第一篇:向量的加法評(píng)課稿
向量的加法評(píng)課稿
本節(jié)所授內(nèi)容基本與原先設(shè)想一致,評(píng)略得當(dāng),重點(diǎn)突出,難點(diǎn)化解。在兩個(gè)加法則的引入、講解及運(yùn)用的處理方法、時(shí)間安排都把握得比較好,能夠引導(dǎo)學(xué)生積極主動(dòng)地探索平行四邊形法則和三角形法則,使學(xué)生對(duì)兩個(gè)加法法則形成了正確的認(rèn)識(shí),留下了深刻的印象,通過反饋練習(xí),可以看出學(xué)生對(duì)兩個(gè)法則的運(yùn)用掌握的比較好,比較完整地實(shí)現(xiàn)了教學(xué)目標(biāo)。
本節(jié)課的教學(xué)方法運(yùn)用比較合理:采取了類比、探究、講練結(jié)合及多媒體技術(shù)等多種方法。對(duì)數(shù)學(xué)課來說,本節(jié)課最顯著的特點(diǎn)是將全部板書都移到了課件上,對(duì)我來說,是一次嘗試,因?yàn)橐郧埃艺J(rèn)為數(shù)學(xué)課沒必要用課件,對(duì)全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來看,這樣處理對(duì)教學(xué)效果沒有什么不良影響,反而使學(xué)生能更直觀地理解兩個(gè)加法法則和運(yùn)算律,通過課件中的向量的平移,加深了學(xué)生對(duì)上節(jié)課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學(xué)生對(duì)內(nèi)容小結(jié)的敘述看,沒有板書,并沒有妨礙本節(jié)內(nèi)容在學(xué)生腦海中留下的印象。原先的設(shè)計(jì)中,板書設(shè)計(jì)也有,打在教案的后面。
通過這節(jié)課的講授,我收獲很多:首先,從課程的構(gòu)思上,我沒有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯(cuò)。可見,對(duì)教材的處理確實(shí)要根據(jù)學(xué)生情況,靈活裁剪,不能生搬硬套。
其次,通過這節(jié)課我感到,對(duì)有些與圖形聯(lián)系較多的課程,使用課件講解簡便易行,關(guān)鍵是要根據(jù)教學(xué)設(shè)計(jì)制作合適的課件,并且合理使用。
本節(jié)缺憾也很多。首先,學(xué)生活動(dòng)還是偏少,沒有充分、全面地調(diào)動(dòng)學(xué)生熱情。其次,語言不夠精煉,有時(shí)比較啰嗦,也耽誤了時(shí)間,第三,學(xué)生發(fā)言時(shí),好打斷學(xué)
生,總覺得學(xué)生說得不清楚,搶學(xué)生話頭,打擊了學(xué)生課堂參與的積極性,很不好。
以上是我對(duì)這節(jié)課的反思,不到之處,請(qǐng)大家指點(diǎn)。
第二篇:高中數(shù)學(xué)說課向量加法
《向量的加法》說課稿
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。
2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。
五、教學(xué)方法
本節(jié)采用以下教學(xué)方法:
1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。
2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。
3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。
4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個(gè)法則的幾何意義及運(yùn)算律。
六、數(shù)學(xué)思想的體現(xiàn):
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法不致于太陌生,既有似曾相識(shí)的感覺,又能從對(duì)比中看出兩者的不同,效果較好。
3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。③對(duì)向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過程:
1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過講解例1,使學(xué)生認(rèn)識(shí)到可以通過平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。
設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過程對(duì)學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都可以用。
設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對(duì)比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。
(3)共線向量的加法
方向相同的兩個(gè)向量相加,對(duì)學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對(duì)學(xué)生來說是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號(hào)兩數(shù)相加:“異號(hào)兩數(shù)相加,用較大的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)。”類比異號(hào)兩數(shù)相加,他們會(huì)用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。
反思過程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說明兩個(gè)共線向量相加依然可用三角形法則。對(duì)
有如下規(guī)定 通過以上幾個(gè)環(huán)節(jié)的討論,可以作個(gè)簡單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個(gè)向量相加。
設(shè)計(jì)意圖:通過對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法則的認(rèn)識(shí),使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。
(4)向量加法的運(yùn)算律
①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。②結(jié)合律:結(jié)合律是通過三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。
接下來是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。
設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結(jié)
先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。
(1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。(2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。(3)運(yùn)算律
交換律: 結(jié)合律:、作業(yè):P91,A組1、2、3。
《向量的加法》評(píng)課稿
本節(jié)所授內(nèi)容基本與原先設(shè)想一致,評(píng)略得當(dāng),重點(diǎn)突出,難點(diǎn)化解。在兩個(gè)加法則的引入、講解及運(yùn)用的處理方法、時(shí)間安排都把握得比較好,能夠引導(dǎo)學(xué)生積極主動(dòng)地探索平行四邊形法則和三角形法則,使學(xué)生對(duì)兩個(gè)加法法則形成了正確的認(rèn)識(shí),留下了深刻的印象,通過反饋練習(xí),可以看出學(xué)生對(duì)兩個(gè)法則的運(yùn)用掌握的比較好,比較完整地實(shí)現(xiàn)了教學(xué)目標(biāo)。
本節(jié)課的教學(xué)方法運(yùn)用比較合理:采取了類比、探究、講練結(jié)合及多媒體技術(shù)等多種方法。對(duì)數(shù)學(xué)課來說,本節(jié)課最顯著的特點(diǎn)是將全部板書都移到了課件上,對(duì)我來說,是一次嘗試,因?yàn)橐郧埃艺J(rèn)為數(shù)學(xué)課沒必要用課件,對(duì)全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來看,這樣處理對(duì)教學(xué)效果沒有什么不良影響,反而使學(xué)生能更直觀地理解兩個(gè)加法法則和運(yùn)算律,通過課件中的向量的平移,加深了學(xué)生對(duì)上節(jié)課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學(xué)生對(duì)內(nèi)容小結(jié)的敘述看,沒有板書,并沒有妨礙本節(jié)內(nèi)容在學(xué)生腦海中留下的印象。原先的設(shè)計(jì)中,板書設(shè)計(jì)也有,打在教案的后面。
通過這節(jié)課的講授,我收獲很多:首先,從課程的構(gòu)思上,沒有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯(cuò)。可見,對(duì)教材的處理確實(shí)要根據(jù)學(xué)生情況,靈活裁剪,不能生搬硬套。
其次,通過這節(jié)課我感到,對(duì)有些與圖形聯(lián)系較多的課程,使用課件講解簡便易行,關(guān)鍵是要根據(jù)教學(xué)設(shè)計(jì)制作合適的課件,并且合理使用。
本節(jié)缺憾也很多。首先,學(xué)生活動(dòng)還是偏少,沒有充分、全面地調(diào)動(dòng)學(xué)生熱情。其次,語言不夠精煉,有時(shí)比較啰嗦,也耽誤了時(shí)間,第三,學(xué)生發(fā)言時(shí),好打斷學(xué)生,總覺得學(xué)生說得不清楚,搶學(xué)生話頭,打擊了學(xué)生課堂參與的積極性,很不好。
以上是我對(duì)這節(jié)課的反思,不到之處,請(qǐng)大家指點(diǎn)。
第三篇:《加法運(yùn)算定律的應(yīng)用》評(píng)課稿
《加法運(yùn)算定律的應(yīng)用》評(píng)課稿
評(píng)課人
代建菊
聽了張老師的《加法運(yùn)算定律的應(yīng)用》的這節(jié)數(shù)學(xué)課,我又有了心的收獲,張老師那清晰的教學(xué)思路,有層次的教學(xué)設(shè)計(jì),親切和藹的嬌態(tài),簡潔的語言,對(duì)我啟發(fā)很大。
對(duì)于小學(xué)生來說,計(jì)算教學(xué)是數(shù)學(xué)教學(xué)的基礎(chǔ),也是一個(gè)難點(diǎn)。在計(jì)算教學(xué)中,不僅要使學(xué)生能正確合理的計(jì)算,還要掌握靈活的計(jì)算方法,張老師這節(jié)課正是在學(xué)生掌握了加法交換律和結(jié)合律的基礎(chǔ)上,靈活運(yùn)用這些定律使計(jì)算簡便。
張老師這節(jié)課很成功,我覺得這節(jié)課有三大特點(diǎn):一是實(shí),二是放,三是活。“實(shí)”體現(xiàn)在:
1、課前復(fù)習(xí)扎實(shí)有效。因?yàn)閿?shù)學(xué)課的課前復(fù)習(xí)很重要,它可以為新課做充分的鋪墊與銜接,吧前面零散的認(rèn)知集中一點(diǎn),便于學(xué)生在新課中類比活應(yīng)用。
2、選擇貼近生活實(shí)際的信息創(chuàng)設(shè)情境,充分利用上節(jié)課王叔叔騎自行車這一故事的延續(xù),引出新課,生成一個(gè)連貫的情境,讓學(xué)生在感知上形成一個(gè)有機(jī)的整體,自然進(jìn)入學(xué)習(xí)狀態(tài)。
3、課堂中的小組合作具有時(shí)效性,在合作中充分給學(xué)生交流的空間,讓學(xué)生在交流中互相傾聽,互相補(bǔ)足,達(dá)到了人人參與的目的。“放”體現(xiàn)在:
1、教師大膽放手,把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,老師讓學(xué)生在自主探索選擇自己的計(jì)算方法,然后再交流中體會(huì)計(jì)算方法的多樣化,靈活化,合理化。比如例題中學(xué)生們一共想出了6種計(jì)算方法。然后通過對(duì)比,學(xué)生自己就可以找到簡便的計(jì)算方法,也達(dá)到了這節(jié)課運(yùn)用定律的教學(xué)目的。在這節(jié)課最值得我學(xué)習(xí)的地方是,張老師在學(xué)生自主探究合作時(shí)能細(xì)致觀察,耐心傾聽,洞察學(xué)生的真實(shí)想法,加以點(diǎn)撥,幫助學(xué)生講清算理,也讓其他學(xué)生聽的明白。
本節(jié)可通過放手,讓學(xué)生經(jīng)歷了學(xué)習(xí)的過程,體驗(yàn)了學(xué)習(xí)的快樂,也互相學(xué)習(xí)了各自的思維方法。
開放性的練習(xí)題,培養(yǎng)了學(xué)生的思維能力,邏輯能力和競爭意識(shí),提高學(xué)生的計(jì)算能力
“活”體現(xiàn)在:
1、這節(jié)課雖然是計(jì)算教學(xué),可是學(xué)生都動(dòng)起來了,通過動(dòng)腦,動(dòng)手,動(dòng)口等一系列活動(dòng),把知識(shí)進(jìn)行了理解和升華,知道了如何運(yùn)用定律使計(jì)算更簡便更快捷。
通過普通計(jì)算方法和運(yùn)用定律方法的對(duì)比,學(xué)生會(huì)眼前一亮,使枯燥的數(shù)學(xué)活起來,孩子會(huì)發(fā)現(xiàn),數(shù)字交換位置合并起來會(huì)如此的簡便快捷,都想想出不同于其他同學(xué)的算法,躍躍欲試,積極性很高。我們可以看到孩子們學(xué)的很開心。
2、習(xí)題設(shè)計(jì)活性化。比如,第一題是基礎(chǔ)練習(xí),具有針對(duì)性,目的性。第2、3題選擇和找朋友,具有多樣性,進(jìn)一步提高學(xué)生的綜合運(yùn)用能力。
總之,整節(jié)課教學(xué)體現(xiàn)了學(xué)生是學(xué)習(xí)的主體,教師是組織者和引導(dǎo)者,學(xué)生學(xué)的輕松愉快。
建議:課堂中完成的習(xí)題不在于多,而在于精,應(yīng)該有代表性,層次性。
第四篇:七年級(jí)數(shù)學(xué)《有理數(shù)的加法評(píng)課稿》評(píng)課稿
《有理數(shù)的加法評(píng)課稿》
雙峰寺鎮(zhèn)中學(xué)王慧敏
我參加了數(shù)學(xué)教研活動(dòng),我評(píng)一下范玉榮老師的課,范老師精心準(zhǔn)備,運(yùn)用多種教學(xué)手段,創(chuàng)設(shè)了豐富多彩的教學(xué)內(nèi)容,設(shè)計(jì)了符合學(xué)生的認(rèn)知成長水平和心理特征的學(xué)生活動(dòng),發(fā)揮了學(xué)生的自主性和探究性。聽了這節(jié)課,讓我很受啟發(fā)。就這節(jié)課談?wù)勎业囊恍┛捶ā?/p>
一、利用學(xué)生身邊的生活情景,自然導(dǎo)入新課。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活情景,從學(xué)生的經(jīng)驗(yàn)和已有知識(shí)出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的情況。這一點(diǎn)范老師做得非常出色。
他先用多媒體,展示水泥進(jìn)出貨數(shù)量和庫存變化的表,讓學(xué)生一下子親近生活。在學(xué)生已有的經(jīng)驗(yàn)的基礎(chǔ)上思考有關(guān)問題。并進(jìn)行小組合作交流,引出同號(hào)兩數(shù)相加的法則,步步深入,環(huán)環(huán)相扣。達(dá)到調(diào)動(dòng)學(xué)生學(xué)習(xí)主動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣的目的。
二、注重探求新知識(shí)的過程和方法。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)教學(xué)過程是學(xué)生在教師的組織和引導(dǎo)下,進(jìn)行積極主動(dòng)參與學(xué)習(xí)的過程,其核心是調(diào)動(dòng)全體學(xué)生積極參與到學(xué)習(xí)的過程。讓學(xué)生親自體驗(yàn)數(shù)學(xué)知識(shí),主動(dòng)獲取知識(shí)的過程,提高興趣,激發(fā)求知欲。如,范老師引導(dǎo)學(xué)生探究有理數(shù)加法法則時(shí),讓學(xué)生主動(dòng)參與,教師充分為學(xué)生創(chuàng)設(shè)操作和實(shí)踐的機(jī)會(huì),讓學(xué)生在運(yùn)用有理數(shù)加法法則的過程中。體驗(yàn)樂趣。正堂課氣氛熱烈。
通過“想一想,議一議,做一做”的活動(dòng),讓學(xué)生歸納出同號(hào)異號(hào)兩數(shù)相加的方法,再利用題目做一做,鞏固加法法則的運(yùn)用。
三、合理安排練習(xí),培養(yǎng)學(xué)生的思維能力。
《新課程標(biāo)準(zhǔn)》指出:課堂練習(xí)是檢查認(rèn)知目標(biāo)的主要手段,安
排一個(gè)緊湊,短時(shí),有效的課堂練習(xí),可以檢查學(xué)生的學(xué)習(xí)效果。在這節(jié)課中,范老師能根據(jù)教學(xué)的需要,設(shè)計(jì)練習(xí),鞏固知識(shí),形成技能和技巧,培養(yǎng)學(xué)生的思維能力,在練習(xí)的上,主要表現(xiàn)以下幾點(diǎn):
首先,練習(xí)具有一定的針對(duì)性,如發(fā)下的試卷第一,第二題,為了幫助學(xué)生理解,還運(yùn)用課內(nèi)練習(xí)。
再次,練習(xí)設(shè)計(jì)具有層次性,如從同號(hào)兩數(shù)相加,到異號(hào)兩數(shù)相加,再到互為相反數(shù)之和。這些題目考察學(xué)生對(duì)這節(jié)課知識(shí)的掌握情況,提高學(xué)生知識(shí)解決問題的能力。
五、本人認(rèn)為不足的方面有以下幾點(diǎn):
1、教態(tài)不自然親切,范老師一上來顯得一點(diǎn)緊張,給了學(xué)生一個(gè)緊張的氛圍,沒有給學(xué)生一個(gè)充分思考的空間。
2、板書有點(diǎn)亂,因板書的內(nèi)容太多,而能寫的黑板太小,再加上學(xué)生的板書,導(dǎo)致粉筆字模糊不清,可能是準(zhǔn)備不足。
3、范老師積極的,激勵(lì)性的正面評(píng)價(jià)較少。
總之,在這節(jié)課中,范老師能創(chuàng)設(shè)有效的教學(xué)情境,把握重點(diǎn),突破難點(diǎn),完成整節(jié)課的教學(xué)任務(wù),非常好,有許多亮點(diǎn)值得我去學(xué)習(xí)。
第五篇:《向量的加法》說課稿
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。
2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。
五、教學(xué)方法
本節(jié)采用以下教學(xué)方法:
1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。
2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。
3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。
4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個(gè)法則的幾何意義及運(yùn)算律。
六、數(shù)學(xué)思想的體現(xiàn):
分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。