角。(注意為正弦)注:對兩異面直線所成角和直線與平面所成角一定要注意角的范圍。九、二面角的求法

1、定義法,從二面角的棱上的某一點分別在兩個半平面內作棱的垂線,求兩條垂線所形成的角。

2、根據三垂線定理,先作出二面角的平面角,再在直角三角形中求角。

3、射影面積法,先作出一個半平面內的某個多邊形,在另一個半平面內的射影多邊形,然后由公式 cosθ=s'/s(其中θ為二面角的平面角,s'為射影多邊形的面積,s為多邊形的面積)求出二面角的平面角。

4、向量法,求出兩個半平面的法向量,然后求兩法向量的夾角。(一般要先根據已知判斷二面角是銳角還是鈍角,否則要判斷指向,同內同外為補角)

5.公式法(異面直線上點距離公式和三類角公式)

十、點到平面的距離的求法

1、根據定義,直接求垂線段的長度。

2、向量法,利用公式

??????|PA?n|d=??|n|(其中PA為平面的一條斜線,向量n 為平面的一個法向量。

3、等體積法,主要用在四面體(三棱錐)中,根據四面體的體積等于1/3底面積×高,選取不同的底面積,求出其中一條高長。

十一、平面圖形翻折問題的處理方法

1、先比較翻折前后的圖形,弄清哪些量和位置關系在翻折過程中不變,哪些已發生變化,然后將不變的條件集中到立體圖形中,將問題歸結為一個條件與結論都已知的立體幾何問題。

2、有關翻折問題的計算,必須抓住在翻折過程中點、線、面之間的位置關系、數量關系中,哪些是變的,哪些沒變,尤其要抓住不變量。對計算幾何體上兩點之間的最短距離問題,要注意轉變為平面圖形求兩點間的距離來計算。

十二、要注意的問題

1、對推理論證與計算相結合的題目的解題原則是一作、二證、三計算。(向量法可省略證角,但必須交代如何建系,右手系)。

2、正方體中,兩個平行的正三角形截面把一條與它們垂直的體對角線三等分。

3、已知三條射線兩兩夾角,會求線面角和二面角(課堂筆記,只需會推導方法,不需強記公式)

4、適當時候,坐標法不方便時可以考慮基向量法,求向量模易出錯:ra?r2a。

5、求異面直線間的距離,若公垂線找不到,除向量法外,可以考慮構造平行平面或平行線面,轉化為點面距離求。

下載立體幾何中不等式問題的證明方法word格式文檔
下載立體幾何中不等式問題的證明方法.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    立體幾何的證明方法

    立體幾何的證明方法1.線面平行的證明方法2.兩線平行的證明方法5.面面垂直的證明方法6.線線垂直的證明方法7、空間平行、垂直之間的轉化與聯系:應用判定定理時,注意由“低維”到......

    立體幾何常見證明方法

    立體幾何方法歸納小結一、線線平行的證明方法1、根據公理4,證明兩直線都與第三條直線平行。2、根據線面平行的性質定理,若直線a平行于平面A ,過a的平面B與平面A相交于b ,則 a//b......

    高中立體幾何證明方法

    高中立體幾何一、平行與垂直關系的論證由判定定理和性質定理構成一套完整的定理體系,在應用中:低一級位置關系判定高一級位置關系;高一級位置關系推出低一級位置關系,前者是判定......

    高等數學中不等式的證明方法

    高等數學中不等式的證明方法摘要:各種不等式就是各種形式的數量和變量之間的相互比較關系或制約關系,因此, 不等式很自然地成為分析數學與離散數學諸分支學科中極為重要的工具,......

    不等式證明若干方法

    安康學院 數統系數學與應用數學 專業 11 級本科生論文(設計)選題實習報告11級數學與應用數學專業《科研訓練2》評分表注:綜合評分?60的為“及格”;......

    不等式的證明方法

    幾個簡單的證明方法一、比較法:a?b等價于a?b?0;而a?b?0等價于ab?1.即a與b的比較轉化為與0或1的比較.使用比較發時,關鍵是要作適當的變形,如因式分解、拆項、加減項、通分等,這是第一章......

    證明不等式方法探析

    §1 不等式的定義用不等號將兩個解析式連結起來所成的式子。在一個式子中的數的關系,不全是等號,含sinx?1,ex>0 ,2x<3,5x?5不等符號的式子,那它就是一個不等式.例如2x+2y?2xy,等。根據......

    sos方法證明不等式

    數學競賽講座SOS方法證明不等式(sum of squares)S?A?B?Sa?b?c??Sb?c?a??Sc?a?b??0性質一:若Sa,Sb,Sc?0,則S?A?B?Sa?b?c??Sb?c?a??Sc?a?b??0. 222222性質二:若a,b,c,Sa,Sb,Sc?且滿足(1)Sa?Sb,Sb?Sc,Sc?Sa?0,(2)若a?b?c或a?b?c,則S......

主站蜘蛛池模板: 久久精品岛国av一区二区无码| 国产成人卡2卡3卡4乱码| 精品久久久久久亚洲综合网| 亚洲精品在看在线观看高清| 国产精品泄火熟女| 初女破初的视频| 伊人狠狠色丁香婷婷综合| 人妻被按摩到潮喷中文字幕| 欧美日韩一区二区综合| 无码少妇精品一区二区免费动态| 越南女子杂交内射bbwxz| 欧美做爰一区二区三区| 麻豆果冻传媒在线观看| 丰满少妇被猛烈进出69影院| 999精品色在线播放| 国产成人三级在线视频网站观看| 开心五月综合亚洲| 国产av无码专区影视| 亚洲国产精品一区二区久久hs| 精品国产自在在线午夜精品| 无码人妻熟妇av又粗又大| 99尹人香蕉国产免费天天| 亚洲国产成人精品无码一区二区| 在线观看国产网址你懂的| 日韩精品无码一区二区三区av| 久久综合给久久狠狠97色| 国产日产欧产精品精品软件| 亚洲第一综合网址网址| 亚洲aⅴ无码专区在线观看q| 在线视频网站www色| 国产亚洲精品久久一区二区三区| 欧美精品国产aⅴ一区二区在线| 午夜一区二区国产好的精华液| 亚洲人成在线观看| 亚洲一卡二卡三卡四卡| 无套内谢少妇毛片aaaa片免费| 99久久国产综合精品女同图片| 欧美牲交a欧美牲交aⅴ免费| 精品无码国产自产拍在线观看蜜| 2021亚洲va在线va天堂va国产| 18禁黄网站禁片免费观看女女|