第一篇:5.1.3初中數學說課稿 人教版七年級下數學說課稿
5.1.3初中數學說課稿 人教版七年級下數學說課稿
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學習習近平行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。
2、教學重難點
重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。
難 點 “轉化”的數學思想的培養。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學目標
知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。
能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。
情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。
通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。
三、教學方法
1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。
2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。
3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。
四、教學流程:
我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。
創設情境,孕育新知:
①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。
②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。
③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。
設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。
2、實驗操作,探索新知1
①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。②學生思考三角尺起什么作用(教師點撥)?
③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,歸納:兩直線平行條件1
教師展示一組練習,學生獨立完成,鞏固新知。
在這一環節中,教師應關注:
①學生能否畫平行線,動手操作是否準確
②學生能否獨立探究、參與、合作、交流
設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,體現學以致用的觀念,消除學生學無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學生分組討論:
①∠2和∠3是什么位置關系?
∠3和∠4是什么位置關系?
②直線CD繞O旋轉是否還保持上述位置關系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。
⑶學生獨立完成練習。
本環節教師關注:
①學生能否主動參與數學活動,敢于發表個人觀點。
②小組團結協作程度,創新意識。
③表揚優秀小組
設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。
4、解釋運用,鞏固新知
本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。
本環節教師應關注:
①深入學生當中,對學習有困難學生進行鼓勵,幫助。
②學生的思維角度是否合理。
設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。
5、總結新知,布置作業
通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。
設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。
五、教學設計
本節課的教學設計,依據《新課程標準》的要求,立足于學生的認知基礎來確定適當的起點與目標,內容安排從畫平行線的方法出發到平行線的三個充分條件的發現、論證和運用,逐步展示知識的過程,使學生的思維層層展開,逐步深入。在教學設計時,利用學具及多媒體輔助教學,展示圖片和動畫,使學生體會到數學無處不在,運用數學無時不有。以動代靜,使課堂氣氛活躍,面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲,同時注重利用學生的好奇心,培養學生的創新能力,引導學一從數學角度發現和提出問題,并用數學方法探索、研究和解決,體現《新課標》的教學理念
第二篇:七年級數學說課稿
七年級數學說課稿 1
1、說教材
1.1教材的地位與作用
平行線的判定(1)這節課是浙教版八年級上冊第一章平行線第2節的第1課時內容,它是繼“同位角、內錯角、同象同角”即三線八角內容之后學習的又一個重要知識,它是繼續學習習近平行線的其它判定的奠基知識,更是今后學習與平行線有關的幾何知識的基礎。因此這節內容在七~九年級這一學段的數學知識中具有很重要的地位。
通過這一節內容的學習可以培養學生動手操作,主動探究及合作交流的能力。通過結合展示知識的發生發展過程,鼓勵學生思考、歸納總結,從而培養學生良好的學習習慣和思維品質。
1.2教材的重點、難點
因為平行線的判定方法“同位角相等兩直線平行”是平行線其它判定的重要依據,所以它是這節課的教學重點。由于例1判定兩直線平行時需將已知條件作適當的轉化,說理過程要求有條理地表示,這在學生學習“證明”之前,學生這方面的能力還比較薄弱,所以我把例1定為本節的教學難點。
2、說目標
2.1知識目標:理解平行線的判定方法1:同位角相等兩直線平行,并學會運用這一判定方法進行簡單的幾何推理:
2.2能力目標:通過“同位角相等、兩直線平行”這一判定方法的發現過程的教學,培養學生動手實驗操作能力,小組合作學習能力,歸納分析能力。通過這一判定方法運用進一步培養學生的邏輯思維和推理能力。
2.3情感目標:體會用實驗的方法得出幾何性質(規律)的重要性與合理性。進一步
培養學生積極參與主動探索的良好學習習慣和思維品質。
這樣確定教學目標期依據是:
第一,判定方法的得到必須有一個實驗操作,歸納過程,在這個過程中去揭示知識的內在聯系,強化知識體系形成學生自己的認知結構。
第二,這樣的教學符合學生認識事物的規律,學生學習的認識過程和人類獲取知識的過程基本相同,需要從具體到抽象,從感性上升到理性的循序漸進的過程。著名西方教育家布魯納認為“探索是數學教學的生命線”所以組織學生探索知識的過程,可以突出學生是認識的主體,也有利于教師的角色轉化,教師應是課堂教學的組織者、引導者與合作者。
3、說教法、學法
3.1教法
根據學生的學習內容應當是現實的、有意義的、富有挑戰性的。這些內容要有利于學生主動地觀察、實驗、猜測、驗證、推理與交流等活動,所以我采用了①探索性教學,以引導學生主動地探索。②綜合性教學,把探索到的本質特征用概括地語言形成判定方法,從而使感性認識上升到理性認識。③實踐性教學,給學生動手、動腦的機會等。
3.2學法指導
(1)樂學,在整個學習過程中,讓學生保持強烈的好奇心和求知欲,不斷強化他們的創新意識,全身心地投入學習中去,成為學習的主人。
(2)學會:通過新知的學習,讓學生學會新知在新的情境下如何應用,從而逐步完善其認知結構。
(3)會學:通過學生的親身參與,更進一步體會到動手實踐自主探索,合作交流是學習數學其它知識的重要方式。
4、說教學過程
4.1實驗操作,探索新知
心理學研究表明,當學生明確了學習的`目的和意義時,就會對學習內容產生濃厚的
興趣,創設問題情境,實驗操作激發了學生的創新意識、營造了良好的課堂氛圍。
問題情境:已知直線和直線外一點P,過點P畫直線的平行線:
有哪些步驟,學生根據以下平行線的畫法,邊畫邊回答:
①落②靠③推④畫
提問:⑴怎樣用語言敘述上面抽象出來的圖形(直線;被AB所截)
⑵畫圖過程中,什么角始終保持相等?(∠1=∠2)
⑶它們是一對什么角?(同位角)
⑷直線、的位置關系如何?(∥)
⑸可以敘述為:∵∠1=∠2∴∥
4.2交流歸納,揭示新知
⑴讓學生討論交流,上面敘述的條件與結論,要求學生用簡練的語言表達。
目的:學生在教師的啟發引導下積極地參與到觀察對象的關鍵特征,尋求平行線的判定方法的發生過程的探索活動中去,主動地學習,積極地思考,把自己觀察歸納出的結論與同學交流,加強同學間的合作與交流。為學生主動學習提供了時間與空間。
⑵請一個同學代表回答,其他同學進行修改與補充,學生在歸納過程中難免有不當之處,有不完整之處,教師應先肯定學生的創新結果,給予積極的評價,再作適當好的進行修正,得出結論:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單地說:同位角相等,兩直線平行。
目的:使學生的認識從感情階段上升到理性階段。
4.3討論質疑,突出重點
提問:⑴現在要判定兩條直線平行,關鍵要找什么條件成立?(同位角相等)
⑵那么,同位角在怎樣的幾何圖形中才會出現?(
兩條直線被第三條直線所截,即“三線八角”)
目的:強化判定方法的大前提及提設條件,以突出本節教學內容的重點。
教師通過多媒體展示各種圖例,要求學生說出條件與結論,更進一步突出教學的重點。
課堂練習:
4.4范例研究,突破難點
教師用多媒體展示教材,例1:已知直線、被所截。(如圖)∠1=45度,∠2=135度,判斷與是否平行,并說明理由
教師根據例題的圖形與已知條件,作這樣的分析:
⑴猜測與平行嗎?(平行)
⑵要說明與平行關鍵要得出什么?(∠1=∠3)
⑶現∠1=45度,那么能得出∠3=4度嗎?(能,∠2與∠3互補)
目的:啟發學生把例題已知條件作適當地轉化,從而符合平行線的判定方法⑴的題設條件,作這樣的啟發與分析,使學生逐步掌握這種“執果索因”的分析方法,來突破難點。教師先請一個同學代表敘述說理過程,再請其也同學補充完整,這樣逐步培養學生說理的條理性與層次性。
以上教學,層層深入,始終讓學生參與整個問題的“發生”和“解決”過程培養學生的探索學生的探索問題的能力,滲透輔導學生會學,巧妙突破難點。
4.5反饋評價,體驗成功
為了讓學生更好地掌握平行線的判定,進一步培養學生獨立解決問題的能力,并培養學生的數學應用意識。學生對所學知識到底掌握了多少?為了撿測學生對本課教學目標的完成情況,把課后練習、作業作為反饋練習,讓學生體驗成功的喜悅,針對學生的解答情況采取措施及時彌補和調整。接著安排了課后P6的練習及課本作業題的2、3、4,特別是2、4兩題完成后學生提問是否還有不同的方法?是否還能探索出其它的結論成立,為后續學習習近平行線的判定2和平行線的性質打下伏筆和鋪墊。
以課本練習、作業為載體,體現了教學層次性、符合新課程的基本理念,突出體現基礎性、普及性與發展性。
4.6歸納總結,鞏固提高
為了使學生對所學知識有一個完整而深刻的印象,通過教師提問、學生回答,進而教師歸納總結。目的是訓練學生歸納概括知識的能力,并使學生在歸納過程中使知識系統化、條理化。我從以下幾個方面進行小結:①本節課你學到了什么知識?
②平行線的判定⑴必須要找什么條件使結論成立?
③要找同位角相等,有時需對問題的已知條件作適當的轉化。
④你認為還有什么不懂的
⑤你有什么經驗與收獲讓同學們共享呢?
作業的布置體現整體和局部相結合,注重分層訓練,分兩部分。一是必做題,作業本、同步練習,讓所有學生對本課所學知識加深理解,及時鞏固。二是選做題,讓學有余力的同學完成,可以滿足他們學習的愿望,發展他們的數學才能,也符合面向全體,因材施教原則。
5、說評價
在本節教學中,我注重對學生學習過程的評價,對學生積極主動參與數學活動,樂意與同伴進行交流和合作,給予充分的肯定。
在教學活動中重視讓學生暴露解決問題中的思維過程,拓展性和開放性的練習安排,充分關注學生的個性差異,保護學生的自尊心和自信心。
在教學活動中,根據學生大量的信息反饋,了解學生對知識的掌握程度,靈活安排教學細節,從而達到預期的教學效果。
七年級數學說課稿 2
一、教材分析:
“數的運算”是“數與代數”學習領域的重要內容,減法是其中的一種基本運算。本課的學習遠接小學階段關于整數、分數(包括小數)的減法運算,近承第四節有理數的加法運算。通過對有理數的減法運算的學習,學生將對減法運算有進一步的認識和理解,為后繼諸如實數、復數的減法運算的學習奠定了堅實的基礎。
鑒于以上對教學內容在教材體系中的位置及地位的認識和理解,確定本節課的教學目標如下:
1、知識目標:
經歷探索有理數的減法法則的過程,理解有理數的減法法則,并能熟練運用法則進行有理數的減法運算。
2、能力目標:
經歷由特例歸納出一般規律的過程,培養學生的抽象概括能力及表達能力;通過減法到加法的轉化,讓學生初步體會轉化、化歸的數學思想。
3、情感目標:
在歸納有理數減法法則的過程中,通過討論、交流等方式進行同伴間的合作學習。
為了實現以上教學目標,確定本節課的教學重點是:有理數的減法法則的理解和運用。教學難點是:在實際情境中體會減法運算的意義并利用有理數的減法法則解決實際問題。
二、學情分析:
我們面對的教學對象是已具備一定知識儲備和一定認知能力的個性鮮明的學生,而不是一張“白紙”,因此關注學生的情況對教學是十分有必要的。
在生活中學生經常會進行同類量之間的比較,因此學生對減法運算并不陌生,但這種認識常常流于經驗的層面;在小學階段學生進一步學習了作為“數的運算”的減法運算,但這種減法運算的學習很大程度上的是一種技能性的強化訓練,學生對此缺乏理性的認識,很多時候減法僅作為加法的逆運算而存在。因此在教學中一方面要利用這些既有的知識儲備作為知識生長的“最近發展區”來促進新課的學習,另一方面要通過具體情境中減法運算的學習,讓學生體會減法的意義。
此外,值得注意的是本年齡段的學生學習積極性高,探索欲望強烈,但數學活動的經驗較少,探索效率較低,合作交流能力有待加強。因此在教學過程中要做好調控。
三、教法選擇及學法指導:
《課程標準》中明確指出:學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。基于以上理念,結合本節課內容及學生情況,教學設計中采用“引導——發現法”組織教學。其基本程序設計為:創設情境——提出猜想——探索驗證——總結歸納——反饋運用。
上述教學程序的實施很大程度上有賴于學生的學習,因此對學生學習方式的指導是十分重要的。本節課應鼓勵和引導學生采用自主探索與合作交流相結合的方式進行學習,讓學生親歷從列舉特例到歸納(不完全歸納)出一般的減法法則的全過程,體驗知識產生和發展的全過程。
四、過程分析:
教學環節、教學活動設計、設計說明
a、創設情境自然引入
1、首先與學生互動談論合肥本地今日的氣溫,了解合肥今天的最高氣溫和最低氣溫。提問:合肥今天的溫差是多少度?你是怎樣計算的?
補充回答:
2、自然過渡到烏魯木齊的溫差的計算問題,在學生列出算式4–(–3)后引入課題:有理數的減法
(板書課題)
通過溫度的比較讓學生明白減法的實際意義在于同類量之間的比較,為后來運用減法解決實際問題打下基礎。
從學生身邊的實際引入新課,讓學生感受到數學就在自己身邊,增強學數學的樂趣。同時這也符合七年級學生的認知特征,使學生樂于進一步探索。
在學生提出可以用4–(–3)計算烏魯木齊的溫差后,教師鼓勵學生充分探索計算4–(–3)的方法,得出結果為7。
在學生得出4–(–3)=7后,教師引導學生比較4–(–3)=7與43=7這兩個算式及其結果。
在學生對有理數的減法計算提出初步的猜想“減去一個數等于加上這個數的相反數”后,教師設問:
只有4–(–3)=43=7這一個例子,你能不能斷定這個猜想成立?
引導學生通過列舉具有不同代表性的特例,如:正數
減去正數、正數減去零、正數減去負數、負數減去正數、負數減去零、負數減去負數、零減去正數、零減去零、零減去負數等。
最后請學生根據上面的數學活動經驗自主總結歸納有理數的減法法則。(教師板書這一法則)
學生得出結果的方法可能不一樣,教學中只要是合理的.都應鼓勵。
如采取逆運算的方法,或利用溫度計直接數讀數的方法等。
對4–(–3)=7與43=7的觀察、比較,是進一步探索有理數減法法則的基礎。可借助多媒體課件演示算式的規律,幫助學生探索其中的內在關系。
從提出猜想到得出正確得結論之間有一個探索驗證的過程,這個過程正是新課程改革所提倡的“做數學”的過程,教學中要提供足夠的時間讓學生探索、交流。
學生通過相互補充,不斷列舉不同代表性的特例,在合作交流中徹底理解有理數相減時總成立的一般法則。而這個“舉例”過程,正是一個“數學化”的過程,正是一種對數學素養的培養。
學生的歸納可能不規范,教師可請學生互相交流、補充使之規范,從而培養學生的抽象概括能力及口頭表達能力。
b、例題講解即時反饋
1、師生共同完成p53例1,其中第(1)小題教師講解,其余各題請學生完成。
在完成例1后,教學中采用分組競賽的方法及時處理p54“隨堂練習”。
2、師生共同完成p53例2、p54例3
教師要通過引導學生分析實際情境,讓學生在實際情境中進一步體會減法的意義,并熟練利用減法法則進行減法運算。
教師講解第(1)小題時要點明算理,規范解答。
互動交流式的練習方式讓學生的學習更積極主動。學生在活動中能體會參與數學活動的樂趣。
例2、例3是實際問題,它們的解答有利于培養學生“用數學”的意識。
c、拓展應用
師生一起分析p55的習題第5題。在弄清題意后,請學生填寫方陣圖。
解決問題的核心是找到“每個數都加上的同一個數”是什么,這就是有理數的減法在這個實際情境下的應用。
另一方面,本題也提供了一個三階幻方的一般填法,拓展了知識面,并為“試一試”的思考提供參考。
d、課堂總結
多媒體出示總結性問題:
1、這一節課我們一起學習了哪些知識?
2、對這些內容你有什么體會,請與你的同伴交流。
鼓勵學生積極發言,增進師生、生生之間的交流、互動。
e、布置作業
1、課堂作業:
p54-55習題2。6第1、2、3、4題
2、課外思考:
p55習題2。6試一試
利用課堂作業及時反饋本課重、難點。
利用課外思考給部分學生提供進一步發展的機會
七年級數學說課稿 3
我說的課題是整式的加減,源于義務教育課程標準實驗教科書八年級(上冊)第15章第2課時。下面我將從“教什么”、“怎樣教”和“為什么這樣教”來闡述我這節課的教學設計。
一、教材分析:
1、教材所處的地位及作用:
本節課源于義務教育課程標準實驗教科書八年級(上冊)第15章第2課時,是在結合學生已有的生活經驗,在學習了用字母表示數,單項式、多項式以及有理數運算的基礎上,對同類項進行合并、探索、研究的一個課題。“合并同類項”這一知識點是整式部分的核心,因為它是本章重點“整式加減”的基礎,其法則以及去括號與添括號的法則應用是整式加減的重點。同類項這一節的教學內容有同類項的概念、合并同類項法則及其運用,其法則的應用是整式加減的基礎,另一方面,這節課與前面所學的知識有千絲萬縷的聯系:合并同類項的法則是建立在數的運算的`基礎之上;在合并同類項過程中,要不斷運用數的運算。可以說合并同類項是有理數加減運算的延伸與拓廣。因此學好本節知識是學好后續知識的主要紐帶,同時在合并同類項過程中不斷運用數的運算,又合并同類項是建立在數的運算律的基礎上,讓學生體會到認識事物是一個由特殊到一般,又由一般到特殊的過程,從而培養學生初步的辯證唯物主義思想。
2、學生情況分析:(正確說明學生已有認知結構與新內容之間的關系,明確學生可能遇到的難點)
八年級學生理性思維的發展還很有限,他們在身體發育、知識經驗、心理品質方面,依然保留著天真活潑、對新生事物很感興趣、求知欲望強、具有強烈的好奇心與求知欲,形象直觀思維已比較成熟,但抽象思維能力還比較薄弱。因此,我們要營造輕松、和諧的課堂氣氛,充分激活學生的探索欲望,讓學生在教師創設的情境中充滿好奇地學,留給學生足夠的自主活動、相互交流的空間,讓學生在觀察中不斷發現數學問題、在實踐中領悟數學思想、在評價中逐步形成數學價值觀。
本課要注意發揮本節內容承前起后的作用,在小學和七年級,已經學習了用字母代替數,列代數式表示現實世界中簡單的數量關系,根據數量關系列方程和解方程,有了這些基本知識,學生已經對整式的加減具有了一定的感性認識但在學習本課重點——同類項的概念、合并同類項的法則及應用時特別要處理好本課教學難點——正確判斷同類項;準確合并同類項。
二、教學目標:
(正確闡述通過教學,學生在“雙基”、數學能力、理性精神等方面所能得到的發展,并說明其依據)
1.知識目標:
(1)使學生理解多項式中同類項的概念,會識別同類項。
(2)使學生掌握合并同類項法則。
(3)利用合并同類項法則來化簡整式。
2.能力目標
(1)、通過具體情境的觀察、思考、類比、探索、交流和反思等數學活動培養學生創新意識和分類思想,使學生掌握研究問題的方法,從而學會學習。
(2)、通過具體情境貼近學生生活,讓學生在生活中挖掘數學問題,解決數學問題,使數學生活化,生活數學化。會利用合并同類項的知識解決一些實際問題。
(3)、通過知識梳理,培養學生的概括能力、表達能力和邏輯思維能力。
3.情感態度與價值觀:
(1)在整式的加減運算中體會數學的簡潔美。
(2)在探索規律的過程中,激發學生的求知欲,培養獨立思考和合作交流的能力,讓他們享受成功的喜悅,增強學數學的信心。
三、教學重點、難點:
根據學生的認知水平、認知能力以及教材的特點,確定以下重、難點:
重點:同類項的概念、合并同類項的法則及應用。
難點:正確判斷同類項;準確合并同類項。
四、教學方法、手段
1、教學設想
突出以學生的“數學活動”為主線,激發學生學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主
探索和合作交流過程中真正理解和掌握基本的數學知識與技能、數學思想與方法,獲得廣泛的數學活動經驗。
2、教學方法
利用引導發現法、討論法,引導學生從具體生活情境及已有的知識和生活經驗出發,營造自主探索與合作交流的氛圍,提出問題,共同在實驗、演示、操作、觀察、練習等活動中運用多媒體來提高教學效率,驗證結論,激發學生的求知欲,培養探索能力、創新意識。
3、教學手段
利用多媒體創設教學情境,引導學生觀察、探索、發現、歸納來激發學生學習興趣、激活學生思維,以利于突破教學重點和難點,提高課堂教學效益。新課標提倡教學中要重視現代教育技術、要引導學生獨立思考、自主探索與合作交流,讓學生掌握知識的發生發展過程,主動去獲得新的知識,學會獲取知識的方法,因而在教學中創設情境讓學生樂意并全身心投入到現實的、探索性的數學活動中去。
五、設計理念
1、采用“問題情境—建立模型—解釋、應用與拓展”的模式展開教學,讓學生經歷知識的形成與應用過程,從而更好地理解數學知識,掌握其思想方法和應用技能。
2、改變學生的學習方式,教師引導學生主動地從事觀察、實驗、猜測、驗證、推理、交流、反思等數學活動,鼓勵學生自主探索與合作交流,使學生主動地獲取知識,積累數學活動經驗,學會探索,學會學習。
3、關注學生的情感與態度,實施開放性教學,讓學生獲得成功的體驗。
六、教學程序
為達到教學目標,充分發揮學生的主體作用,最大限度地激發學生學習的主動性、自覺性、積極性,本節課教學程序設計如下:
展開探究活動
交流探究成果
繼續深層探究
啟發探究欲望
教學
程序---------------------
自主探究
合作交流
提煉升華
主動入境
學生----------------------------
活動
導入提示
導評反饋
拓展延伸
導入情境
教師---------------------活動
七、教學過程設計
1、提出問題,創設情境
(1)、復習單項式及其系數和次數,多項式及其次數。
(2)、以傳位游戲引入新課。這個結果是怎么得到的?這和運用乘法的分配律有何關聯?
2、導入新課
由課本上的探究引導學生分析得出同類項的概念再讓學生試著寫出兩個項是同類項的例子,這就引導學生主動參與課堂活動。
由具體的例子4x22x73x8x2-2得出在多項式中遇到同類項,可以運用交換律,結合律,分配律進行合并同類項。把多項式中的同類項合并成一項,即把它們的系數相加作為新的系數,而字母部分不變,叫做合并同類項。
合并同類項的法則:
(1)、同類項的系數相加,所得結果作為系數。
(2)、字母和字母的指數不變。
做一做:
(1)、求5x2y,-2xy2,-2xy2,4x2y的和
(2)、求5x2y-2xy2,-2xy24x2y的和
(3)、求5x2y-2xy2,-2xy24x2y的差
從而總結出整式加減的一般步驟:(1)如果有括號,那么先去括號(2).如果有同類項,再合并同類項。
補充做一些練習,鞏固怎樣合并同類項。再在合并同類項的基礎上做一些化簡求值的練習,最后以一題:“已知A=2a22b2-3c2,B=3a2-b2-2c2,C=c22a2-3b2,當a=1,b=2,c=3時,求A-BC的值.”有一學生說,題中給出b=2,c=3是多余的,他說的有道理嗎?為什么?”來結束新課內容。
3、小結
引導學生進行小結,本課學到了哪些知識?
七年級數學說課稿 4
今天,我說的教材是北師大版七年級數學下冊。
首先,我就《數學課程標準》對教材的要求及設計理念談談自己的認識與體會。
1.課標對教材的要求知識與技能
●經歷將一些實際問題抽象為數與代數問題的過程,掌握數與代數的基礎知識和基本技能,并能解決簡單的問題。
●經歷探究物體與圖形的形狀、大小、位置關系和變換的過程,掌握空間與圖形的基礎知識和基本技能,并能解決簡單的問題。
●經歷提出問題、收集和處理數據、作出決策和預測的過程,掌握統計與概率的基礎知識和基本技能,并能解決簡單的問題。
過程與方法
●經歷運用數學符號和圖形描述現實世界的過程,建立初步的數感和符號感,發展抽象思維。
●豐富對現實空間及圖形的認識,建立初步的空間觀念,發展形象思維。
●經歷運用數據描述信息、作出推斷的過程,發展統計觀念。
●經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點。
●初步學會從數學的角度提出問題、理解問題,并能綜合運用所學的知識和技能解決問題,發展應用意識。
●形成解決問題的一些基本策略,體驗解決問題策略的多樣性,發展實踐能力與創新精神。
●學會與人合作,并能與他人交流思維的過程和結果。
●初步形成評價與反思的意識。
情感與態度
●能積極參與數學學習活動,對數學有好奇心與求知欲。
●在數學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心。
●初步認識數學與人類生活的密切聯系及對人類歷史發展的作用,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性。
●形成實事求是的態度以及進行質疑和獨立思考的習慣。
以上三個方面的目標是一個密切聯系的有機整體,對人的發展具有十分重要的作用,它們是在豐富多彩的數學活動中實現的。其中,數學思考、解決問題、情感與態度的發展離不開知識與技能的學習,同時,知識與技能的學習必須以有利于其他目標的實現為前提。
2.教材設計理念
(1)數學學習素材來源于學生的現實,呈現方式豐富多彩對于七年級學生來說,學生的現實或許更多地意味著與他們直接相關的、發生在他們身邊的、可以直接接觸的事和物,以美麗的童話故事、有趣的小游戲、小謎語、卡通、漫畫、圖片、表格,有時伴有些文字等各種豐富多彩的學習內容,使得學生對于閱讀教材,沒有枯燥感、恐懼感,又是他們樂到接受和愿意思考的,進而產生一種愿意甚至喜愛的積極情感。(2)教材關注了數學知識的形式與應用,重要的思想概念和思想方法螺旋上升。力圖采用“問題情境——建立模型——解釋、應用與拓展”的模式展開,所有新知識的學習都以對相關問題的研究作為開始,它們是學生了解與學生這些知識的有效切入點。隨著一個個問題的研討,學生經歷了真正的“做數學”和“用數學”的過程,提高能力。(3)為學生提供了探索、交流的時間與空間根據學生已有的知識背景和活動經驗,教材提供了大量的操作、思考與交流的機會,如提出了大量富有啟發性的問題,設置了“做一做”、“想一想”、“議一議”等欄目,以使學生通過自主探索與合作交流形成新的知識。(4)內容設計具有彈性,面向全體學生,讓“人人學到有價值的數學”,關注了不同學生的數學要求。例如就同一問題情境提出不同層次的問題或開放性的.問題,使“人人都能獲解必需的數學”,對于不同的學生而言,由于他們所處的文化環境、家庭背景和自身的思維方式等方面存在差異,他們頭腦中所理解的數學帶有日程的個性色彩,通過數學活動,而使“不同的人在數學上得到不同的發展”。
二、下面我結合北師大版七年級數學下冊教材,從教材內容、編者意圖與編寫體例方面談談自己的體會
1、教材內容(1)數與代數——第一章整式的運算與第六章變量之間的關系教材中呈現給學生大量豐富的現實背景,并以學生已有的經驗為出發點,關注知識的形成過程,關注學生的學習興趣和信心,關注學生探究和運用數學能力的發展。(2)空間與圖形——第二章平行線與相交線、第五章三角形及第七章生活中的軸對稱教材突出空間與圖形的知識背景,吧課程內容與學生的生活經驗有機融合,使學生更好地認識、理解和把握自己賴以生存的空間,發展學生的空間觀念和推理能力。(3)統計與概率——第三章生活中的數據與第四章概率由于內容充滿趣味、吸引力,激發了學生學習數學的興趣,動手收集與呈現數據,做概率游戲,點燃了學生的思維火花,培養學生的積極情感體驗。(4)實踐與綜合應用——課題學習:制作人口圖2.編者意圖(1)激趣方面編者通過每章節的主題圖,除了讓學生了解本章節的主要內容外,更讓學生體會生活中大量存在的數學以及數學知識在生活中的廣泛應用,體會到數學的文化價值,利用主題圖中有趣的圖形、問題激發學生學習數學的興趣,體會數學的趣味與數學美,創設了情境,揭示了主題,激發了學習熱情。編者還通過“讀一讀”等欄目,讓學生了解更多的數學,開拓了學生視野,增強學生學習數學的興趣。(2)培養能力方面編者在提供學習素材的基礎上,依據學生已有的知識背景和活動經驗,提供了大量的操作、思考與交流的學習機會。如“做一做、”“想一想”、“議一議”等欄目,同時要求學生通過自主探索以及與同伴交流的方式,形成新的知識,包括歸納法則、描述概念、總結學習內容等,發展學生觀察、歸納、類比、概括等能力,進而發展學生的推理能力和有條理的表達能力和養成良好的學習習慣。
三、下面我結合七年級下冊第一章《整式的運算》談談我對教材的理解
1.基本要求①經歷用字母表示數量關系的過程,在現實情境中進一步理解字母表示數的意義,發展符號感。②經歷探索整式運算法則的過程,理解整式運算的算理,進一步發展觀察、歸納、類比、概括等能力,發展有條理的思考及語言表達能力。③了解整數指數冪的意義和正整數指數冪的運算性質,了解產生整式產生的背景和整式的概念,會進行簡單的整式加、減、乘、除運算(其中多項式相乘僅限一次式相乘,整式的除法只要求列復項式除以單項式,結果是整式)。④會推導乘法公式:了解公式的幾何背景,并能進行簡單的計算。⑤在解決問題的過程中了解數學的價值,發展“用數學”的信心。
2.設計思路為了達到上述教學要求,教材設置了大量的實際背景,一方面是讓學生體會學習整式的一些有關運算的的必要性,另一方面使學生經歷實際問題“符號化”的過程,培養符號感。教材幾乎為每一種整式的運算都設置了具體的探索活動,在探索活動中體會整式運算的規律,把握其算理。本章學習活動的設置,關注學生在符號感表達、有效運算合并同建項,去拓展、探索規律等方面技能和能力的螺旋上升。
3.本章教材的重點是整式及其運算,乘法公式,難點是整式次數的確定,整式的運算意義與算理的理解,為了達到突出重點,突破難點,教材特別突出以下幾個方面:(1)以“問題情境——數學模型——求解模型”為主要線索呈現整式及其運算的內容,注重以問題情境中尋找數學關系,運用符號進行表示的過程。(2)以“觀察——歸納——類比——概括”為主要線索呈現運算法則的探索過程,注重推理能力和表達能力的培養。(3)注重整式運算每一步的算理,重視冪的意義、乘法分配律等作用,滲透轉化、類比的思想。(4)從面積的角度解釋多項式乘法、平方差公式、完全平方公式等內容,并從直觀上理解這些內容,滲透數形結合思想。
4.從前后知識聯系來認識《整式的運算》(1)本章知識是七年級上冊第二章《有理數及其運算》及第三章的字母表示數》的后續與延伸,又是將來學習分式、表式及函數方程、不等式中有關計算的基礎,充分體現了新課標所提倡的分段要求、逐漸滲透、螺旋上升的設計理念。(2)從知識的整合來看,縱向聯系,整試的運算可與前面所學的“求代數式的值”“解方程”等結合應用,提高學生的運算能力,與后面的函數知識中的運算結合,提高分析問題的能力。橫向看,整式運算又可與幾何知識、推理證明相結合,發展學生的推理能力。
四、下面結合具體課例《完全平方公式》談談我的一些教學設計具體見課件教學設計思路:
1、在教學的組織形式上,通過獨立學習、小組討論、全班交流等多種形式,相信學生并為學生提供充分展示自己聰明才智的機會,并且在此過程中有利于我發現學生分析問題、解決問題的獨到見解及思維上的誤區,以便指導。探索多項式乘以多項式的法則的過程:通過拼圖游戲引出法則,由于所拼的圖形的方式含有多種方法,而面積也會有多種表示方法,因而讓學生獨立思考、小組討論,然后讓學生充分展示自己的想法。通過對比學生都有一個直觀的認識,但大多數同學對其算理不是很清楚,因而學生思維存在不足,這時需教師及時引導,有意識地從代數運算的角度將多項式與多項式相乘轉化為單項式與多項式相乘,滲透轉化思想及體會乘法分配律的重要作用。
2、在教學評價策略上,我經常把激發學生學習熱情和獲得學習能力放在首位。通過用各種啟發、激勵的語言以及組織小組合作學習、幫助學生形成積極主動的求知態度。以上是我對北師大版七年級下冊的教材的理解,不足之處請同仁們多多指教,謝謝!
七年級數學說課稿 5
老師們:您們好!非常高興能有機會和大家來交流說課活動,謹此向在座的老師們學習。我說課的內容是華師大版九年義務教育七年級教科書代數第一冊第二章第二節“數軸”的第一課時內容。
一:教材分析:
本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。
二:教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下:
1。 使學生理解數軸的三要素,會畫數軸。
2。 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示
3。 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。
三:教學重難點確定:
正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。
四:學情分析:
⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。
⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。
⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。
五:教學策略:
由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。 為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環節:
(一)溫故知新,激發情趣
(二)得出定義,揭示內涵
(三)手腦并用,深入理解
(四)啟發誘導,初步運用
(五)反饋矯正,注重參與
(六)歸納小結,強化思想
(七)布置作業,引導預習
六:教學程序設計:
(一)溫故知新,激發情趣: 首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:
(1)零上5°C用 5 表示。
(2)零下15°C 用 —15 表示。
(3)0°C 用 0 表示。 然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。
(二)、得出定義,揭示內涵: 教師設問:到底什么是數軸?如何畫數軸呢?
(1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。)
(2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。)
(3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。) 由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。 畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發學生,以培養師生間的默契) 通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。 至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。
(三)手腦并用,深入理解:
1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么? A、B、C、D、E、F、A、B、C三個圖形從數軸的三要素出發,D和F是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。
2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上) 學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的.發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。 我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。
(四)啟發誘導,初步運用: 有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。 安排課本23頁的例1, 利用黑板上的例題圖形讓學生來操作,教師提出要求:
1、要把點標在線上
2、要把數標在點的上方 通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。 當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。
(五)反饋矯正,注重參與: 為鞏固本節的教學重點讓學生獨立完成:
1、課本23頁練習1、2
2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論:
3、數軸上的點P與表示有理數3的點A距離是2,
(1)試確定點P表示的有理數;
(2)將A向右移動2個單位到B點,點B表示的有理數是多少?
(3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
(六)歸納小結,強化思想: 根據學生的特點,師生共同小結:
1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數?
2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
(七)布置作業,引導預習: 為面向全體學生,安排如下:
1、全體學生必做課本25頁1、2、3
2、最后布置一個思考題: 與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何? (來引導學生養成預習的學習習慣)
七:板書設計:
(略)
總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。 以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝。
七年級數學說課稿 6
一、教材分析
㈠地位、作用
本節課在學習了單項式、多項式及其有關概念之后,以同類項的概念、合并同類項的法則及其運用為教學內容.合并同類項是整式運算的基礎,而整式的運算對學好初中數學有著十分重要的作用.
㈡教學目標
⒈知識目標:①理解同類項的概念,并能辨別同類項;②掌握合并同類項的法則,并能熟練運用.
⒉能力目標:①通過創設教學情景,使學生積極主動地參與到知識的產生過程中,培養學生的歸納、抽象概括能力;②通過鞏固練習,增強學生運用數學的意識,提高學生的辨別能力和計算能力.
⒊情感目標:①讓學生學會在獨立思考的基礎上積極參與數學問題的討論,享受通過運用知識解決問題的成功體驗,增強學好數學的信心;②通過教學,使學生體驗“由特殊到一般、再由一般到特殊”這一認識規律,接受辯證唯物主義認識論的教育.
㈢重點、難點
重點是同類項的概念、合并同類項的法則及其運用法則進行計算.
難點是同類項定義的歸納、概括.
二、教法
根據本節教材內容和學生的實際水平,為更有效地突出重點、突破難點,按照學生的認識規律,遵循“教師為主導、學生為主體、訓練為主線”的指導思想,我將采用探究發現法、多媒體輔助教學等方法,教學中精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,并適時運用多媒體演示,激發學生探索知識的欲望,以此來達到他們對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養學生的思維能力.
三、學法
根據學法自由性原則,讓學生在教師創設的問題情景下,通過教師的啟發點撥,在學生的積極思考努力下,自由參與知識的發生、發展、發現的過程,使學生掌握知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的.
四、教學程序
㈠新課引入
新課的開始,是課堂教學的一個重要環節.如果在新課伊始能吸引學生的注意力,引起他們濃厚的興趣,激發強烈的求知欲望,就可以使學生愉快而主動地去接受新知識,從而取得課堂教學的理想效果.所以一開始上課,我用大屏幕顯示一道實際生活中的問題,學生通過探究討論解決問題,由此導出本節課的主題,同時為學習新課做好鋪墊.
㈡探索新知
本節課第一個重要環節是同類項的概念,既是重點也是難點.為突出重點,突破難點,我設計了活動1:學生仔細觀察、獨立思考后,分組討論,互相交流,然后每組派一名代表發言,概括這兩組單項式的特征.教師傾聽學生交流,在學生概括出上述幾組單項式的特征之后,提出同類項的概念,再由學生概括出同類項的定義.由教師補充:幾個常數項也是同類項.這樣,學生直接參與到同類項概念產生的過程,不僅能夠有效地促使學生理解同類項的含義,而且能使學生體驗獲得成功的喜悅,同時培養和提高學生歸納、抽象概括的能力.
為鞏固同類項的概念,我設計了一道判斷題,由學生一個個單獨完成,并簡單闡述理由,讓學生充分發表意見,關注每一個學生.通過這個活動加深對同類項概念的理解,為后面合并同類項打好基礎.
另外還設計一道開放性題目,讓學生自己動手寫出兩組同類項,組內交流寫出的項是否符合要求,教師深入學生中間,參與指導,幫助加深理解同類項的含義,擴展學生的思維空間,培養學生的抽象思維能力和發散思維能力.
第二個重要環節是合并同類項的法則.通過設計問題串,引導學生獲取新知.問題1,實際上是引例中的兩個等式,通過學生觀察,容易得出結論,左邊兩項系數之和等于右邊的系數,明確同類項相加成為一項的方法,使學生對合并同類項有個初步認識.為克服學生對這個認識可能存在的疑點,我設計了問題2,學生展開討論,教師深入學生中間,參與學生討論,指導學生探究,驗證上述認識的正確性,體現了獲取知識不僅要有觀察、歸納、猜想過程,還必須有驗證過程.打消疑點之后,提出問題3,有上面兩個問題做基礎,學生極易回答這個問題,教師抓住時機,讓學生總結概括合并同類項的法則,再次培養和提高學生的歸納概括能力.
㈢鞏固新知
在這個環節中我設計了三道題.
第一題:學生判斷、理解只有同類項才能合并,教師加以指導.本次活動中,教師應重點關注①學生對同類項的概念是否混淆不清,能否正確辨別問題.②是否在正確辨別后只重視系數而忽略了字母和字母的指數.③對一些同類項的變式能否正確的辨別.通過這道練習,培養學生運用知識的能力,進一步鞏固同類項的含義和合并同類項的方法,為本節課的應用做好鋪墊.
第二題:是一道實際應用題.學生小組討論、交流,首先明確要解決什么問題,并圍繞這個問題開展探究,尋找解決問題的方法.教師引導學生觀察,幫助學生展示大小兩個長方體紙盒的'模型,并深入小組,傾聽學生交流,指導學生探究.學生在掌握同類項的概念和合并同類項的法則后,通過解決一個實際問題,體現了“學數學、用數學”的基本理念,并讓學生體會到數學是解決實際問題的重要工具,增強應用數學的意識.
第三題:把學生分為兩組,一組直接代入計算,另一組先化簡再代入計算.通過比較讓學生充分認識新知識的優越性,能夠使學生積極主動運用新知識解決問題.
㈣課堂小結
學生分組討論、歸納,學生代表發言.教師傾聽,并對學生發言給予充分鼓勵和肯定,調動學生主動參與的意識,讓學生感受到集體合作的重要性.
㈤布置作業
為減輕學生的課業負擔,從課本中調選了兩道題.第一題是合并同類項,既能鞏固同類項的概念,又可利用合并同類項的法則進行計算,起到鞏固新課的目的.第二題是實際應用題,進一步培養學生運用所學知識解決實際問題的能力,增強運用數學意識.學生通過獨立思考,完成課后作業,老師批改,做好批改記錄,及時反饋學生學習的效果,便于進行課堂教學優化.
㈥板書設計
體現了新知識的產生過程,便于學生理解掌握知識,并加深記憶.
五、教學評價
整個教學過程遵循“由特殊到一般、再由一般到特殊”這一認識規律,教師始終是學生學習活動的引導者、激勵者、協調者、服務者,給學生留出足夠的活動時間與空間,設計的各個教學環節有利于引發學生的學習興趣,有利于學生由淺入深、循序漸進地掌握知識,形成能力,獲得技巧,使他們在主動探索發現之中建構自己的知識,形成素質.
七年級數學說課稿 7
尊敬的領導、老師們:你們好!
今天我說課的課題是人教實驗版數學七年級下冊第五章第4節《平移》第一課時.下面,我將從背景分析、教學目標設計與、教學重點與難點、教學方式與手段、教學過程設計等幾個方面對本節課的教學設計進行說明.
一、背景分析
1.1教材的地位作用及整合
從《課程標準》看,圖形的變換是“空間與圖形”領域中一塊重要的內容,平移是一種基本的圖形變換,也是本套教材中引進的第一個圖形變換.圖形變換可以使圖形動起來,有助于發現圖形的幾何性質.因此圖形的變換是研究幾何問題的有效工具.教科書將“平移”安排在本章最后一節,一方面是考慮將其作為平行線的一個應用,另一方面考慮引入平移變換,可以盡早滲透圖形變換的思想,使學生盡早接觸利用平移分析和解決問題的方法.也為后面學習“用坐標表示平移”奠定基礎.
《課程標準》對平移變換的要求是通過具體實例認識平移,探索它的基本性質,理解對應點連線平行且相等的性質;能按要求作出簡單平面圖形平移后的圖形;利用平移進行圖案設計,認識和欣賞平移在現實生活中的應用.在建立平移概念及探索平移性質的過程中,初步建立空間觀念,發展幾何直覺,讓學生在運動變化中尋找圖形的不變的位置關系和數量關系,培養審美能力;能結合情境發現并提出問題,體會在解決問題中與他人合作的重要性,獲得解決問題的經驗.
教材這一部分內容建議安排2課時,第一課時學習習近平移的概念及基本性質,第二課時主要解決平移作圖問題.由于第一學段(1~3年級)課標要求:結合實例,感知平移現象;能在方格紙上畫出一個簡單圖形沿水平方向、豎直方向平移后的圖形.第二學段(4~6年級)要求:通過觀察實例,認識圖形的平移,能在方格紙上將簡單圖形平移;欣賞生活中的圖案,靈活運用平移在方格紙上設計圖案.所以我將兩節課的內容整合成為一節課.這樣既可以避免無謂的重復也不會讓學生感到壓力很大.
1.2學生情況分析
本課要理解掌握平移的概念、性質及利用平移作圖,學生必須具有圖形平移的生活常識和線段相等及平行線的判定等知識儲備,同時,還須具有一定的觀察、歸納、探索能力.目前,我所任教班級的學生數學基礎較好,以上所須基本都已具備,但學生的抽象概括、探索能力稍微偏弱一些,而且雖然學生對動手操作活動較為感興趣,探索精神和學習毅力卻又不足.
二、教學目標設計
1、知識技能:
①了解平移的特征,能發現特殊圖案的共同特點,并能根據這個特點繪制圖形;
②能發現、歸納圖形平移的基本性質并根據基本性質作平移后的圖形.
2、數學思考:學生經歷操作、探究、歸納、總結圖形平移基本特征的過程,發展學生的抽象概括能力;學生動手畫圖,增強學生畫圖的能力.
3、解決問題:體會從數學的角度理解問題,并能綜合運用所學的知識和技能解決問題,發展應用意識.
4、情感態度:學生經歷操作、實驗、發現、確認等數學活動,感受數學活動充滿了探索性與創造性,促進學生樂于探究.
三、教學重點與難點
根據學生小學已有的知識、學生的思維特點以及課標要求和教材內容,我認為教學重點是探索圖形平移的基本性質,教學難點在于利用平移的基本性質作出平移后的圖形.
四、教學方式與手段
根據本節課的內容特點及學生的實際水平,我采用啟發式教學,學生通過探究、觀察、歸納等活動獲得新知,并親手畫圖實踐進行應用.在教學手段上充分利用電腦多媒體優化課堂教學.
五、教學過程設計
我通過創設實際問題情境,引導學生從實例中抽象概括出平移的概念,再讓學生從活動中自主探索得到平移的性質,并應用其畫出平移后的圖形和解決實際生活中的問題.
5.1創設情境,激發學生學習興趣
我是由[活動1]仔細觀察下列美麗的圖案,回答問題:
(1)這些圖案有什么共同特點?
(2)下面這些圖案能否根據其中一部分繪制整個圖案?若能,你能否想象出是怎么繪制的?
這樣設計的目的是既交代了本節課要研究和學習的主要問題,又能較好地激發學生求知與探索的欲望,同時也為本節課的教學做好了鋪墊.
5.2引導活動,揭示知識產生過程
當學生回憶起已有的與平移相關的內容后,再拿一個具體的例子來研究:
[活動2]
(1)如何在word文檔中畫出一排形狀和大小如右圖所示的小雪人的圖案?
(2)大家觀察我畫出的兩個雪人.
問題:
①雪人的形狀、大小、位置在運動前后是否發生了變化?
②雪人的鼻尖B是怎樣運動的?它運動到了什么位置?帽頂呢?指出:如A與A’,B與B’,C與C’稱為對應點.
③連接幾組對應點,觀察得到的線段,它們的位置、長短有什么關系?
④再連接一些其他對應點的線段,它們是否仍有前面的關系?
通過學生的觀察,和教師提供的問題串,讓學生一步一步思考歸納總結出平移的概念和性質.再由“思考”讓學生總結評議的兩個要素,同時和學生小學學的只會水平和豎直方向的平移作比較,進行銜接和擴展.
定義:一個圖形沿著某個方向移動一定的距離,圖形的這種移動,叫做平移變換,簡稱平移.
特征:
(1)平移不改變圖形的形狀和大小;
(2)對應點連線平行且相等.
思考:圖形平移的要素是什么?方向和距離
5.3動手操作,應用性質作出平移圖形
讓學生根據平移的性質平移圖形,同時通過問題串的形式幫助學生理解平移圖形其實就是平移關鍵點并歸納整理出作圖步驟.
[活動3]:如圖,平移三角形ABC,使點A移動到點A,.
(1)畫出平移后的三角形A,B,C,;
(2)找出其中平行且相等的線段.
思考:
(1)三角形中哪幾個點是最關鍵的點?
(2)已知一個頂點的對應點,你由此就能確定什么?(你能否由些確定圖形平移的方向和移動的距離?)
(4)確定了圖形的移動方向和移動的距離,如何作出其他3個頂點各自的對應點呢?
(5)找出各頂點的對應點后如何得出原圖形經平移后圖形呢?
歸納:畫出平移圖形的步驟:
關鍵在于按要求作出對應點。
然后,順次連結對應點即可。
通過這個問題也讓學生認識到:一個圖形的`平移實際上就是這個圖形上的端點的移動,即是“點對點的移動”.
5.4開動腦筋,綜合應用鞏固所學
[活動]4看一看,辨一辨
1.下面哪些燕子可以通過平移與黑色燕子重合?
2.選擇
經過平移,圖形上每個點都沿同一個方向移動了一段距離,下面說法正確的是
A不同的點移動的距離不同B既可能相同也可能不同
C不同的點移動的距離相同D無法確定
3.能由△AOB平移而得的圖形是哪個?
4.如圖,△ABC是由△CEF平移而得,圖中有哪些相等的線段?有哪些相等的角?
這四道練習題:
1實際生活中的圖形讓學生更直觀地強化了對平移的感知;
2概念的引申:在對比中使學生進一步感受到平移的特征.
3識別圖形的平移:在復雜圖形中識別平移
4應用平移的性質尋找具有某種位置關系和數量關系的線段以及相等的角,將圖形的平移最終應用到“在變化中尋找不變量”中,這里的“不變量”不僅包括線段也包括角.其實這一點和平行線是不謀而合的,學習習近平行線最終目的是實現“角”的移動,而平移同樣實現了“角”的移動.
5.5圖案欣賞,發現生活中的圖形美
圖案欣賞給學生美的感受,培養學生積極向上的情感、態度,同時也說明了數學來源于生活,用于生活.
5.6圖案設計,發揮學生的想象力,體會圖形的變換美
在作業中布置了一道圖案設計題:請你利用圖形的平移設計一個圖案,體現出自己的審美情趣.
設計圖形是一種開放性的數學問題,它不僅可以鞏固本節課所學的知識,而且通過設計圖形發揮學生的想象力,學生在設計圖形的過程中進一步的體會圖形的變換美,動手操作帶給學生的認識和理解要比欣賞圖形、觀察圖形深刻的多.
結束語
本節課通過一系列的活動:
5.1創設情境,激發學生學習興趣
5.2引導活動,揭示知識產生過程
5.3動手操作,應用性質作出平移圖形
5.4開動腦筋,綜合應用鞏固所學
5.5圖案欣賞,發現生活中的圖形美
5.6圖案設計,發揮學生的想象力,體會圖形的變換美
讓學生通過探索揭示知識產生的過程,應用知識體會它與實際生活的聯系,學會在變化中尋找不變的量,滲透用平移變換的思想解決問題的意識,初步建立空間觀念,發展幾何直覺,培養審美能力.
以上是我對本節課的理解,不足之處,請各位專家、老師指正。謝謝!
七年級數學說課稿 8
我說課的內容是華師大版九年義務教育七年級教科書代數第一冊第二章第二節“數軸”的第一課時內容。
一:教材分析:
本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。
二:教學目標:
根據新課標的要求及七年級學生的認知水平我特制定的本節課的教學目標如下;
1.使學生理解數軸的三要素,會畫數軸。
2.能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示
3.向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。
三:教學重難點確定:
正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點,建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。
四:學情分析:
⑴知識掌握上,七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。
⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。
⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性
⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。
五:教學策略:
由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。教學中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。為充分發揮學生的主體性和教師的主導輔助作用,教學過程中設計了七個教學環
(一)、溫故知新,激發情趣
(二)、得出定義,揭示內涵
(三)、手腦并用,深入理解
(四)、啟發誘導,初步運用
(五)、反饋矯正,注重參與
(六)、歸納小結,強化思想
(七)、布置作業,引導預習
六:教學程序設計:
(一)、溫故知新,激發情趣:
首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問:
(1)零上5°c用5表示。
2)零下15°c用-15表示。(3)0°c用0表示。然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?
答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的`心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。
(二)、得出定義,揭示內涵:教師設問:到底什么是數軸?如何畫數軸呢?
(1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。)
(2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表
(3)選取單位長度,標數(這里說明任選適當
的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。)
由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”
(通過教師的親切的語言啟發學生,以培養師生間的默契)
通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。
(三)、手腦并用,深入理解:
1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么?a、b、c、d、e、f、a、b、c三個圖形從數軸的三要素出發,d和f是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。
2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上)學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。
我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。
(四)、啟發誘導,初步運用:
有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。安排課本23頁的例1,利用黑板上的例題圖形讓學生來操作,教師提出要求:
1、要把點標在線上
2、要把數標在點的上方通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。
(五)、反饋矯正,注重參與:
為鞏固本節的教學重點讓學生獨立完成:
1、課本23頁練習1、2
2、課本23頁3題的(給全體學生以示范性讓一個同學板書)為向學生進一步滲透數形結合的思想讓學生討論:
3、數軸上的點p與表示有理數3的點a距離是2,(1)試確定點p表示的有理數;
(2)將a向右移動2個單位到b點,點b表示的有理數是多少?
(3)再由b點向左移動9個單位到c點,則c點表示的有理數是多少?先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
(六)、歸納小結,強化思想:
根據學生的特點,師生共同小結:
1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數?
2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數?讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
(七)、布置作業,引導預習:
為面向全體學生,安排如下:
1、全體學生必做課本25頁1、2、3
2、最后布置一個思考題:與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何?(來引導學生養成預習的學習習慣)
七:板書設計:(略)
總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝.
七年級數學說課稿 9
我是來自××中學的×××。我的說課稿內容是合并同類項。下面我就教 材分析、教法、學法、教學程序、教學評價五個方面進行設計說明。
一、教材分析
㈠地位、作用
本節課在學習了單項式、多項式及其有關概念之后,以同類項的概念、合并同類項的法則及其運用為教學內容。合并同類項是整式運算的基礎,而整式的運算對學好初中數學有著十分重要的作用。
㈡教學目標
⒈知識目標:①理解同類項的概念,并能辨別同類項;② 掌握合并同類項的法則,并能熟練運用。
⒉能力目標:①通過創設教學情景,使學生積極主動地參與到知識的產生過程中,培養學生的歸納、抽象概括能力;②通過鞏固練習,增強學生運用數學的意識,提高學生的辨別能力和計算能力。
⒊情感目標:①讓學生學會在獨立思考的基礎上積極參與數學問題的討論,享受通過運用知識解決問題的成功體驗,增強學好數學的信心;②通過教學,使學生體驗“由特殊到 一般、再由一般到特殊”這一認識規律,接受辯證唯物主義認識論的教育。
㈢重點、難點
重點是同類項的概念、合并同類項的法則及其運用法則進行計算。
難點是同類項定義的歸納、概括。
二、教法
根據本節教材內容和學生的實際水平,為更有效地突出重點、突破難點,按照學生的認識規律,遵循“教師為主導、學生為主體、訓練為主線”的.指導思想,我將采用探究發現法、多媒體輔助教學等方法,教學中精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,并適時運用多媒體演示,激發學生探索知識的欲望,以此來達到他們對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養學生的思維能力。
三、學法
根據學法自由性原則,讓學生在教師創設的問 題情景下,通過教師的啟發點撥,在學生的積極思考努力下,自由參與知識的發生、發展、發現的過程,使學生掌握知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的。
四、教學程序
㈠新課引入
新課的開始,是課堂教學的一個重要環節。如果在新課伊始能吸引學生的注意力,引起他們濃厚的興趣,激發強烈的求知欲望,就可以使學生愉快而主動地去接受新知識,從而取得課堂教學的理想效果。所以一開始上課,我用大屏幕顯示一道實際生活中的問題,學生通過探究討論解決問題,由此導出本節課的主題,同時為學習新課做好鋪墊。
㈡探索新知
本節課第一個重要環節是同類項的概念,既是重點也是難點。為突出重點,突破難點,我設計了活動1:學生仔細觀察、獨立思考后,分組討論,互相交流,然后每組派一名代表發言,概括這兩組單項式的特征。教師傾 聽學生交流,在學生概括出上述幾組單項式的特征之后,提出同類項的概念,再由學生概括出同類項 的定義。由教師補充:幾個常數項也是同類項。這樣,學生直接參與到同類項概念產生的過程,不僅能夠有效地促使學生理解同類項的含義,而且能使學生體驗獲得成功的喜悅,同時培養和提高學生歸納、抽象概括的能力。
為鞏固同類項的概念,我設計了一道判斷題,由學生一個個單獨完成,并簡單闡述理由,讓學生充分發表意見,關注每一個學生。通過這個活動加深對同類項概念的理解,為后面合并同類項打好基礎。
另外還設計一道開放性題目,讓學生自己動手寫出兩組 同類項,組內交流寫出的項是否符合要求,教師深入學生中間,參與指導,幫助加深理解同類項 的含義,擴展學生的思維空間,培養學生的抽象思維能力和發散思維能力。
第二個重要環節是合并同類項的法則。通過設計問題串,引導學生獲取新知。問題1,實際上是引例中的兩個等式,通過學生觀察,容易得出結論,左邊兩項系數之和等于右邊的系數,明確同類項相加成為一項的方法,使學生對合并同類項有個初步認識。為克服學生對這個認識可能存在的疑點,我設計了問題2,學生展開討論,教師深入學生中間,參與學生討論,指導學生探究,驗證上述認識的正確性,體現了獲取知識不僅要有觀察、歸納、猜想過程,還必須有驗證過程。打消疑點之后,提出問題3,有上面兩個問題做基礎,學生極易回答這個問題,教 師抓住時機,讓學生總結概括合并同類項的法則,再次培 養和提高學生的歸納概括能力。
㈢鞏固新知
在這個環節中我設計了三道題。
第一題:學生判斷、理解只有同類項 才能合并,教師加以指導。本次活動中,教師應重點關注①學生對同類項的概念是否混淆不清,能否正確辨別問題。②是否在正確辨別 后只重視系數而忽略了字母和字母的指數。③對一些同類項的變式能否正確的辨別。通過這道練習,培養學生運用知識的能力,進一步鞏固同類項的含義和合并同類項的方法,為本節課的應用做好鋪墊。
第二題:是一道實際應用題。學生小組討論、交流,首先明確要解決什么問題,并圍繞這個問題開展探究,尋找解決問題的方法。教師引導學生觀察,幫助學生展示大小兩個長方體紙盒的模型,并深入小組,傾聽學生交流,指導學生探究。學生在掌握同類項的概念和合并同類項的法則后,通過解決一個實際問題,體現了“學數學、用數學”的基本理念,并讓學生體會到數學是解決實際問題的重要工具,增強應用數學的意識。
第三題:把學生分為兩組,一組直接代入計算,另一組先化簡再代入計算。通過比較讓學生充分認識新知識的優越性,能夠使學生積極主動運用新知識解決問題。
㈣課堂小結
學生分組討論、歸納,學生代表發言。教師傾聽, 并對學生發言給予充分鼓勵和肯定,調動學生主動參與的意識,讓學生感受到集體合作的重要性。
㈤布置作業
為減輕學生的課業負擔,從課本中調選了兩道題。第一題是合并同類項,既能鞏固同類項的概念,又可利用合并同類項的法則進行計算,起到鞏固新課的目的。第二題是實際應用題,進一步培養學生運用所學知識解決實際問題的能力,增強運用數學意識。學生通過獨立思考,完成課后作業,老師批改,做好批改記錄,及時反饋學生學習的效果,便于進行課堂教學優化。
㈥板書設計
體現了新知識的產生過程,便于學生理解掌握知識,并加深記憶。
五、教學評價
整個教學過程遵循“由特殊到一般、再由一般到特殊”這一認識規律,教師始終是學生 學習活動的引導者、激勵者、協調者、服務者,給學生留出足夠的活動時間與空間,設計的各個教學環節有利于引發學生的學習興趣,有利于學生由淺入深、循序漸進地掌握知識,形成能力,獲得技巧,使他們在主動探索發現之中建構自己的知識,形成素質。
七年級數學說課稿 10
一、課時安排說明
《近似數和有效數字》共分兩課時,第一課時,主要內容是認識近似數和精確數;第二課時,掌握精確度和有效數字等相關知識。
二、學生起點分析
學生活動經驗基礎:在本章前面的學習過程中,學生已經對生活中的較小數據以及近似數有了一定的認識,并且經歷了一些探索、發現的數學活動,積累了初步的數學活動經驗,具備了一定的探究能力。并且經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的合作與交流的能力。
三、教學任務分析
在實際問題的基礎上繼續讓學生認識生活中存在著大量的近似數;進一步讓學生體會近似數的作用,能根據實際問題的需要選取近似數;結合實際問題情境讓學生充分認識有效數字的概念,能按照要求取近似數,并體會近似數的意義及在生活中的作用。教學中所采用的問題情境盡可能來源于實際,充分挖掘學生生活中與數據有關的素材,使他們體會所學內容與現實世界的密切聯系。為此,本節課的教學目標是:
1.掌握精確度及有效數字的概念,并能熟練運用。
2.提高學生分析數據,處理數據以及解決實際問題的能力。
3.進一步體會數學的應用價值,發展“用數學”的信心和能力。
本節的教學重點:掌握精確度及有效數字的概念,并能熟練運用。
本節的教學難點:如何確定一個數據的有效數字。
四、教學設計分析
本節課設計了七個教學環節:回顧復習、學習新知、例題講解、課堂練習、拓展提高、知識小結、布置作業。
第一個環節:回顧復習
活動內容:
1.閱讀報道
中國是世界面積第3大國;中國有世界第一高峰珠穆朗瑪峰,海拔8844米;中國共劃分34個省級單位,包括23個省,5個自治區,4個直轄市和2個特別行政區,人口約12.9533億,占世界人口的21.2;共有56個民族,少數民族人口最多的是壯族,有1600萬人。
2.回答問題
你能找出這篇報道中的精確數據和近似數據嗎?
3.知識回顧
1.認識精確數和近似數,明確近似數產生的原因。
2.會用四舍五入法取近似數,并能進行合理比較。
活動目的:改變原有的直接復習知識模式,通過閱讀一篇報道,找出其中的近似數和精確數達到復習上一節內容的目的。其一可以改變枯燥的概念復習,使復習環節變得更加有趣;其二通過閱讀可以讓學生掌握更多的知識,例如此報道可以讓學生更多的了解我們的祖國。
活動注意事項:
(1)復習過程中雖然不直接的對概念進行復習,但在學生回答完問題后,仍應對上節所學概念加以鞏固;
(2)復習一方面是對上節課的回顧和總結,同時也應為新課的學習和探究作和鋪墊和作準備工作。
第二個環節:學習新知
活動內容:學習新概念
(1)精確度:
利用四舍五入法取一個數的近似數時,四舍五入到哪一位,就說這個近似數精確到哪一位。
(2)有效數字:
對于一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字(significantdigits).
活動目的:通過學習精確度和有效數字兩個新的概念,為下面解決實際問題做好準備工作。
活動注意事項:
(1)對于精確度概念的理解,要做到把精確度和四舍五入法有機的統一。讓學生明確四舍五入到哪一位,就說這個近似數精確到哪一位;
(2)對于有效數字的理解一定要讓學生明確從那個數字起,到那個數字止;
(3)這兩個概念是這節課的基礎和關鍵,只有讓學生真正理解這兩個概念,才能更好的去解決實際問題。
第三個環節:例題講解
活動內容:
例3按要求取右圖中(見教科書)溶液體積的近似數,并指出每個近似數的有效數字。
(1)四舍五入到1毫升;
(2)四舍五入到10毫升
解:(1)四舍五入到1毫升,就得到近似數17毫升,這個數有兩個有效數字,分別是1,7;
(2)四舍五入到10毫升,就得到近似數20毫升,這個數有一個有效數字,是2.
例4據中國統計信息網公布的xxxx年中國第五次人口普查資料表明,我國的人口總數為1295330000人。請按要求分別取這個數的近似數,并指出近似數的有效數字。
(1)精確到百萬位;
(2)精確到千萬位;
(3)精確到億位;
(4)精確到十億位。
活動目的:通過對例3的學習讓學生對精確
度和有效數字的應用有了初步的認識,并且對這兩個概念有了更深的理解;例4的學習讓學生學會用科學記數法表示近似數。
活動注意事項:
(1)在例3的學習中,第二個問題得到近似數20毫升,部分學生會誤認識有效數字的個數是兩個,這時,教師一定要對該知識分析透徹,從定義的角度讓學生明確如何正確的判斷有效數字。
(2)例4中對于較大數據,為了讓大家更清楚地看出近似數的有效數字,例如:例4中,若不用科學記數法表示近似數據,則(2)和(3)的結果均可表示為1300000000,除非用文字加以注釋,否則難以區分,因此,教師最好要求學生對于某些數據要用科學記數法表示。
第四個環節:課堂練習
活動內容:
1.下列說法不正確的是
A.0.03精確到百分位,有一個有效數字B.1423精確到個位,有四個有效數字
C.87.4精確到十分位,有三個有效數字D.5.670×10精確到百分位,有三個有效數字
2.下列各近似數精確到萬位的是()
A.35000B.4億5千萬C.3.5×104D.4×104
3.0.03296精確到萬分位是,有個有效數字,它們是。
4.近似數0.8050精確到位,有個有效數字,是。
5.近似數4.8×105精確到位,有個有效數字,是。
6.近似數5.31萬精確到位,有個有效數字,是。
7.一箱雪梨的質量為20.95㎏,按下面的要求分別取值:
(1)精確到10㎏是㎏,有個有效數字,它們是;
(2)精確到1㎏是㎏,有個有效數字,它們是;
(3)精確到0.1㎏是㎏,有個有效數字,它們是。
活動目的:通過課堂練習鞏固落實學生對精確度和有效數字這兩個知識點的應用。
活動注意事項:
(1)前六個練習題是沒有實際背景的基礎練習,要求學生應在短時間內高效完成,第七題是實際應用問題,要讓學生學會數學問題和實際問題間的互相轉化。
(2)例如近似數4.8×105精確到哪一位的這類判斷精確度的題目要強調先還原數據,再判斷精確到哪一位。
第五個環節:拓展提高
活動內容:
世界上最大的`沙漠——非洲的撒哈拉沙漠可以粗略的看成是一個長方體,撒哈拉沙漠的長度大約是5149900m,沙漠的深度大約是3.66m。已知撒哈拉沙漠中沙的體積約為3345km3。
(1)將沙漠的沙子的體積表示成立方米,并保留兩個有效數字;
(2)撒哈拉沙漠的寬度是多少?(保留三個有效數字)
(3)如果一粒沙子體積大約是0.0368mm3,那么,撒哈拉沙漠中有多少粒沙子?(保留三個有效數字)
解:(1)3345km3=3345×109m3=3.345×103×109m3≈3.3×1012m3
活動目的:本節課的知識目標是掌握精確度及有效數字的概念,并能熟練運用。這個環節對學生提出了更高的要求,先要通過數據的計算,再按要求取近似數據。
活動注意事項:
(1)要提醒學生注意單位的換算,數據計算必須在單位統一的情況下才能進行;
(2)計算過程提倡學生用計算器進行運算;
(3)對于能力達不到的學生在這一環節不做過高要求。
第六個環節:知識小結
活動內容:師生互相交流總結本節課上應該掌握的相關知識:1.掌握精確度和有效數字的概念。2.會按照要求利用科學記數法取近似數。教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生暢談個人的學習感受。
活動目的:一方面通過小結對今天所學知識進行一個概括和升華,對學生易錯的知識加以強調和補充;另一方面,通過教師和學生的交流,進一步激發學生的學習興趣,鼓勵學生發表自己的見解,為今后的學習打好堅實的基礎。
活動注意事項:在總結中要發揮學生的主體地位,讓學生做課堂的主人,讓學生自己進行總結歸納;教師在這一環節中要仔細聆聽,對于學生的錯誤和漏洞要及時作出糾正和補充。
第七個環節:布置作業
活動內容:
教材習題3.3知識技能1,2
七年級數學說課稿 11
一、教材分析
1、教材的地位和作用
可化為一元一次方程的分式方程是在學生已熟練地掌握了一元一次方程的解法、分式四則運算等有關知識的基礎進行學習的。它既可看成是分式有關知識在解方程中的應用;也可看成是進一步學習研究其它分式方程的基礎,因此它有著承前啟后的作用。同時學習了分式方程后也為解決實際問題拓寬了路子。
2、教學目標
根據本課在教材中的地位與作用,結合學生的實際學習情況,我將本課主要教學目標確定如下:
知識與技能:使學生了解分式方程的概念,掌握分式方程的解法,理解分式方程增根的含義和產生原因,會檢驗分式方程的增根;
過程與方法:使學生經歷探索發現分式方程解法的過程,掌握化歸的數學思想方法;
情感與態度:培養學生的自主探究意識,提高學習興趣和數學創新能力。
3、教學重點、難點及關健
本著新課程標準,在鉆研教材的基礎上,我確定本節課的重點、難點為:
重點:解分式方程的思想方法與基本步驟,以及對增根概念的理解。
難點:對增根產生的原因的理解以及驗根的方法的掌握。
關鍵:“化未知為已知”的數學學習方法。
二、學情分析
學生是在掌握了分式的意義、分式的混合運算和熟練解一元一次方程的基礎上學習本節內容的,同時學生具有一定的豐富的想象力、好奇心和主觀能動性。但對于解分式方程過程中會出現增根,部分同學理解起來較為困難,因此在教學過程中應重點強調如何把分式方程轉化為整式方程和解分式方程過程中產生增根的原因及如何驗根。
三、教法與學法
1、說教法:
本節內容從實際問題出發引了出分式方程的'概念,介紹分式方程的求解方法。采用了設疑引導、協助總結的教學方法,真正體現以學生為主體。針對學生的回答所出現的一些問題給出及時的糾正,練習時,除了讓盡可能多的學生板演以外,要及時的發現并總結學生所出現的問題,比較典型的全班講評。
2、說學法
本節課我主要指導學生采用了合作交流、自主探究學習方法,使學生積極主動得參與到教學過程,通過合作交流,激發學生的學習興趣,體現探索的快樂,使學生的主體地位得到充分的發揮。
四、說教學過程
1、創設情景、導入新課
為了滿足經濟高速發展的需求,我國鐵路部門不斷進行技術革新,提高列車運行速度;在相距1600的兩地之間運行一列車,速度提高25﹪后,運行時間縮短了4,你能列出列車提速前的速度嗎?
師生活動:教師提出問題,設計意圖:先通過實際問題,引導學生從分析入手,列出含未知數的式子表示有關的量,并進一步根據相等關系列出方程,為探索分式方程及分式方程的解法作準備。
2、合作交流、探究新知:
(1)對所得方程觀察其形式,不是整式方程中的一元一次方程,從而提出分式方程的概念。
師生活動:教師提出問題,學生思考、議論后在全班交流。
學生歸納出:該方程的特征是分母中含有未知數。
設計意圖:通過觀察、比較,培養學生的觀察問題和語言表達能力。
(2)對比一元一次方程的解法,讓學生探究方程的解法,通過去分母、去括號、移項、合并同類項、系數化為1,等步驟求出,并檢驗解的正確性。
師生活動:鼓勵學生尋求解決問題的辦法,引導學生將分式方程轉化為整式方程,學生自然會想到“去分母”來實現這種轉變,求出方程的解,并要求學生驗根。
設計意圖:怎樣解分式方程,這是本節的核心問題,也是本節課的重點,本次活動中用“轉化”思想,把函待解決的問題,通過轉化,化歸到已經解決或比較容易的問題中去,最終使問題得到解決。從而突破本節課的重點。
(3)進一步探究:仿照上例方程的解法,解方程并檢驗。
學生發現不能作為原方程的解,時原方程中的分式無意義,從而引出增根的概念:是所得的整式方程的解,但不是原分式方程的解。是因為在解方程的過程中的一些不合理變形造成的。
對增根產生的原因進行初步探討:只有在第一步去分母時,可能出問題,兩邊同乘以的最簡公分母的值不能為零。
解分式方程時,去分母后所得整式方程的解是原分式方程的解,也可能不是,這是為什么呢?如何進行檢驗呢?
師生活動:學生獨立解決問題,然后提出自己的看法在小組討論,在學生討論期間,教師應參與到學生的數學活動中,鼓勵學生勇于探索、實踐,解釋產生這一現象的原因,并懂得在解分式方程時一定要進行驗根。
設計意圖:通過引導學生進行比較、探究,并進行充分的討論,最后統一認識,用分式的意義及分式的基本性質解釋分式方程可能無解的原因,學生在數學活動中,通過積極參與和有效參與,達到知識和能力、過程和方法、情感態度和價值觀三維目標的全面落實,從而突破本節課的難點。
(4)總結解分式方程的一般步驟,并比較其與解一元一次方程的異同點。
教師活動:提示學生對比一元一次方程的解法總結分式方程的解法,并探查它們之間的異同點。
設計意圖:提高學生的數學意識,培養化歸思想的逐步形成,提高學生自主解決數學問題的能力。
3、新知應用、聯系拓廣:
投影展示例題
師生活動:教師出示題目,學生獨立完成,指名2名學生板演,教師巡視。
設計意圖:①例題的作用可以培養學生學以致用的能力、嚴格的解題規范格式,從而養成良好的學習習慣。
②評價時采用生生評價的方式可以提高學生學習的興趣,活躍課堂氣氛,培養學生嚴謹的數學思維習慣。
4、課堂練習、檢查驗收:
師生活動:教師出示題目,學生獨立完成,判斷題點名由學生口答,解方程請4名學生板演,教師強調步驟,特別是檢驗。
設計意圖:及時鞏固所學知識,了解學生學習效果,增強學生應用知識的能力。
5、課堂總結、落實新知:
師生活動:學生個體小結,小組歸納,集體補充。
設計意圖:①讓學生以反思的形式回憶本節的學習內容與方法,更有利于學生加深對所學知識的印象,有利于培養學生養成良好的數學學習習慣。
②注重學生間的相互合作,培養學生的合作意識、競爭意識,養成“愛提問、敢質疑、富聯想、善應變”的好習慣。
6、布置作業、復習鞏固
設計意圖:分層次布置作業,讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲。
五、評價分析
在本課的教學過程中,我嚴格遵循由感性到理性,將數學知識始終與現實生活中學生熟悉的實際問題相結合,不斷提高他們應用數學方法分析問題、解決問題的能力。在重視課本基礎知識的基礎上,適當進行拓展延伸,培養學生的創新意識,同時根據新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識,而且注重學生對待學習的態度是否積極。課堂中也盡量給學生更多的空間、更多展示自我的機會,使學生的主體地位得到充分的體現,使教學過程成為一個在發現中創造的認知過程。
七年級數學說課稿 12
一、教材分析
平行線的判定是在學生對平行線有了初步認識及學習了三線八角之后引入的。它不但加深了對“角與平行線”的認識,而且為繼續研究平行線的性質、三角形、四邊形等知識打下堅實的“基石”,是幾何說理的重要組成部分。在本節內容之前學生對兩條直線相交或平行的認識,一般停留在直觀、表象的層面。本章的任務就是引導學生由表及里,深入認識相交線和平行線的本質特征,通過操作,思考,歸納和推導得到平行線的判定方法,同時在這一過程中獲得邏輯思維和說理表達的初步訓練。
二、學生分析
我校學生整體的學習能力偏弱,因此邏輯思維能力也相對薄弱,文字語言、符號語言和圖形語言之間的轉換能力也比較薄弱。因此在本單元的教學中,我們將教學過程分成了體會感知幾何說理表達,了解劃分邏輯段、補充完善幾何說理過程、獨立完成幾何說理過程三個階段實施。同時,兩課時的教學目標制定如下:
三、教學目標
第一課時:
1.知道平行線的概念及表示方法;會過直線外一點畫已知直線的平行線,體驗并理解平行線的基本性質。
2.在操作過程中,理解平行線的判定方法1:同位角相等,兩直線平行。并會用這一基本事實進行初步的說理,從中感知推理的規則和過程。
第二課時:
1.利用平行線的判定方法,導出平行線的判定方法;
2.初步會用平行線的判定方法來判定兩直線平行,并進一步學習幾何說理和表達;
3.讓學生體會“把新問題轉化為已經解決的問題”所體現的化歸思想;
4.讓學生參與推導過程,樹立學習幾何知識的信心,提高學習數學的熱情。
四、教學難點、重點
第一課時:
1、在操作過程中體驗并理解平行線的基本性質,掌握平行線判定方法一。
2、初步會用判定方法一判定兩直線平行,初步學習幾何說理和表達;
第二課時:
1.利用平行線的判定方法1,導出平行線的判定方法2、3;
2.初步會用平行線的判定方法2、3來判定兩直線平行,進一步學習幾何說理和表達。
五、教學設計過程
第一課時:
一、復習
1.同位角,內錯角,同旁內角的概念。
2.找出圖中的同位角,內錯角,同旁內角并指出他們分別是由哪兩條直線被第三條直線所截得到。
(通過復習相關知識,為后面學生想到同位角相等推出直線平行做鋪墊)
二、學習新課
(一)概念學習
1.問題的引入:
在周圍世界中到處可見平行線的形象,你能舉出在周圍所看到的形象為平行線的例子嗎?
(學生舉例)
(教師可適當補充舉例)
(直觀感受平行)
2.通過直觀圖形得出平行線概念:
同一平面內不相交的兩條直線叫做平行線,“平行”用符號“//”表示。
提問:在同一平面內,兩條不重合的直線有幾種位置關系?
如圖:直線a和b是平行線,也稱它們互相平行,記作“a∥b”,讀作“a平行于b”
3.如何畫平行線呢?
操作1:利用直尺和三角尺畫已知直線的平行線。
(通過此問題的研究,讓學生在自己動手操作的過程中,掌握畫已知直線平行線的常用方法,同時為引出平行線判定方法一做準備。)
4.思考1:過直線a外一點P畫直線a的平行線,可以畫幾條?
操作2:用平移三角尺的方法畫出經過點P且平行于a的直線b。
通過操作的結果得出以下的性質:
(1).平行線基本性質:過直線外一點有且只有一條直線與已知直線平行。
(通過此問掌握平行公理,同時鞏固畫已知直線平行線的方法)
5.思考2:在畫平行線中,三角尺起什么作用?
(教師可提示引導,在三角尺平移的過程中那些量不變)
(構成三線八角圖,能否借助于相關角的大小關系來判定兩直線平行)
畫直線a的平行線b時,直尺所在的直線截a、b所得的同位角∠1和∠2的大小相等
(2).導出平行線判定方法1:兩條直線被第三條直線所截,如果同位角相等,那么這兩直線平行。(簡單地說成:同位角相等,兩直線平行)
符號語言表示:
如圖:因為∠1=∠2
所以a//b(同位角相等,兩直線平行)
(熟悉文字語言、符號語言、圖形語言的相互轉化)
(二)應用新知
1、填空,如圖:
(1)如果∠1=∠B,那么_____//______。
(2)如果___________,那么AD//BC。
(本題是定理的直接運用,(1)為填結論,2)為填條件,通過此題熟悉定理的簡單運用)
2、如果同一平面內的兩條直線垂直于同一條直線,那么這兩條直線平行嗎?
(1)答:____________(寫平行或不平行)
(2)根據圖示,說明直線a與直線b平行的理由。
解:因為a⊥c,b⊥c
所以∠1=______,∠2=______(垂直的意義)
得∠1=∠2(等量代換)
所以a_______b()
結論:同一平面內垂直于同一條直線的兩條直線平行。(可以作為今后說理的依據)
3、如圖,如果∠1=110°,∠2=70°,那么AB//CD嗎?為什么?
解:將∠1的鄰補角記作∠3,則∠1+∠3=180°(鄰補角的意義)
因為∠1=110°()
所以∠3=180°-∠1=70°(等式性質)
又因為∠2=70°()
得∠2_____∠3()
所以AB//CD()
(此兩題為定理的簡單運用,第一題需要由垂直得出同位角相等的結論,第二題由鄰補角的關系得出同位角相等,進而滿足定理條件,推出直線平行。此兩題講解時,老師要做簡要分析,如:第一題問要推直線平行,需要什么條件,第二題可問由∠1=110°,可推出那些角等。同時,教師要進行邏輯段的劃分,讓學生有獲得體驗感悟。為了降低難度,此兩題以填空的形式呈現。)
4、如圖,已知D、B、C在一直線,CE平分∠ACD,∠2=∠B,那么AB//CE嗎?為什么?
(此題結合角平分線的性質推出同位角相等,進而證明平行,整體邏輯段較少,因此嘗試讓學生自己說理表達,書寫邏輯段,老師結合學生實際情況做適當指導講解)
三.課堂小結
1.平行線的概念;
2.判定兩條直線平行的第一種方法;
3.平行線的基本性質;
四.作業
1、如圖,已知點P是三角形ABC的邊BC上的一點。
(1)過點P畫PD平行于AB,交AC于點D。
(2)過點P畫PE平行于AC,交AB于點E。
2、下列圖中不能判斷直線a與b平行的是()
3、如圖,已知∠1=∠2=∠3,請填寫理由,說明AB//CD,EF//MN。
解:因為∠1=∠2()
∠1=∠4()
所以∠2=∠4()
得AB//CD()
因為∠1=∠3()
又_____________(對頂角相等)
得______________(等量代換)
所以____________(同位角相等,兩直線平行)
4、如圖,已知∠D=80°,∠BED=80°,能判定AB//CD嗎?并說明理由。
5、如圖,直線l與直線a,b,c分別相交,且∠1=∠2=∠3
(1)從∠1=∠2可以得出那兩條直線平行?為什么?
(2)從∠1=∠3可以得出那兩條直線平行?為什么?
(3)b∥c嗎?為什么?
練習說明:
五道練習題中,第一題主要用于鞏固練習畫平行線的方法。后面四道練習題主要是對判定定理一的應用,難度逐步提高。第二題是定理的簡單運用,需要學生通過鄰補角、對頂角等關系轉化成同位角相等的條件,但不需要進行說理表達,主要考察學生對定理的理解情況。第三題是在熟悉定理的前提下,考察學生說理表達、邏輯推理的能力,但以填空形式呈現,使難度降低。第四、五題是在第二、三題的基礎上讓學生自己嘗試獨立書寫說理過程。同時,第五題本是書本上的例題,我放在習題中的目的是為了讓學生有充足的時間研究,為第二課時引出判定定理二、三做鋪墊。
第二課時:
一、復習引入
1.“三線八角”的研究:兩條直線被第三條直線所截,在形成的八個角中根據位置關系的不同,出現了“同位角、內錯角、同旁內角”這三種角。
2.上節課中,學習了判定兩條直線平行的基本方法,簡單的說:同位角相等,兩直線平行
二、新課
今天,繼續來研究平行線的判定問題,引出課題。
請同學們猜想:除了同位角相等,兩直線平行,還有其它的判定兩條直線平行的方法嗎?
(學生有了第一課時的.經驗,同時,作業的最后一題中就隱含了內錯角相等,可推出兩直線平行的結論,學生就有可能從內錯角、同旁內角這兩類角的特殊關系考慮,老師可做適當提示。)
可能結論:①內錯角相等,兩直線平行;②同旁內角互補,兩直線平行;③同旁內角相等,兩直線平行
逐一說理:如圖①已知直線a、b被直線l所截,∠1=∠2,試說明a∥b。
如圖②已知直線a、b被直線l所截,∠1∠2=180°,試說明a∥b。
結合圖形③(反例),說明第三種猜測錯誤:
歸納、總結部分:
到現在為止,學過了三種判定兩條直線平行的方法:①同位角相等,兩直線平行;內錯角相等,兩直線平行;③同旁內角互補,兩直線平行。
符號語言表示:
如圖:因為∠1=∠2
所以a//b(同位角相等,兩直線平行)
因為∠2=∠3
所以a//b(內錯角相等,兩直線平行)
因為∠2+∠4=180°
所以a//b(同旁內角互補,兩直線平行)
(在此環節中學生體驗猜想——說理——歸納的過程,初步體會說明一個命題正確需要說理,說明一個命題錯誤,只要舉一個反例。同時,學生進一步體會說理表達的基本形式。進一步熟悉文字語言、符號語言、圖形語言的相互轉化)
三、應用新知
1.如圖直線a、b被直線l所截,已知①∠1=∠2,②∠2=∠3,③∠1∠4=180°,試說明a∥b。
解:∵∠1=∠2(已知)
∴a∥b()
∵∠2=∠3(已知)
∴a∥b()
∵∠1∠4=180°(已知)
∴a∥b()
2.如圖,已知∠1=40°,∠B=40°,試說明DE∥BC。
解:∵∠1=40°(已知)
∠B=40°(已知)
∴∠=∠()
∴DE∥BC()
3.如圖,已知∠B=50°,∠1=130°,試說明:AB∥CD。
解:∵∠B=50°()
∠1=130°()
∴∠1∠B=°
∴AB∥CD()
4.如圖,已知∠1=115°,∠2=65°,那么AB∥CD嗎?為什么?
(第一題是定理的直接運用,起到鞏固三個定理,進一步明確定理的條件及結論的作用。二、三兩題是定理的簡單應用,需要學生結合圖形,分析條件,判斷運用三個定理中的哪一個定理解決問題。比如第三題可以用判定2,也可用判定3,就可以做一個比較優劣。同時以填空的形式降低難度,學生在這兩題中進一步體會說理表達的基本規范,教師進一步指導學生認識邏輯段的劃分。第四題三個判定定理都能運用,靈活性較大,因此讓學生自己嘗試解決,先讓學生進一步嘗試獨立書寫說理過程,其次,將學生的不同解法展現,拓寬學生思路,相互學習。)
四、課堂小結
1.學習了判定兩條直線平行的三種方法;
2.會運用它們判定兩條直線平行。
五、作業
1、填空:如圖,(1)如果∠1=∠2,那么_____//_____。
(2)如果∠3=∠4,那么_____//____。
(3)如果∠5=∠6,那么____//_____。
(4)如果∠7=∠8,那么____//_____。
2、填空:如圖,(1)因為∠A=∠3(已知)
所以_______//________()
(2)寫出兩個能得到BC//DE的條件_________。
(3)若∠1=70°,當∠5=______時,BC//DE。
3、如圖,直線l分別與直線a、b相交,已知∠1=110°,∠2=70°。
(1)填寫a//b的理由。(解法一)
解:把∠1的鄰補角記為∠3,則∠1+∠3=180°(鄰補角的意義)。
因為∠1=110°,()
所以∠3=180°-∠1=70°,又因為∠2=70°,得∠2=∠3()
所以a//b()
(2)填寫a//b的理由。(解法二)
解:把∠1的對頂角記為∠4,則∠1=∠4()。
因為____________,(已知)
所以____________,(等量代換)
又因為∠2=70°,得_________________(等式性質)
所以a//b()
(3)請嘗試用“同位角相等,兩直線平行。”說明a//b。
4、如圖,已知∠1=∠3,BE平分∠ABC,要說明DE//BC,請按照正確的說理順序把下面幾句話重新排列,并說明每一步的理由。
(1)因為∠1=∠3
(2)所以∠2=∠3
(3)因為BE平分∠ABC
(4)所以DE//BC
(5)所以∠1=∠2
5、如圖,已知∠C=∠D,∠D=∠1試說明:AC∥DF,DB∥EC
(選作)6、如圖,在△ABC中,DE垂直BC,∠FEG=90°,∠1=∠2,那么AB//EG嗎?并說明理由。
練習說明:
第一題是對定理的直接運用,但要考察學生在較復雜的圖形中找出符合條件的基本圖形。第二題,在第一題的基礎上提高要求,需要學生結合圖形自己找出證題的條件。第三題是把練習冊上的一道練習改編所得,其中第(1)題沒變,主要填寫各步的理由,而第(2)題則和第(1)題相反,給出理由,補全步驟。第(3)問則是全部自己書寫,但明確方法,三個問題層層遞進,逐步加深。同時,第三題有和課堂練習4基本相同,只有數字不同,這也是對課堂學生學習情況的一種檢驗。第四題綜合運用了角平分線的性質和判定定理2,但是給出了說理的所有步驟,要求排出正確步驟,有了一定的指導性,既引導學生在分析過程中形成正確思路,又一定程度降低了難度。第五題在前面的基礎上更進一步,要求學生獨立完成,對說理過程的規范表達有要求。第六綜合性較強,涉及垂直的定義,同角的余角相等,內錯角相等等,對學生的邏輯推理及書面表達能力的要求都比較高,因此,留作選做題。
七年級數學說課稿 13
有人說,課堂教學是一幅畫,潑墨如注,惜墨如金;有人說,課堂教學是一首詩,起承轉合,跌宕起伏。所有這些都在向我們傳達同一個理念,那就是:教學是一門藝術。新課程追求的數學課堂是煥發生命活力和諧的理想課堂。下面我就結合《看一看,擺一擺》的教學設想談談我對課堂教學藝術的理解與把握。我對本課作了如下設計:一、依據課標,說教材;二、教學法設想;三、預設教學程序;四、教學效果預測與反思;五、說板書設計;六說評價
一、依據課標,說教材
(一)教材分析
1、教材的地位和作用:
科學記數法是義務教育課程標準實驗教科書,六年級上冊第六章的內容。之前,學生學習了有理數的乘方,10萬有多大等內容,本節課進一步學習大數的表示——科學記數法。同時為六年級下冊學習用科學記數法表示“小數”打下基礎,也是學習物理、化學等知識的有力工具,并在實際生活中起廣泛的應用。
2、教學目標
知識目標:理解科學記數法的意義,并學會用科學記數法表示比10大的數。
能力目標:積累數學活動經驗,發展數感、空間感,培養學生自主學習的能力。
情感目標:感受科學記數法的作用,培養學生團隊精神和愛國熱情。
3、教學重點與難點
重點:進一步感受大數;用科學記數法表示大數
難點:用科學記數法表示大數
二、教學法設想
1、教學方法和手段
采用問題性教學模式。并結合實驗、計算器、多媒體等現代教育手段實施教學。
2、學法指導
學生通過動手、動口、動腦等活動,主動探索,發現問題;互動合作,解決問題;歸納概括,形成能力。增強數學應用意識,養成及時歸納總結的良好學習習慣。
三、預設教學程序
(一)創設情境導入問題
1、以“神舟”五號載人飛船的發射成功為題材。
2、以光速、中國人口、太陽半徑中的數據為切入點。(引例)
設計意圖:創設情景、激發民族自豪感,體會大數“讀”“寫”的困難,從而導出課題。
(二)嘗試探索,解析問題
1、探究:讓學生觀察回答10n的數的特征。
師生共同比較各種記數方式的優缺點后,
由教師給出定義
3、師生共同合作解答引例。(略)
4、小組探討:10n的指數n與原數的整數位數之間的關系。
設計意圖:引出科學記數法的表示作好鋪墊。體現特殊到一般的認知規律。
(三)運用新知,解決問題
1、找一找:找出用科學記數法表示的數,并把其它的數用科學記數法表示出來
2、比一比:比較用科學記數法的數的大小。
3、樂一樂:要求全班分男女兩隊,由一方為另一方挑選題目,答對加10分,答錯扣10分,每題答題時間為40秒。
設計意圖:采用“活動促發展”的基本思路,面向全體,落實概念。
樂一樂:營造課堂氣氛,使每位同學積極投入。
(四)探究歸納,分析問題
1、做一做
將下例用科學記數法表示的數,原數是什么?
2、測一測
你每分鐘脈搏的次數,并計算出你從出生到現在約跳了多少次脈搏。
3、試一試(書P128)
教學中采用邊演示邊詢問每幅圖小立方塊的總數。體現直觀性,發展學生數感、空間感。培養學生的逆向思維。
設計意圖:進一步培養學生動手實驗,估算能力,會用計算器處理較復雜的數據。
(五)回顧小結,布置作業
1、談一談:今天這節課你的收獲與體會!
2、分層作業:①課本第128頁,習題6.1。
②搜集報刊、雜志上較大的數據并用科學記數法表示它們。
設計意圖:理清知識脈絡,強化重點,內化知識,培養能力。
面向全體,注重個性差異
四、教學效果預測與反思
我想:通過以上環節的`教學,在課上,同學們都將以全部的熱情和精力參與到課堂教學中來,積極思考、自主探究,在獲得數學知識的同時獲得樂學、愛學、會學的情感體驗,感受到本節課所學的知識是生活中存在的,真正的成為學習的主人。
五、板書設計
板書是課堂教學的重要手段,通過板書突出教學的難、重點,為學生掌握知識和記憶打下堅實的基礎。我在設計板書時注意兩點。
(1)圖文并茂,條理清楚,層次明確。
(2)突出重點.與課堂教學的小結相呼應
六、說評價
數學教學應提倡“學中用、用中學、學用結合、學以致用”。在教學過程中,學和用事一個整體。這節課中,為實現教學目標,我所設計的每一個教學游戲活動始終將學生置于一種自主、和諧、輕松的自然學習氛圍中,從而使學生在不斷地習得中將知識內化,為學生自我求知、自我獲取知識創造了有利條件,促進了學生思維的活躍和才能的發揮。
七年級數學說課稿 14
一、教材分析
1、教材的地位也作用
本節課主要是探究點或圖形在平面直角坐標系中平移所引起的點坐標的變化規律。是在上一章學習了點或圖形平移及其性質的基礎之上,用坐標刻畫了平移變換,從數的角度進一步認識了平移變換,這就是用代數方法研究幾何問題,體現了平面直角坐標在數學中的作用。為后續學習利用平移變換、坐標變換探究幾何性質以及綜合運用多種變換(平移、旋轉、軸對稱、相似、位似等)進行圖形設計打下基礎。
2、教學重點、難點
通過分析,我們看到“用坐標表示平移”在教材中起到承上啟下的作用,有著廣泛的應用,因此本節課的重點是在直角坐標系中,探究點或圖形的平移引起的點坐標變化的規律。
對應點的坐標變化規律的獲得過程,教科書中僅用了點平移、圖形平移兩個欄目,來呈現平移引起點坐標變化規律的。規律不能讓學生死記硬背,而是讓學生通過觀察、分析、歸納的途徑來掌握規律。因此本節課的難點設定為在坐標系中結合圖形的平移變換理解和歸納對應點的坐標變化規律并進行應用。
二、教學目標
根據學生的認知水平和本節課的教學內容及蘊含的數學思想我制訂了以下三個層面的目標:
1、知識目標
掌握點的坐標變化與點的左右、上下平移之間的關系;掌握圖形各個點的坐標變化與圖形的平移之間的關系并解決與平移有關的問題。
2、經歷探索點坐標變化與點平移的關系,圖形各個點坐標變化與圖形平移關系的過程,讓學生學會獨立自主地、有條理地思考、分析,發展學生的形象思維能力和歸納總結意識。
3、培養學生主動探索,敢于實踐的創新精神,讓學生學會主動尋求解決問題的途徑,從成功中體會研究數學問題的樂趣,從而增強學生學習數學的興趣,樹立學好數學的信心。
三、設計思路
本節課,我設計了一個以FLASH為操作平臺的課件,來實現教學目標,完成教學任務。我之所以選擇FLASH來編寫這個課件主要考慮了兩點原因:
1、就課的內容來說,這節課主要學習點或圖形在坐標系內平移引起的坐標變化的規律。如果單純的讓學生觀察靜止的圖形,很難激起學生主動探索的熱情;再有部分學生沒有動態幾何的想象能力,因此我選擇了動畫功能強大的FLASH來制作課件。FLASH能逼真的模擬出圖形平移的全過程,從而把復雜的東西變簡單,抽象的東西變具體,最大程度的.提高了教學效果。
2、就課堂教學效果來說,使用課件演示就比傳統的教學方式能吸引學生。但選擇FLASH動畫就比一般的Powerpiont更有吸引力。通過Flash課件演示,學生能直觀的看到圖形平移的全過程,培養了學生觀察力、想象力,不斷激活學生思維,讓學生逐層參與知識的構建過程,克服了教學的難點。
四、教學過程
1、回顧復習、導入新課
展示雪人平移,連接對應點連線這樣一個動態過程,來復習近平移概念及性質。從學生已有的數學知識出發,回顧平移的相關知識,為新知識、新課題的學習奠定了基礎,從而也很自然地過渡到新課題的學習中去。
2、探究歸納、學習新知
A、移與坐標變化的關系
設計了觀察探究、實踐探究、分析歸納、知識升華四個環節來完成點平移的探究過程,引導學生自主的歸納出點平移與坐標變化的規律。
觀察探究
設計了一個動畫,將吉普車從點A(-2,-3)向右平移5個單位長度,它的坐標是。把吉普車從點A向上平移4個單位長度呢?這個問題的出現可以讓學生通過觀察初步感知其變化關系,然后帶著自己的初步觀點來進行下一個環節的教學。
實踐探究學生動手在坐標紙
上將點A(-2,-3)向左平移兩個單位長度,它的坐標是什么?
若將點A(-2,-3)向下平移3個單位長度呢?
通過親自畫圖操作、思考的過程,學生可以驗證剛才觀察后的推斷。通過以上兩個環節,大多數學生都會發現點平移的規律,進而歸納出點平移與坐標的變化規律。
分析歸納
學生通過觀察、操作、合作交流等實踐活動,經歷了從特殊到一般、從具體到抽象的探索過程,最終歸納總結點平移與坐標變化的規律就相對簡單了。
在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));
將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。
知識升華
設計了一個思考題:將點A(3,4)移動到點A’(-3,-4)?(盡可能多的利用平移知識找到答案)
這個問題的出現就是為了使學生發現斜向平移可以分解為水平平移和垂直平移來完成。將點平移的知識提高了一個層次,也體現了知識由淺到深,由簡到繁的過程,能拓寬學生的思路,同時也為圖形的斜向平移埋下伏筆。
將這個問題設計成動畫形式,能讓學生真切的感受點平移的全部過程,形象生動。同時也能幫動態想象能力較差的同學構建動態平移的畫面。
(此問題先讓學生分組討論,盡可能多的尋找路徑,小組代表發言之后再演示動畫)
①先向左平移6個單位長度,再向下平移8個單位長度;
②先向下平移8個單位長度,再向左平移5個單位長度。
總結:點的斜向平移,可通過點的水平平移和垂直平移來完成。
B、探索圖形上的點坐標變化與圖形平移間的關系
學生已經掌握了點平移與坐標之間的變化關系,然后再學習圖形平移與圖形個點之間坐標變化的關系就相對簡單多了。這部分的學習也是通過四個環節來實現的:觀察探究、實踐探究、分析歸納、知識升華。
觀察探究
如圖,三角形ABC三個頂點坐標分別為A(4,3)B(3,1)C(1,2)
觀察填空,將三角形的三個頂點的橫坐標都減去6,縱坐標不變,得到的A’
B’C’。
觀察猜想:三角形A’B’C’與三角形ABC的大小、形狀相同嗎?
它們從位置上有什么關系?或者說成(通過平移能否從三角形ABC得到三角形A’B’C’?又是向什么方向平移了?平移了幾個單位長度?)
這里設計了一個動畫,根據找到了A’B’C’的坐標,描點,然后連接這幾個點組成一個封閉圖形,三角形A’B’C’,然后將三角形ABC平移后能和A’B’C’重合,這樣就能發現新圖形與原圖形形狀、大小相等,
總結歸納
采用小組合作分析,逐步精煉語言的方式來完成,可以讓學生的語言較為精確。
教學反思本節課是在學生學習了平移的概念和性質的基礎上,探究圖形在坐標系內平移的變化規律的。主要是引導學生運用分類思想,依次經過點和圖形的平移的觀察、畫圖、猜想、驗證、歸納、比較、分析等活動,最終探究出點的坐標變化與點平移的關系,圖形各個點的坐標變化與圖形平移的關系,并結合多媒體課件演示,體驗坐標平面上點與有序數對一一對應的關系。主要有三點:
1、內容處理上,注意了新舊知識間的聯系又注意了新舊知識間的區別。順利的完成了知識的遷移。
2、課堂教學中,為學生提供了充分的探索空間,注重引導學生分工合作,獨立思考,形成主見并進行交流,創設民主、寬松和諧的課堂氣氛。
3、注重學法指導,本節課通過學生一系列的探究活動完成學習過程,讓學生經歷觀察、探索、操作、分析、歸納總結的一個過程,經歷知識產生、運用、升華的過程,自主的完成本節課的學習。
七年級數學說課稿 15
尊敬的領導、老師們:你們好
今天我說課的題目是北師大版數學七年級下冊第四章第3節《探索三角形全等的條件》第3課時。下面,我將從教材分析、教學方法及教學過程等幾個方面對本課的設計進行說明。
一、教材分析(一)本節內容在教材中的地位與作用。
《探索三角形全等的條件》對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩三角形間最簡單、最常見的關系。本節《探索三角形全等的條件》是學生在認識三角形的基礎上,在了解全等圖形和全等三角形以后進行學習的,它既是前面所學知識的延伸與拓展,又是后繼學習探索相似形的條件的。本節課中的內容是《探索三角形全等的條件》中的最后一個判定,在學習新知識中我們復習前面所學的SSS,ASA,AAS,也為后面的尺規作圖打好基礎。另外也對后面的三角形的相似等知識學習提供了保障。本節課的知識具有承上啟下的作用。
(二)教學目標
在本課的教學中,不僅要讓學生學會“邊角邊”這一全等三角形的識別方法,更主要地是要讓學生掌握研究問題的方法,初步領悟分類討論的數學思想。同時,還要讓學生感受到數學來源于生活,又服務于生活的基本事實,從而激發學生學習數學的興趣。為此,我確立如下教學目標:
(1)知識目標:經歷用兩角一邊進行畫圖和驗證三角形是否全等的過程中,探索出全等三角形的條件“邊角邊”,并能應用它們來判定兩個三角形是否全等。還對兩邊分別相等且其中一組等邊的對角分別相等,兩個三角形不一定全等進行探索。
(2)能力目標:在探索三角形全等條件的過程中,讓學生學會有條理地思考、分析、解決問題的能力,培養學生推理意識和能力。有關數學題的答題規范化的培養。
(3)情感目標:培養學生敢于實踐,勇于發現,大膽探索,合作創新的精神;體會數學在生活中的作用,增強學習數學的興趣,樹立學好數學的信心。
(三)教材重難點
學情分析:
學生現在處于幾何推理論證的初步階段,從這章開始,學生應該逐步學會幾何證明,幾何證明題的推理證明的書寫對學生來說難度較大,同時,我們知道,以前學生學習幾何都是一些簡單的圖形,從這章開始出現了幾個圖形的變換或疊加,學生在解題過程中,找全等條件是一個難點。
鑒于以上學情分析,我把本節課的重難點設置為:本節課的重點是掌握三角形全等的條件“SAS”,并能應用它們來判定兩個三角形是否全等。探索“兩邊分別相等且其中一組等邊的對角分別相等,兩個三角形不一定全等”是難點。我將采用讓學生動手操作、合作探究、媒體演示的方式以及滲透分類討論的數學思想方法教學來突出重點、突破難點。
(四)教學具準備,教具:相關多媒體課件;
學具:剪刀、紙片、圓規、直尺。
二、教法選擇與學法指導本節課主要是“邊角邊”這一基本事實的發現,故我在課堂教學中將盡量為學生提供“做中學”的時空,讓學生進行小組合作學習,在“做”的過程中潛移默化地滲透分類討論的數學思想方法,遵循“教是為了不教”的原則,讓學生自得知識、自尋方法、自覓規律、自悟原理。并且用導學案的形式讓學生對本節課內容很好的把握。
三、教學過程(一)溫故知新
1.我們在前面學過____________________方法判定兩個三角形全等。
(二)設疑引題,激發求知欲望
首先,我出示一個實際問題:
問題:小穎作業本上畫的三角形被墨跡污染,她想畫出一個與原來完全一樣的三角形,她該怎么辦呢?你能幫幫小穎嗎?
這樣設計的目的是既交代了本節課要研究和學習的主要問題,又能較好地激發學生求知與探索的欲望,同時也為本節課的教學做好了鋪墊。
(三)引導活動“想一想”,揭示知識產生過程
數學教學的本質就是數學活動的教學,為此,本節課我設計了如下的系列活動,旨在讓學生通過動手操作、合作探究來揭示“邊角邊”判定三角形全等這一知識的產生過程。探索三角形全等條件重要學生的探索能力的培養。
活動一:讓學生通過復習回顧已學過的判斷兩個三角形全等的`方法引出本節課所要探究的兩邊一角能不能判斷兩個三角形全等。
活動二:讓學生首先通過畫圖對兩邊及其夾角對應相等的情況進行對比來判斷所畫的兩個三角形是否全等。特別的小組用疊合的方法來進行判斷三角形全等,由此得到判定兩個三角形全等的方法4(兩邊及其夾角分別相等的兩個三角形全等,簡寫為“邊角邊”或“SAS”)。
活動三:在學生畫出有兩邊及其一邊的對角對應相等的兩個三角形的圖上,讓學生觀察,看畫出的三角形是否一定全等。由此得出結論,這樣的兩個三角形不一定全等。老師引導學生得出結論,并揭開秘密,針對此結論用一個生活中的例子來進行鞏固。聯系實際:請同學們觀察下面圖形中三角形全等嗎?由于此圖來自本城市的重要工程,所以學生很快能理解兩邊分別相等且其中一組等邊的對角分別相等的兩個三角形不一定全等的結論。并說明數學在實際生活中是存在的,并可以應用數學解答實際問題。
(四)練一練,用了三個例子來鞏固“邊角邊”的應用。由老師引導--學生解決—學生點評—教師點評的流程講解練習。讓學生知道一般的我們寫三角形的有關題時,對應頂點應寫在對應的位置上,并且要知道每一步的理由,但不一定要寫出理由來。鏈接中考要求對學生的答題規范化能獲取高分。比如在第三個題中:3.在△ABC中,AB=AC,AD是∠BAC的角平分線。那么BD與CD相等嗎?為什么?回答相等,然后再說明理由。這樣才規范。還有公共邊的寫法,第一題中就寫成“AC=CA”而第三題的公共邊應寫成AD=AD.中考答題規范化應該從七年級抓起。
(五)作業布置:完成學案剩下的題。
(六)課堂小結
(1)本節課你學了什么?
(七)老師的贈言。每一節課都送給學生一句有關學習的警句,促進學生對學習興趣培養,讓他們從“你要學”轉化為“我想學”。
附:
復習:SSS,ASA,AAS
結論:兩邊及其夾角分別相等的兩個三角形全等,簡寫為“邊角邊”或“SAS”.
第三篇:七年級數學說課稿
七年級數學說課稿
七年級數學說課稿 1
一、教材分析
㈠地位、作用
本節課在學習了單項式、多項式及其有關概念之后,以同類項的概念、合并同類項的法則及其運用為教學內容.合并同類項是整式運算的基礎,而整式的運算對學好初中數學有著十分重要的作用.
㈡教學目標
⒈知識目標:①理解同類項的概念,并能辨別同類項;②掌握合并同類項的法則,并能熟練運用.
⒉能力目標:①通過創設教學情景,使學生積極主動地參與到知識的產生過程中,培養學生的歸納、抽象概括能力;②通過鞏固練習,增強學生運用數學的意識,提高學生的辨別能力和計算能力.
⒊情感目標:①讓學生學會在獨立思考的基礎上積極參與數學問題的討論,享受通過運用知識解決問題的成功體驗,增強學好數學的信心;②通過教學,使學生體驗“由特殊到一般、再由一般到特殊”這一認識規律,接受辯證唯物主義認識論的教育.
㈢重點、難點
重點是同類項的概念、合并同類項的法則及其運用法則進行計算.
難點是同類項定義的歸納、概括.
二、教法
根據本節教材內容和學生的實際水平,為更有效地突出重點、突破難點,按照學生的認識規律,遵循“教師為主導、學生為主體、訓練為主線”的指導思想,我將采用探究發現法、多媒體輔助教學等方法,教學中精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,并適時運用多媒體演示,激發學生探索知識的欲望,以此來達到他們對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養學生的思維能力.
三、學法
根據學法自由性原則,讓學生在教師創設的問題情景下,通過教師的啟發點撥,在學生的積極思考努力下,自由參與知識的發生、發展、發現的過程,使學生掌握知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的.
四、教學程序
㈠新課引入
新課的開始,是課堂教學的一個重要環節.如果在新課伊始能吸引學生的注意力,引起他們濃厚的興趣,激發強烈的求知欲望,就可以使學生愉快而主動地去接受新知識,從而取得課堂教學的理想效果.所以一開始上課,我用大屏幕顯示一道實際生活中的問題,學生通過探究討論解決問題,由此導出本節課的主題,同時為學習新課做好鋪墊.
㈡探索新知
本節課第一個重要環節是同類項的概念,既是重點也是難點.為突出重點,突破難點,我設計了活動1:學生仔細觀察、獨立思考后,分組討論,互相交流,然后每組派一名代表發言,概括這兩組單項式的特征.教師傾聽學生交流,在學生概括出上述幾組單項式的特征之后,提出同類項的概念,再由學生概括出同類項的定義.由教師補充:幾個常數項也是同類項.這樣,學生直接參與到同類項概念產生的過程,不僅能夠有效地促使學生理解同類項的含義,而且能使學生體驗獲得成功的喜悅,同時培養和提高學生歸納、抽象概括的能力.
為鞏固同類項的概念,我設計了一道判斷題,由學生一個個單獨完成,并簡單闡述理由,讓學生充分發表意見,關注每一個學生.通過這個活動加深對同類項概念的理解,為后面合并同類項打好基礎.
另外還設計一道開放性題目,讓學生自己動手寫出兩組同類項,組內交流寫出的項是否符合要求,教師深入學生中間,參與指導,幫助加深理解同類項的含義,擴展學生的.思維空間,培養學生的抽象思維能力和發散思維能力.
第二個重要環節是合并同類項的法則.通過設計問題串,引導學生獲取新知.問題1,實際上是引例中的兩個等式,通過學生觀察,容易得出結論,左邊兩項系數之和等于右邊的系數,明確同類項相加成為一項的方法,使學生對合并同類項有個初步認識.為克服學生對這個認識可能存在的疑點,我設計了問題2,學生展開討論,教師深入學生中間,參與學生討論,指導學生探究,驗證上述認識的正確性,體現了獲取知識不僅要有觀察、歸納、猜想過程,還必須有驗證過程.打消疑點之后,提出問題3,有上面兩個問題做基礎,學生極易回答這個問題,教師抓住時機,讓學生總結概括合并同類項的法則,再次培養和提高學生的歸納概括能力.
㈢鞏固新知
在這個環節中我設計了三道題.
第一題:學生判斷、理解只有同類項才能合并,教師加以指導.本次活動中,教師應重點關注①學生對同類項的概念是否混淆不清,能否正確辨別問題.②是否在正確辨別后只重視系數而忽略了字母和字母的指數.③對一些同類項的變式能否正確的辨別.通過這道練習,培養學生運用知識的能力,進一步鞏固同類項的含義和合并同類項的方法,為本節課的應用做好鋪墊.
第二題:是一道實際應用題.學生小組討論、交流,首先明確要解決什么問題,并圍繞這個問題開展探究,尋找解決問題的方法.教師引導學生觀察,幫助學生展示大小兩個長方體紙盒的模型,并深入小組,傾聽學生交流,指導學生探究.學生在掌握同類項的概念和合并同類項的法則后,通過解決一個實際問題,體現了“學數學、用數學”的基本理念,并讓學生體會到數學是解決實際問題的重要工具,增強應用數學的意識.
第三題:把學生分為兩組,一組直接代入計算,另一組先化簡再代入計算.通過比較讓學生充分認識新知識的優越性,能夠使學生積極主動運用新知識解決問題.
㈣課堂小結
學生分組討論、歸納,學生代表發言.教師傾聽,并對學生發言給予充分鼓勵和肯定,調動學生主動參與的意識,讓學生感受到集體合作的重要性.
㈤布置作業
為減輕學生的課業負擔,從課本中調選了兩道題.第一題是合并同類項,既能鞏固同類項的概念,又可利用合并同類項的法則進行計算,起到鞏固新課的目的.第二題是實際應用題,進一步培養學生運用所學知識解決實際問題的能力,增強運用數學意識.學生通過獨立思考,完成課后作業,老師批改,做好批改記錄,及時反饋學生學習的效果,便于進行課堂教學優化.
㈥板書設計
體現了新知識的產生過程,便于學生理解掌握知識,并加深記憶.
五、教學評價
整個教學過程遵循“由特殊到一般、再由一般到特殊”這一認識規律,教師始終是學生學習活動的引導者、激勵者、協調者、服務者,給學生留出足夠的活動時間與空間,設計的各個教學環節有利于引發學生的學習興趣,有利于學生由淺入深、循序漸進地掌握知識,形成能力,獲得技巧,使他們在主動探索發現之中建構自己的知識,形成素質.
七年級數學說課稿 2
一、教材分析
“平面直角坐標系”是“數軸”的發展,它的建立,使代數的基本元素(數對)與幾何的基本元素(點)之間產生一一對應,數發展成式、方程與函數,點運動而成直線、曲線等幾何圖形,于是實現了認識上從一維空間到二維空間的發展,構成更廣闊的范圍內的數形結合、互相轉化的理論基礎。因此,平面直角坐標系是溝通代數和幾何的橋梁,是非常重要的數學工具。直角坐標系的基本知識是學習全章及至以后數學學習的基礎,在后面學習如何畫函數圖象以及研究一些具體函數圖象的性質時,都要應用這些知識;注意到這種知識前后的關系,適當把握好本小節的教學要求,是教好、學好本小節的關鍵。如果沒有透徹理解這部分知識,就很難學好整個一章內容。
二、教學目標
1、理解平面直角坐標系,以及橫軸、縱軸、原點、坐標等的概念。
2、認識并能畫出平面直角坐標系。
3、能在給定直角坐標系中,由點的位置確定點的坐標,由點的坐標確定點的位置。
4、理解各個象限內的點的坐標的符號特點以及坐標軸上的點的坐標特點。
1637年,笛卡爾在他寫的《更好地指導推理和尋求科學真理的方法論》一書中,用運動著的點的.坐標概念,引進了變數。恩格斯在《自然辯證法》高度評價笛卡爾,稱其將辯證法引入了數學。因此,在講授平面直角坐標系這一部分內容時,應對學生進行運動觀點、坐標思想和數形結合思想等唯物辯證觀方面的適當教育。
三、重點難點
1、教學重點能在平面直角坐標系中,由點求坐標,由坐標描點。
2、教學難點:
⑴平面直角坐標系產生的過程及其必要性;
⑵教材中概念多,較為瑣碎。如平面直角坐標系、坐標軸、坐標原點、坐標平面、象限、點在平面內的坐標等概念及其特征等等。
四、教法學法
本節課以“問題情境──建立模型──鞏固訓練──拓展延伸”的模式展開,引導學生從已有的知識和生活經驗出發,提出問題與學生共同探索、討論解決問題的方法,讓學生經歷知識的形成與應用的過程,從而更好地理解數學知識的意義。教無定法,貴在得法。本節課中對于不同的內容應選擇了不同的方法。對于坐標系的產生過程,由于是本節課的難點,可采用探索發現法;對于坐標系的相關概念,由于其難度不大,且較為瑣碎,學生完全有能力完成閱讀,因此可采用指導閱讀法;對于由點求坐標、由坐標描點,由于是本節課的重點內容,應采用小組討論和講練相結合的方法。教給學生良好的學習方法比直接教給學生知識更重要。
數學教學是師生之間、學生之間交往互動與共同發展的過程,學生的學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。本節課先從學生實際出發,創設有助于學生探索思考的問題情境,引導學生自己積極思考探索,讓學生經歷“觀察、類比、發現、歸納”過程,以此發展學生思維能力的獨立性與創造性,使學生真正成為學習的主體,從“被動學會”變成“主動會學”。教學時先讓學生觀察數軸上(一維)的點與實數之間的一一對應關系,在生活中確定平面內(二維)的點的位置的方法,再與數軸上的點加以類比,從而引出平面內的點的表示方法,同時在學習中體會數形結合的思想。為了提高課堂教學的效益,本節課將借助于多媒體課件與實物投影儀進行教學。
七年級數學說課稿 3
一、教材分析
(一)教材的地位與作用
本節內容是人教版七年級下冊第六章第一節的第二課時,在此之前,剛學過算術平方根,而平方根這一節內容不僅是為今后學習二次根式、一元二次方程準備知識,而且它完成了數的范圍的擴大,從有理數擴充到了實數,同時讓代數運算得以了完善,在乘方的基礎上引入了開平方運算,因此學好本節知識是學好后續知識的主要紐帶,起著承前啟后的作用。
(二)教學目標
(1)知識技能使學生理解平方根的概念,了解平方與開平方的關系。學會平方根的表示法和求非負數的平方根掌握平方根性質。
(2)數學思考通過用類比的`方法探尋出平方根的運算及表示方法,并能自我總結出平方根與算術平方根的異同。
(3)解決問題通過學習習近平方根,培養學生理解概念并用定義解題的能力。
(4)情感態度①發展學生的求同存異思維,使他們能在復雜的環境中明辨是非,并做出正確的處理。②通過探究活動,增強學生的合作意識,提高學習熱情。
(三)教材的重點與難點
本節課的教學重點:平方根的概念及性質。
本節課的教學難點:求一個數的平方根及平方根和算術平方根的聯系與區別。
二、教法學法
教法設想采用引導探索法。采用遞進練習法。
用類比及引導探索法由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流得出平方根的定義,將定義的應用融入到探究活動中。
學習方法觀察猜測交流討論分析推理歸納總結
三、教學過程
(一)創設情境導入新知
(1)為了趣味接力比賽,要在運動場上圈出一個面積為100平方米的正方形場地,這個正方形場地的邊長為多少?
(2)學校要舉行美術作品比賽,小明很高興,他想裁出一塊面積為50平方厘米的正方形畫布,畫上自己的得意之作參比賽,這塊正方形畫布的邊長應取多少厘米?
采用多媒體播放問題情境,前一個問題很好直接回答,而第二個問題就會使學生產生思維上的困惑,從而引發學生的思考,導入平方根。
(二)啟發誘導探索新知
概念:(類比算術平方根的定義)
一般地,如果一個數的平方等于a,那么這個數叫做a的平方根或二次方根
從學生熟知的乘方運算入手,讓其積極參與數學創造活動,初步形成概念。
七年級數學說課稿 4
一、教材分析
分析本節課在教材中的地位和作用,以及在分析數學大綱的基礎上確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
1、有理數的加法在整個知識系統中的地位和作用是很重要的。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。運算能力的培養主要是在初一階段完成。有理數的加法作為有理數的運算的一種,它是有理數運算的重要基礎之一,它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、研究函數等內容的學習。
2、就第二章而言,有理數的加法是本章的一個重點。有理數這一章分為兩大部分----有理數的意義和有理數的運算,有理數的意義是有理數運算的基礎,有理數的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節的學習。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節課的教學目標、重點和難點。(結合微機顯示)
教學大綱是我們確定教學目標,重點和難點的依據。教學大鋼規定,在有理數的加法的第一節要使學生理解有理數加法的意義,理解有理數的加法法則,并運用法則進行準確運算。因此根據教學大綱的要求,確定了本節課的教學目標。1、知識目標是:“(1)理解有理數加法的意義;(2)理解并掌握有理數加法的法則;(3)應用有理數加法法則進行準確運算;(4)滲透數形結合的思想。2、能力目標是:(1)培養學生準確運算的能力;(2)培養學生歸納總結知識的能力;3、德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養學生嚴謹的思維品質。有理數加法的意義與小學學習的在正有理數和零的范圍內進行的加法運算的意義相同,讓學生理解即可,有理數的加法法則的理解與運用是本節的重點內容。因此本節課的重點是:有理數加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數、絕對值不相等的異號兩數和互為相反數之間的關系,這就對法則的理解造成困難。因此我確定本節課的難,是是;有理數加法法則的理解。
二、教材處理
本節課是在前面學習了有理數的意義的基礎上進行的,學生已經很牢固地掌握了正數、負數、數軸、相反數、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發現,從而獲取知識。在法則的得出過程中,我引進了現代化的教學工具微機,讓學生在微機演示的一種動態變化中自己發現規律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向學生滲透了數形結合的思想。在法則的應用這一環節我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發展智力、提高能力的目的。這些我將在教學過程的設計中具體體現。而且在做練習的過程中讓學生互相提問,使課堂在學生的參與下積極有序的進行。
三、教學方法和數學孚段
在教學過程中,我注重體現教師的導向作用和學生的主體地位,。本節是新課內容的學習,教學過程中盡力引導學生成為知識的發現者,把教師的點撥和學生解決問題結合起來,為學生創設情境,從而不斷激發學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發展智力、受到教育。
四、教學過程的設計。
1、引入:再課堂的`引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。
2、探索規律:法則的得出重要體現知識的發生,發展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程中體會兩個數相加的變化規律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發現,獲取知識和技能的全過程。最后由學生對規律進行歸納總結補充,從而得出有理數的加法法則。
3、鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由難而易,使學生在練習的過程中能夠逐步的提高能力,得到發展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。
4、歸納總結:歸納總結由學生完成,并且做適當的補充。最后教師對本節的課進行說明。
七年級數學說課稿 5
各位老師:
大家好,我今天我說課的內容是人教版數學七年級(上)第二章第二節《整式的加減》第二課時,我將從教材分析、學情分析、教學目標、教法學法、教學程序和板書設計等六各方面進行分析。
(一)教材分析
本節課的教學內容《去括號》是中學數學部分的一個基礎知識點,是在前面學習了有理數、單項式、多項式、同類項、合并同類項的基礎上來學習的,它是整式的化簡和整式的加減的基礎,為進一步學習下一章一元一次方程等后續數學知識做好準備,同時也是是以后分解因式、解方程(組)與不等式(組)、函數等知識點當中的重要環節之一,對于七年級學生來說接受這個知識點存在一個思維上的轉換過程,同時它也是一個難點,因此去括號在初中數學教材中有其特殊地位和重要作用。
(二)學情分析
七年級的學生在前面已經學習了有理數的運算、單項式、多項式、整式、合并同類項,而且在小學就學習了乘法分配律并用其進行簡便運算,已經積累了一定的學習經驗,但是對于七年級的學生用字母表示數以及式的運算還不太熟悉,前面學生已經學習了“字母表示數”的問題,接下來要讓學生理解字母可以像數一樣進行計算,所以本節課類比數學習式,數的運算性質和運算律在式的運算中仍然成立,讓學生通過類比學習充分體會“數式通性”,為學習整式的加減運算打好基礎,從而實現數到式的飛躍。
(三)教學目標
針對學生的學習狀況和《數學課程標準》對本節課的要求,我確定以下的教學目標:
知識技能:
(1)學生經過觀察、合作交流、討論總結出去括號的法則,并較為牢固地掌握。
(2)理解去括號就是將分配律用于整式運算,掌握去括號法則。
(3)能正確且較為熟練地運用去括號法則化簡整式。
數學思考:
經歷類比帶有括號的有理數的運算,探究、發現去括號時的符號變化的規律,歸納出去括號法則,培養學生觀察、分析、歸納能力.
解決問題:通過對解決問題過程中的反思,獲得解決問題的經驗。
情感態度:
(1)讓學生感受知識的產生、發展及形成過程,培養其勇于探索的精神。
(2)通過學生間的'相互交流、溝通,培養他們的協作意識。
根據學生的實際以及教學所需達到的目標我確定以下重難點:
重點:去括號法則,準確應用法則將整式化簡.
(關鍵:理解去括號法則的依據是乘法分配律.)
難點:括號前面是“-”號去括號時,括號內各項都變號.(學生非常容易出錯)
(四)教法學法
根據七年級學生的思維所呈現出的具體、直觀、形象之特點,為突破本節課的難點,我選用“類比——探索——發現”的教學模式。
通過直觀教學,借助已學知識來解決問題吸引學生的注意力,同時抓住學生的“閃光點”,引發學生的興趣,使他們的注意力始終集中在課堂上,喚起學生的求知欲,激發學習興趣,在整個學習過程中,以“自主參與、勇于探索、合作交流”的探索式學法為主,從而達到提高學習能力的目的。
(五)教學過程
綜合以上分析,為了緊扣教學重點,突破難點,達到本節課的教學目標,我將本節課的教學過程分為以下六個環節:
第一環節、知識回顧
1、回顧乘法分配律
一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
用字母表示為:a(bc)=abac
2、你能利用乘法分配律把括號去掉嗎?
設計意圖:這個環節從回顧已有的知識出發,可以讓學生的思維處于一種興奮狀態,從而有效提高學生的注意力,為本節課的引入做好鋪墊。
處理方法:以組為單位課前完成,課上一小組板演,其他組做補充。
第二環節、新知探究
用幻燈片展示問題:小明和小聰一共帶了10元錢去學校小賣部買零食,小明買了兩個冰淇淋和兩個草莓蛋糕,小聰也拿了同樣的食品,冰淇淋a元/個,草莓蛋糕b元/個,他們剩下的錢可以怎樣表示?
通過學生自己的親身體會發現:10-2(a+b)或10-2a-2b
即10-2(a+b)=10-2a-2b
我們發現這兩個整式有括號的與沒有括號的可以相等,那是怎樣把有括號的整式變為沒有括號的整式呢?這就是我們今天要學習的內容——去括號。從而引如以下兩個探究活動
合作探究(一)(a—3)與—(a—3)的探究
問題1:你能利用乘法分配律計算嗎?
(1)(1)(a﹣3)=_______;(2)(﹣1)(a﹣3)=_______;
問題2:請你試填,將式子中的括號去掉:
(1)(a﹣3)=________;(2)﹣(a﹣3)=____________。
問題3:你通過以上兩題能發現去括號時括號內各項的符號變化規律嗎?
我的發現:_____________________________________________________
_____________________________________________________
鞏固練習:將下列各式去括號。
(1)(x—y)=(2)—(ab)=
(3)(—a23b)=(4)—(—2m—n)=
(5)a(b—c)=(6)a—(b—c)=
(7)a(—bc)=(8)a-(-b+c-d)=
合作探究(二)2(ab)與﹣2(ab)的探究
你能用問題3中發現的規律把下面兩題中的括號去掉嗎?
2(ab)=_____;(2)﹣2(ab)=______。
你認為上面兩題去括號時應分為幾個步驟?可以與小組內同學交流。
比較以上題目你能發現去括號前后,括號里各項的符號有什么變化?你發現了什么規律?能把自己的發現用自己的語言表述出來嗎?
鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后展示去括號法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
鞏固練習:
1為下面的式子去括號
(1)3(a—bc)(2)—3(a—bc)
2。判斷下列計算是否正確。
設計意圖:這個環節這樣以由淺入深、層層遞進的問題形式設計教學程序,可以降低學生學習課本中去括號法則的難度。因為把去括號法則中既“變符號”又使用“乘法分配律”分解為兩個步驟:先利用乘法分配律把括號外的因數乘進去,再依據符號變化規律去括號,這是學生很容易做到的。學生在去括號時知道,括號前面是“”號,把括號和它前面的“”號去掉,括號里的各項都不改變符號;當括號前面是“﹣”號,把括號連同它前面的“﹣”一起去掉,括號里的各項都要變號。如果括號前面的數字因數不是1或﹣1,要先把括號前的因數乘成進去,再去括號。因此很容易掌握了去括號法則。去括號時第一步干什么,第二步干什么,就防止了出現“變符號”與“使用乘法分配律”顧此失彼的錯誤,也增強了學生對課本中去括號法則的理解。通過做練習實踐,學生去括號時準確率很高,這要比直接利用課本中的去括號法則效果好得多。
處理方法:在教師的引導下,導入新課,學生以組為單位,進行探究活動,并把所得與組內同學交流,進行小組展示,進而得出去括號的法則。
第三環節、鞏固練習
1、化簡下列各式:
(1)8a2b(5a-b);(2)(4a2—3b)-(a2-2b);(3)(5a—3b)-3(a2-2b)
處理方法:學生做完之后從小組中分別選出代表,再由代表講述該組的解題過程與情況,再用多媒體展示確認學生的結果正確與否。
2、猜數游戲(幻燈片)
隨意取一個數,將這個數加上3再乘以—2,最后再加上6,結果是多少?
處理方法:讓學生說出數,教師先來回答,讓學生探究教師快速回答的奧秘。
設計意圖:這個環節的目的在于讓學生通過參與活動,激發學生的求知欲和熱愛數學的情感,在小組活動中培養獨立思考,合作交流和探究的能力,讓他們體驗學有所用的數學和體驗成功的喜悅。
第四環節、小結歸納,反思升華
1。讓學生說說學了這節課有什么收獲和體會,總結以下內容:
(1)。利用乘法分配律得到了去括號法則:
括號前面是“+”號,去掉括號和“+”,括號里各項不變號。
括號前面是“-”號,去掉括號和“-”,括號里各項都變號。
(2)。熟記法則,并能根據法則進行去括號運算,然后一起歸納去括號法則順口溜:
去括號、看符號,符號變換最重要,括號前面是正號,里面各項保留好;括號前面是負號,里面各項全變號。
2、你覺得我們去括號時應特別注意什么?
(1)。去括號時要將括號前的符號和括號一起去掉
(2)。去括號時首先弄清括號前是“”還是“—”;
(3)。去括號時當括號前有數字因數應用乘法分配律,切勿漏乘。
這個環節可使學生對本次課的內容有一個清晰明確的印象。促使其理解和記憶。
第六環節、作業布置
1.課本第67頁練習1、2題.
2.計算:5xy2—[3xy2—(4xy2—2x2y)]2x2y—xy2.
作業在教學中起到了很好的橋梁和紐帶的作用。為了做到既面向全部學生,又因材施教,因此作業設計了分層次練習。
本節課設置問題情境及練習題,調動學生的學習積極性,通過學生動腦、動手,讓他們主動參與到教學活動中,不僅培養了學生的數學直覺能力,還啟發學生的探索的靈感,從中獲得數學的思想、方法、能力和素質,同時也獲得對學習數學的興趣。
以學生為主體,教師為主導,在課堂教學中,教師的責任是為學生的發展構建一個和諧、開放的思考、討論、探究的氣氛,要為他們創造“海闊憑魚躍,天高任鳥飛”的課堂境界,學生從中獲得知識、方法、科學精神,最大限度地發揮學生的主體作用。
(六)板書設計
2。2整式的加減——去括號
去括號的法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
例化簡下列各式:
(1)8a2b(5a—b);(2)(5a—3b)—3(a2—2b)
七年級數學說課稿 6
一、說教學目標
1. 了解一元一次不等式的概念;
2. 會解一元一次不等式。
3 通過學習對一元一次不等式的概念及解一元一次不等式的探究過程,體會類比數學思想方法。
4、培養學生理論聯系實際的思維能力及總結概括能。
基于對數學新課程標準的理解,數學是研究數量關系和變化規律的數學模型,可以幫助學生從數量關系的角度更準確、清晰地認識、描述和把握現實世界,體會數學思想,發展學生的思維水平。本教材的結構和教學內容分析,結合七年級學生的認知結構和心理特點,
基于教學大綱和新課程標準的要求,本章的結構和教學內容分析,結合七年級學生的認知發展水平和心理特點,
基于對學情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 課時的教學內容。在此之前,學生們已經學習了一元一次方程這為過渡到本課題的學習起到了鋪墊的作用。而本課題的理論、知識是學好以后課題的基礎,它在整個教材中起著承上啟下的作用。
綜上所述,我將本節課的教學重點確定:會解一元一次不等式。教學難點:把不等式中的未知數化為1這一步時,應根據不等式的性質確定不等號的`方向是否改變;
二、說教法、學法
數學新課程標準指出,數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。數學知識相對比較抽象,學生在學習是覺得很枯燥,接受新知識會比較困難。為了激發學生學習的主動性、積極性我采用了復習導入法、演示法、講解法、類比法。
三、說學法
根據七年級學生注意力不太集中,又好動的心理特點我采用了合作討論法和自主探究法、練習法以提高學生自覺學習的習慣。
四、說教學過程
在本節課的教學過程中,我能夠根據學生的認知結構和心理特點選擇合適的教學方法,激發學生學習的主動性、積極性,將新知識化難為易,提高本節課的教學效果。我主要從以下五個環節進行教學的。
1、回顧舊知,提出目標
首先通過不等式的基本性質和一元一次方程的復習引入課題,體現了數學中常用的類比數學思想,既能激發學生學習的興趣,同時這種類比思想有利于提高學生的創造性。再讓學生通過解1道含有分母的一元一次方程,進而回顧一元一次方程的概念和解一元一次方程的步驟達到溫故知新的目的。
2 探究新知
在教學新課的過程中根據教材的重、難點;學生已有知識的實際現狀選擇合適的教法和學法并運用多媒體輔助教學以最大限度的提高教學效率。首先我設計了4道很簡單的一元一次不等式讓學生觀察其共同特點從而很順利的概括出一元一次不等式的概念;再讓學生舉幾個一元一次不等式,從而加深對一元一次不等式概念的理解;再啟發學生類比解一元一次方程的步驟探究一元一次不等式的解法和步驟,進一步比較知其聯系與區別,有利于提高學生的概括總結能力。
3 鞏固練習
通過學生自主合作解2個一元一次不等式,一個不含分母、不含等號,一個含有分母、含有等號。這樣由淺入深的設計讓學生更容易注意到在數軸上表示解集時若包括分界點畫實心點,若不包括分界點畫實心點。
4、歸納小結 達標檢測
設計一個問題 (議一議):解不等式移項時應注意什么?系數化為1時應注意什么?在數軸上表示解集時應注意什么?是本節課的知識系統化。
注意:解不等式移項時要變號但不改變不等號的方向;系數化為1時不等式兩邊同除以或乘負數時不等號的方向要改變;在數軸上表示解集時若包括分界點畫實心點,若不包括分界點畫空心點。
5 作業布置
讓學生把教材第126頁必做第1題和選做第2題寫在課堂作業本上以進一步鞏固本節課的知識。
總之,本節課在教學時我采用的是復習導入法、類比數學思想方法。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。讓學生體會類比的數學思想方法的重要性和創新性。從而讓他們通過回顧和練習解一元一次方程的過程,借助類比思想探索一元一次不等式的解法,深刻體會溫故知新的成就感,進而輕松愉快的獲得新知,幫助學生認識自我,建立學習數學的信心。
七年級數學說課稿 7
尊敬的各位評委,上午好!我說課的課題是《一元一次不等式組》。
我從教材分析、學情分析、教學目標、教學手段、教學過程這五個方面來進行說明。
一、教材分析
《一元一次不等式組》是華東師大版義務教育課程標準實驗教科書數學七年級下冊第八章第三節,我把本節內容分為兩個課時,第一課時是一元一次不等式組的概念及解法,第二課時是不等式組的實踐與探索。今天,我說課的內容是第一課時。
《數學課程標準》對本節的要求是:充分感受生活中存在著大量的不等關系,了解不等式組的意義;會解簡單的一元一次不等式組,并會用數軸確定解集。
《一元一次不等式》的主要內容是一元一次不等式(不等式組)的解法及其簡單應用。是在學習了有理數的大小比較、等式及其性質、一元一次方程的基礎上,開始學習簡單的數量之間的不等關系,進一步探究現實世界數量關系的重要內容,是繼一元一次方程和二元一次方程組之后,又一次數學建模思想的學習,也是后繼學習一元二次方程、函數及進一步學習不等式的重要基礎,具有承前啟后的重要作用。
《一元一次不等式組》是本章的最后一節,是一元一次不等式知識的綜合運用和拓展延伸,是進一步刻畫現實世界數量關系的數學模型,是下一節利用一元一次不等式組解決實際問題的關鍵。因此,我把本節課的教學重點確定為一元一次不等式組的解法。
數學課程應當從學生熟悉的現實生活開始,沿著數學發現過程中人類的活動軌跡,從生活中的問題到數學問題,從具體問題到抽象概念,從特殊關系到一般規則,逐步通過學生自己的發現去學習數學、獲取知識。得到抽象化的數學知識之后,再及時地把它們應用到新的現實問題上去。按照這樣的途徑發展,數學教育才能較好地溝通生活中的數學與課堂上的數學的聯系,才能有益于學生理解數學,熱愛數學和使數學成為生活中有用的本領。
本節課,既有概念教學又有解題教學,而概念教學,應該從生活、生產實例或學生熟悉的已有知識引入,引導學生通過觀察、比較、分析、綜合,抽取共性,得到概念的本質屬性。在此基礎上歸納概括出概念的定義,并引導學生弄清定義中每一個字、詞的確切含義。華師版的教科書中,只設計了一個問題情境,我感覺還不夠,不能從一個問題抽象出概念的本質。因此,在這里我又增加了一個問題情境,以增加對不等式組概念的理解,加強數學應用意識的培養。
二、學情分析
從學生學習的心理基礎和認知特點來說,學生已經學習了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數學模型,有一定的數學化能力。但學生將兩個一元一次不等式的解集在同一數軸上表示會產生一定的困惑。這個年齡段的學生,以感性認識為主,并向理性認知過渡,所以,我對本節課的設計是通過兩個學生所熟悉的問題情境,讓學生獨立思考,合作交流,從而引導其自主學習。
基于對學情的分析,我確定了本節課的教學難點是:正確理解不等式組的解集。
三、教學目標
在教材分析和學情分析的基礎上,結合預設的教學方法,確定了本節課的教學目標如下:
1.通過實例體會一元一次不等式組是研究量與量之間關系的重要模型之一。
2.了解一元一次不等式組及解集的概念。
3.會利用數軸解較簡單的一元一次不等式組。
4.培養學生分析、解決實際問題的能力。
5.通過實際問題的解決,體會數學知識在生活中的應用,激發學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數學的價值。
四、教學手段
本節課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優點,直觀地展示教學內容,這樣不但可以提高學習效率和質量,而且容易激發學生學習的興趣,調動積極性。
五、教學過程
本節課的教學流程如下:實際問題——一元一次不等式組——解集——解法——應用。
本節課我設計了五個活動。
活動一、實際問題,創設情境
問題1.
小寶和爸爸,媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,體重只有媽媽一半的小寶和媽媽一同坐在蹺蹺板的另一端,這時爸爸的一端仍然著地.后來,小寶借來一副質量為6千克的啞鈴,加在他和媽媽坐的一端,結果爸爸被蹺起離地.猜猜小寶的體重約是多少?在這個問題中,如果設小寶的體重為x千克.
(1)從蹺蹺板的狀況你可以找出怎樣的不等關系?
(2)你認為怎樣求x的范圍,可以盡可能地接近小寶的體重?
我提出問題(1),學生獨立思考,回答問題。
考察學生對應用一元一次不等式解決實際問題的能力,并引出新知。
教師提出問題(2),學生小組合作、探索交流,回答問題。
我預計學生對于這個問題會產生兩種不同的看法:一種方法是利用估算的方法將特殊值代入來求出適合不等式組的特殊解;另一種方法是求出兩個不等式的解集,并分別將這兩個解集在數軸上表示。因此教師應引導學生進一步理解本題的實際意義,能將兩個不等式的解集綜合分析。
這里是通過對數量關系的分析、抽象,突出數學建模思想的教學,注重對學生進行引導,讓學生充分發表意見,并鼓勵學生提出不同的解法。
問題2.
現有兩根木條,一根長為10厘米,另一根長為30厘米,如果再找一根木條,用這三根木條釘一個三角形木框,那么第三根木條的長度有什么要求?
教師提出問題,學生獨立思考,回答問題。
教學效果預估與對策:預計學生對三角形三邊關系可能有所遺忘,教師應給予提示。
設計意圖:這是一個與三角形相關的問題,要
求學生能綜合運用已有的知識,獨立思考、自主探索、嘗試解決,促使學生在探索和解決問題的過程中獲得體驗、得到發展,學會新的東西,發展自己的思維能力。
活動二、總結歸納,得出概念
1.一元一次不等式組
通過上面兩個實際問題的探究,歸納概括出一元一次不等式組的`概念和一元一次不等式組解集的概念。
即:把兩個(或兩個以上)一元一次不等式合在一起,就得到了一個一元一次不等式組(linearinequalitiesofoneunknown)。 2.一元一次不等式組的解集
同時滿足不等式(1)、(2)的未知數x應是這兩個不等式解集的公共部分。在同一數軸上表示出這兩個解集,找到公共部分,就是所列不等式組的解集。
不等式組中幾個不等式的解集的公共部分,叫做這個不等式組的解集。
師生活動:在活動一的基礎上,將學生得出的結論進行歸納總結。教師要注意傾聽學生敘述問題的準確性和全面性。
教學效果預估與對策:估計多數學生在經歷了上述的探索過程后,能夠對這個結論有所認識,但是未必能夠全面得出結論。因此,教師要耐心加以引導。
通過學生的自主探究,合作交流,培養學生的總結歸納能力。
活動三、解釋應用、拓展延伸
例題
解下列不等式組,并把它們的解集在數軸上表示出來:
師生活動:師生共同完成,教師板書。
在對一元一次不等式意義理解的基礎上,會解一元一次不等式組。(2)是對解一元一次不等式組的拓展延伸。
練習1:
用每分鐘可抽30噸水的抽水機來抽污水管道里積存的污水,估計積存的污水不少于1200噸且不超過1500噸,那么大約多少時間能將污水抽完?
練習2:
某次知識競賽有50道選擇題,評分標準為:答對一題得2分,答錯一題扣1分,不答題不得分也不扣分,某學生4道題沒答,但得分超過70分,他可能答對了多少道題?
師生活動:教師展示多媒體課件,學生獨立完成。
設計意圖:培養學生分析、解決實際問題的能力。
練習3:
求不等式組的解集。
練習4:
求不等式組的正整數解。
師生活動:教師展示多媒體課件,學生獨立完成。
設計意圖:這兩道習題的設置讓學生進一步理解一元一次不等式組解集的概念,會用數軸表示一元一次不等式組的解集。
活動四、課堂小結
我提出了三個問題:
1.通過本課的學習,你學到了哪些新的知識?
2.一元一次不等式組與不等式在解法和解集上有什么聯系?
3.在學習這些知識的過程中,你的經驗與教訓是什么?
在學生回答的基礎上,教師作如下的歸納總結:
1.學習一元一次不等式組是數學知識拓展的需要,也是現實生活的需要,不等式組的知識源于生活實際,要學會分析現實世界中量與量的不等關系,解一元一次不等式組。
2.將一元一次不等式組的解集在數軸上表示可以加深對一元一次不等式組解集的理解,也便于直觀地得到一元一次不等式組的解集,體現了數形結合的數學思想方法。
在課堂小結的過程中,教師提出問題,學生回答,互相補充.
教學效果預估與對策:預計學生在利用本節知識解決所提出的問題的過程中,能夠總結出經驗和教訓,有所收獲。教師要加以引導,師生之間相互加以完善。
設計意圖:學生通過第一個問題,可以回顧出本節課所學到的知識;通過第二個問題,使學生在與一元一次不等式的對比中加深對一元一次不等式組的理解,并形成知識網絡。通過第三個問題,培養學生克服困難的自信心、意志力,并獲得成功的體驗,有助于學生全面認識數學的價值。
活動五、課后作業
1.教材P53練習1、2、4;
2.P55復習題A組5、6。
教師布置作業,學生記錄作業.
估計大部分學生可以較為順利完成作業1;作業2具有一定的難度,需要學生首先進行判斷,如果思維上存在障礙,可降低思維難度。
作業的設計,可以讓學生鞏固所學知識,讓學生在這個環節中,進一步理解和體會數學建模思想在實際問題中的應用。
七年級數學說課稿 8
說教材:
《正數與負數》是人教版七年級數學第一章第一節的內容,屬于數與代數領域的知識。本節課是學生學過的自然數與分數的延續和拓展,又是后面研究有理數的基礎,因此起到了承上啟下的作用。作為初中階段的第一節課,不僅要讓學生學會區分正、負數以及用正、負數表示相反意義的量,還要培養學生對數學學習的興趣和自信心。
說學情:
223團中學作為第二師唯一的一所少數民族團場學校,本身有著自己學校的特色,其次因為剛剛推行民漢混合編班,國語教學有一定的困難和挑戰,學生國語基礎相對比較薄弱,因此數學學科采用循序漸進的教學方法,以鞏固基礎為主。基于對教材的分析,制訂了如下的教學目標。
說目標:
讓學生理解正、負數的概念,了解正數與負數是從實際需要中產生的。通過本節課的學習,學生能夠正確判斷一個數是正數還是負數,明確零既不是正數也不是負數。實際例子的引入,讓學生體驗到數學來源于生活,服務于生活,激發學生學習數學的興趣。
說教學重點和難點:
教學重點:了解負數的意義,學會用正、負數表示日常生活中具有相反意義的量。
教學難點:了解負數的意義及0的內涵。
說教學方法:
為了突出重點,突破難點,使學生能夠達到教學目標,在教法上采用了引導啟發法和講解傳授法相結合的方法來完成本節課的教學。這是因為初一的學生個性活潑,學習積極性高,在整個過程中,教師的講解和分析與學生自己歸納相融合,激發學生的學習興趣。在學法上,鼓勵學生積極主動地參與到教與學的整個過程,對學生的回答與表現給予肯定、表揚,由此保護并發展學生學習數學的好奇心、積極性。
說教學過程:
在教學方法和理念的引領下,本節課的教學過程設計分為五個部分:
(1)創設情境,引入新課;
(2)合作交流,探索新知;
(3)鞏固練習,熟練技能;
(4)總結反思,發展情意;
(5)布置作業
創設情境,引入新課
首先我讓學生觀察課本上的三幅圖,通過設置問題串,為學生復習小學學過的自然數、零和分數,讓學生了解到數是因為實際生活的需要產生的,同時增加一個新的問題:某市某天的最高氣溫是零上3℃,最低氣溫是零下3℃,要表示這兩個溫度,那么都記作3℃,這樣就不能把它們區別清楚。所以學生很容易就發現,用以前學過的數不能簡潔清楚地表示這兩個數,由此需要產生一種新數,自然而然地引入了新課。這樣的引入,既符合學生已有的認知基礎,又能夠較好地激發學生探索問題的欲望。
合作交流,探索新知
接著,我根據學生已經產生的認知沖突及時地給出實際例子幫助學生理解具有相反意義的量,進入合作交流,探索新知的環節,給出4個例子:學生練習,教師巡視
例1:氣溫有零上3℃和零下3℃;
例2:高于海平面8848米和低于海平面155米;
例3:收入50元和支出32元;
例4:汽車向東行駛4千米和向西行駛3千米;
學生對以上例子中出現的每一對量進行討論,由于學生的語文基礎,很容易就發現:零上和零下,高于和低于,收入和支出,向東和向西都是一對反義詞。于是我在學生回答的基礎上,進一步歸納出它們的共同特點:零上和零下,高于和低于,收入和支出,向東和向西,都是具有相反意義的量。
然后我讓學生自己舉出一些日常生活中具有相反意義的量的實例。學生在閱讀課本后很容易就會回答:足球比賽中的凈贏球和凈輸球;花生產量的增長和減少;體重的增加和減少等這些例子。這樣的舉例一方面能夠充分調動學生參與的熱情,另一方面也為新知的展開鋪平了道路。
幫助學生理解了具有相反意義的量后,我帶領學生回到創設情境中產生的問題:零上3℃和零下3℃應該如何表示?我將一邊引導學生一邊歸納總結:對于具有相反意義的兩個量,如果其中一種量用正數表示,那么另一種量可以用負數表示。通常地,我們規定盈利、存入、增加、上升為正。如零上3℃和零下3℃可以表示成+3℃和—3℃;收入50元和支出32元可以表示成+50元和—32元。這里建立正數與負數的概念時,我會特別強調,零既不是正數也不是負數,它是正數與負數的分界。同時指出,0不僅僅是表示“沒有”的意義,比如0℃就是一個確定的溫度。
鞏固練習,熟練技能
為了使學生實現由掌握知識到運用知識的轉化,教師將通過形式不同的練習,讓美好學生把知識轉化成技能,如課本上的練習:判斷正、負數以及用正、負數表示具有相反意義的量。在判斷正、負數的時候,我將再一次強調學生的易錯點:0既不是正數,也不是負數。而其中一道練習:如果水位升高3m時水位變化記作+3m,那么水位下降3m時水位變化就可以記作—3m,水位不升不降時水位變化可以記作0m。這里也要特別強調0表示的意義。由此讓學生加深對正、負數概念以及零的意義的理解,同時這種課內及時練習,反饋調整,又符合心理學特征,提高了課堂的教學效率,減輕了學生的課外負擔。
總結反思,發展情意的環節
教師將引導學生通過回顧本節課所學內容,結合本節課的教學目標,歸納總結出本節課的知識要點是用正數與負數表示具有相反意義的量,零既不是正數也不是負數,從而起到了對本節課鞏固深化的作用,這樣不但可以梳理學生的.思維,促進學生記憶,而且可以讓學生的知識結構更合理,更完善,更有所側重。
布置作業
最后,針對所有學生的實際情況,布置作業,并將作業進行分層,這樣可以充分調動學生的學習積極性,同時也適應了不同學生的不同要求,切實減輕了學生的課業負擔。
說板書設計:
通過教學過程的設計,我將板書確定為以下內容
1、負數源于生活;
2、理解正數、零、負數表示的意義;
3、會用正、負數表示具有相反意義的量、
說教學反思:
教師將引導學生通過回顧本節課所學內容,結合本節課的教學目標,歸納總結出本節課的知識要點是用正數與負數表示具有相反意義的量,零既不是正數也不是負數,從而起到了對本節課鞏固深化的作用,這樣不但可以梳理學生的思維,促進學生記憶,而且可以讓學生的知識結構更合理,更完善,更有所側重。
各位老師,以上說課只是我在短時間內設計出來的一種方案,一定存在很多不足的地方,如果準備時間充分的話,我會在教學過程這一模塊進行更多細節的探討,讓本節課的內容講授更貼近學生的實際情況,讓學生更容易接受新知識。
好了,我的說課到此結束,謝謝!
七年級數學說課稿 9
尊敬的各位評委老師:
大家好!
今天我說課的內容是七年級第二學期第十章《乘法公式》的第一課時《平方差公式》,主要內容是對平方差公式的推導和簡單應用。我準備從教材分析、教法、學法、課程設計四個方面談談我對本節課的設計。
一、教材分析
(1)教材的地位和作用
平方差公式是多項式乘法的后續學習及再創造活動的結果,體現教材從特殊——一般的意圖,教材為學生在數學活動中“獲得數學”的思想方法、能力素質提供了良好的契機,是學生感受數學再創造的好素材,同時對平方差公式在整式乘法、因式分解及其代數運算中起著舉足輕重的作用,是今后學習的堅實基礎。
(2)教學目標
知識與技能:
理解和掌握平方差公式,并能靈活運用公式進行簡單運算。
過程與方法:
通過探索和推導平方差公式,鍛煉學生的觀察、思考、歸納、交流等各方面的能力。
情感態度與價值觀:
在應用中,激發學生學習興趣和信心。
(3)教學重點、難點
教學重點:掌握公式的結構特征及正確運用公式。
教學難點:公式推導的理解及公式中字母意義的理解。
二、教法與學法
(1)教法:本節課我采用自主探索,啟發引導,合作交流,展開教學,引導學生主動地進行觀察,猜測,交流。在探索中由舊到新,由學到“思”,由“思”到知識方法的提升,體驗探索數學的方法,同時展示學生探索成果,讓學生感受學習數學是一件快樂的事。
(2)學法:讓學生學會從“觀察發現——歸納驗證——應用拓展”這一數學方法,以問題為線索,學生在動口、動手、動腦中使知識再創造,從中讓學生明確獲取知識,只有通過自己的探索才能不僅“知其然”,而且“知其所以然”,透過表象看公式特征,而不是死記硬背,在應用中學會知識的遷移,抓住公式的結構特征,提高靈活運用能力。
三、教學過程
1、創設情境,導入新知
出示:考考老師
(6a+b)(6a-b) (x+a)(x-a) (3x+2)(3x-2)
(x+3y)(x-3y) (2a+b)(2a-b) (a+2)(a-2)
讓學生任選一組,我馬上說出結果。我順勢指出,學了這節課你也能做到,同時板書課題
設計意圖:讓學生產生強烈的好奇心,能激起學生的興趣,調動學生的積極性,使學生帶著問題和好奇走入本課的學習。
2、合作交流,探究新知
提問:(1)老師剛才的答案正確嗎?
(學生便會根據多項式的.乘法法則進行驗證)
(2)這幾個式子在形式上有什么特點?
(我引導學生認真觀察這幾個式子的特點,積極思考,尋找答案。學生充分思考后,讓學生個別回答說出自己的觀點。經過全體學生的共同努力,便會發現他們都是兩個數的和與兩個數的差的形式,至此,本節的難點便稍有突破。)
(3)思考:為什么會是這樣的結果呢?
(我引導小組共同交流,合作探究,讓每個小組代表發言,經過每個小組的共同努力,便會發現:由于利用多項式與多項式的乘法法則展開后,中間兩項是同類項,且系數互為相反數,所以和為零,只剩下兩個數的平方差了)。
(4)提出兩個問題讓學生思考:你能舉一個式子驗證我們的發現嗎?你能用一個式子表示我們的發現嗎?(通過這兩個問題的設置,我引導學生得出平方差公式,并讓學生用課本的面積圖來驗證平方差公式。)
設計意圖:學生經歷了從一般到特殊,再從特殊到一般的學習過程,培養鍛煉了學生的思維能力和重要的數學思想,為以后的學習打下很好的基礎。
3、運用新知,進行鞏固
判斷正誤:(x+a)(x-a)=x2-a2 (-x+y)(-x-y)=x2-y2
(m+n)(n-m)=m2-n2 (6a+b)(6a-b)=36a2-b2
設計意圖:為了檢驗學生對公式的理解情況,我設計了一組辨析對錯題。讓學生明白出錯的原因在于公式特征不清楚。
4、再析公式,認清特征
引導學生從項的符號上辨析特征,認清相同的項為a,相反的項為b,結果為a2-b2。考慮到學生剛接觸這類乘法,對于公式中的字母a、b用其他代數式替換,學生很難理解,所以我就運用太陽和月亮來表示,讓學生在題目中先找出太陽和月亮,然后在用公式代進去,這樣比較直觀易于學生對公式的理解,同時學生也少犯錯誤。還請學生自己出題讓其他學生來解答,充分調動了學生學習的積極性,活躍了課堂氣氛,也收到了一定的效果。
設計意圖:可深入的突破難點,為下一步的正確運算打下基礎,從而進入下一個環節。
5、運用公式,能力提升
在這個環節,讓學生獨立學習例1,找幾個學生板演。在學生做完講評時,我引導學生把題目和公式對照,讓學生指出題目中的相同的項為a和相反的項為b。例2簡便算法,99х101 59.8х60.2觀察發現是公式的變形。
設計意圖:通過例題的教學深化學生對公式的理解,也加深了a,b具有廣泛意義的體會。讓學生知道,平方差公式中的字母可以代表一個數字,一個單項式或一個多項式。
6、歸納總結,反思新知
鞏固所學知識,并將對平方差公式的學習延伸到課下。
師提問:1.什么是平方差公式?
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式
(2)有些式子表面不能應用公式,但實質能用,要注意變形,歸納易錯的地方。
(3)指出公式中的a、b可以代表數字、字母,還可以代表式子。
設計意圖:先讓學生分組交流,然后選代表發言,其余記錄。這樣有利于人人參與,教學方法克服一節課下來,注意力不集中的毛病,同時通過學生的思考,可以提高學生歸納和創新思維能力。
7、分層作業,拓展新知
作業分層布置,必做題和選做題。必做題面向全體學生,選做題供學有余力的學生做。
設計意圖:作業布置既要面向全體學生,又要給基礎較好的學生充分的發揮空間,滿足不同學生的不同需求。
四、板書設計
10.5平方差公式
一、探究、歸納規律——平方差公式
文字語言:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
符號語言:(a+b)(a-b)=a2-b2
二、用簡便方法計算99х101 59.8х60.2
三、小結:
1.平方差公式
2.認清公式特征是運用平方差公式的關鍵。
3.注意:
(1)要符合公式特征才能運用平方差公式
(2)有些式子表面不能應用公式,但實質能用,要注意變形,歸納易錯的地方。
(3)指出公式中的a、b可以代表數字、字母,還可以代表式子。
我的說課到此結束,不當之處,敬請各位老師給予指正!
謝謝!
七年級數學說課稿 10
一、教材分析
“用字母表示數”是新課標華師大版七年級上冊第三章“整式的加減”中第一節“列代數式”的第一堂課,這節課的內容是整個代數學習的基礎,在小學數學與初中代數之間起著承上啟下的作用。從具體的數到用字母表示數,從具體的數的運算到帶有字母的運算,這種從具體到抽象,從特殊到一般的思想是本章的重要特點。在這節課中,要讓學生真正體會用字母表示數的優越性,學會用字母表示簡單的數或數量關系,才能為后續的學習奠定好基礎。
二、教學目標
根據新課標的要求以及七年級學生的認知水平我特制定了如下的教學目標:
1、根據學生已有的知識、生活經驗,讓學生感受用字母表示數的優越性(表達簡潔、便于交流、具有普遍性等);
2、探索具體問題中的數量關系和變化規律,并能用字母或含有字母的式子進行描述,使學生進一步體會用字母表示數的特點,建立初步的數感和符號感,培養學生的代數化意識,發展抽象思維;
3、經歷一些具體問題的探究過程,培養學生學習數學的好奇心和求知欲;學會數學思考的方法,鍛煉克服困難的意志,建立自信心。
三、教學重難點的確定
重點:讓學生體會用字母表示數的優越性。
難點:探索具體問題中的數量關系和變化規律,并能用字母或含有字母的式子進行描述。
其理論依據是《數學課程標準(實驗稿)》中明確指出要讓學生在現實情境中進一步理解用字母表示數的意義。同時從具體到抽象,從特殊到一般,對剛入初一的學生進入代數王國是一次飛躍,對他們來講有較大難度。
四、學情分析
(1)初一學生經過小學六年的訓練,對運用具體數字去表示一個量的思想根深蒂固,從而造成在接受用字母表示數這個新的訊息時,會有一定的沖擊。所以教師一定要讓學生弄清楚為什么要用字母表示數,也就是字母表示數的優越性是什么。
(2)從具體的事例中抽象出數學模型,對初一學生有一定的難度。所以在講解這部分內容時教師要遵循由淺入深,層次分明的原則,培養學生的抽象思維。
(3)由于七年級學生的思想不夠成熟,注意力易分散,愛發表見解,希望得到老師的表揚等特點。所以在教學中教師應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,激發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,充分發揮學生學習的主動性。
五、教學策略
由于七年級學生的理解能力和思維能力還不是很強,他們往往需要依賴直觀具體形象的事例,也為使課堂生動、有趣、高效,特將整節課以觀察、思考、討論貫穿于整個教學環節之中,采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤討論”的研討式學習方法。教學中向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的思維能力,培養學生渴望成功的情感。
具體做法是:
1、把知識的學習置于具體情景之中,通過豐富而有吸引力的探索活動和現實生活中的問題,使學生體會用字母表示數的優越性,激發好奇心和主動學習的欲望。
2、通過從“特殊——一般——特殊”的思維過程,對難點進行層層鋪墊,使學生親自經歷探索過程和思維升華的過程,感受自我奮斗后成功的喜悅。
六、教學程序
(一)課堂結構:導入新課、講授新課、理解運用、鞏固新知、回顧反思、布置作業。
(二)教學簡要過程:
1、導入新課
情境一:向學生展示圖片,如CTV臺標、撲克牌A等符號。從學生的實際生活經驗出發,讓學生體會到符號在現實生活中應用的廣泛性。
情境二:向學生出示等式,如加法交換律、乘法交換律、三角形面積計算等公式,讓學生體會數學中,也有大量的用字母表示數的實例。
最后讓學生列舉一些用字母表示數的例子,一拓寬學生的思路,二更好地發揮了學生的主體作用。
所以這部分內容設計總的原則就是:從學生的實際生活經驗出發,建立在學生已有知識的基礎上,循序漸進地讓學生體會符號應用的廣泛性,體會用字母表示數的優越性。
2、講授新課
(1)在經過三個簡單的小題訓練后,學生對應用字母表示數有了初步的認識。 這時拋出第一個例題,尋找鞋碼與鞋長的關系,進而求出姚明和自己的鞋長。
這個例題的特點在于:一貼近學生生活,能激發學生興趣,二這題的設置遵循由“特殊——一般——特殊”的過程,讓學生進一步體會用字母表示數后就具有了普遍性,從而再求特殊值時會很方便。
(2)第二個例題是有關數學計算的,讓學生經歷觀察(每個算式與結果的.特點)、比較(不同算式之間的異同)、歸納(上述算式和結果的共同點)、猜想(規律)的過程,學習數學思考的方法。在這一過程中,不僅要注意學生是否找到了規律,更要關注學生是如何進行思想和得到規律的通過探索得到的規律 ,使學生進一步體會用字母表示數或一般規律的優越性。
3、理解運用
“尋寶游戲”中包含學生的動手實驗、討論等多種方法,對培養學生的綜合能力有很大的作用。
先讓學生在動手實驗中,體會第一層有一粒棋子,第二層有二粒棋子,……第n層有n粒棋子的規律,然后進行討論,尋找能否通過適當的方法,找出第十層最右一格,第一百層最右一格會是什么顏色的棋子呢?這個環節具有開放性,能激發學生的創新思維,發展個性,同時讓他們很自然地就想到選擇用字母表示數的方法,先求出前n層共 粒棋子(第二例題已埋下伏筆),再從結果的奇偶性上就可以得出是什么顏色的棋子。
從玩中學習知識,而在學習知識過程中,又尋找到解決問題的方法,體現出要學有用的數學的思想。
4、鞏固新知
利用5個小題對本節課所講內容進行鞏固,這些題與例題類型相近,但難度有小幅度的遞進,培養了學生舉一反三的能力。
5、回顧反思
本堂課通過一系列的情境創設與學習活動,學生經歷了用字母表示數或用含字母的式子表示一般規律的過程,體會到了用字母表示數的優越性。 引導學生自我小結、反思,梳理知識網絡,體會數學思考的過程和方法,可以幫助學生更好地進行知識建構和認知建構,以獲取更大的收獲。
6、布置作業
《數學》課本P88 練習1、2、
七年級數學說課稿 11
一、教材內容與地位:
《分式的意義》這一節是上海教育出版社九年制義務教育課本數學七年級第一學期第十章“分式”的第一節內容。這節課是在學生學習了整式、因式分解的基礎上教學的,學生已經學習和掌握了分式的運算,具備學習本節課知識的基礎。同時學好本節課,是以后學習分式的基本性質、運算以及解分式方程的前提。因此,我確定本節課的重點為分式的意義,難點為分式值為零的條件。
二、學情分析
我任教班級學生基礎比較扎實,學習能力較強.通過分數的學習,學生可能會用分數的定義去理解分式.但是在分式中,它的分母不是具體的數,而是含有字母的整式。為了學生能切實掌握所學知識,在教學中對于教材中的例題和練習題,作了適當的延伸拓展和變式處理.還特別設計了反饋練習。
三、教學目標:
通過情境引入,引導學生觀察分析,類比分數形成分式的概念,理解分式的'意義。
通過對具體分式的探究與討論,理解并掌握分式有意義、無意義、值為零的條件。
通過類比分數研究分式的教學,學生具有了運用類比轉化的思想方法解決問題的能力。
四、教學方法與教學手段
教學方法:遵循教師為主導,學生為主體的原則,結合七年級學生的認知特點和已有的認知水平,采用創設學生熟悉的問題情境,層層設疑、講練結合,綜合運用探究式、啟發式方法進行教學。
教學手段:多媒體教學。
五、教學過程
通過創設情境(雅典奧運會上姚明投籃場景),引導學生觀察類比(與已有的分式知識),聯想已有的知識經驗,分析新的問題等活動,讓學生充分感受知識的產生和發展過程,讓學生始終處于積極思維狀態之中。
通過分式概念、分式無意義、有意義、值為零的條件等探究活動,讓學生親歷發現事物特征、規律的過程,激發學生的學習興趣,增強自信心。
在例題的處理上:一方面,解決問題的具體操作方法,力求規范,另一方面,“分式無意義——分式有意義——分式值為零”的編排順序,更符合思維的規律,有層次有深度,有“面”有“量”,達到鞏固,加深理解的目的;另一方面,在練習設計中采用開放式的活動形式,更有利于培養學生的口頭表達能力,解決實際問題的能力以及創新能力。
課堂的小結力求讓學生通過自身的學習與體會進行解決,讓學生體會每一個知識的形成過程,感受到探索數學帶來的樂趣,同時感受到獲得成功的喜悅。根據學生的個性差異,遵循因材施教的原則,設計分層作業,分必做題和選做題,滿足不同層次學生需求。
七年級數學說課稿 12
我今天說課的題目是《不等式的基本性質》,主要分四塊內容進行說課:教材分析;教學方法的選擇;學法指導;教學流程。
一、教材分析:
1.教材的地位和作用
本節課的內容是選自人教版義務課程標準實驗教科書七年級下第九章第一節第二課時《不等式的基本性質》,這是繼方程后的又一種代數形式,繼承了方程的有關思想,并實現了數形結合的思想。是初中數學教學的重點和難點,對進一步學習一次函數的性質及應用有著及其重大的作用。
2.教學目標的確定
教學目標分為三個層次的目標:
⑴知識目標:主要是理解并掌握不等式的三個基本性質。
⑵能力目標:培養學生利用類比的思想來探索新知的能力,擴充和完善不等式的性質的能力。
⑶情感目標:讓學生感受到數學學習的猜想與歸納的思維方式,體會類比思想和獲得成功的喜悅。
3.教學重點和難點
不等式的'三個基本性質是本節課的中心,是學生必須掌握的內容,所以我確定本節的教學重點是不等式三個基本性質的學習以及用不等式的性質解不等式。本節課的難點是用不等式的性質化簡。
二、教學方法、教學手段的選擇:
本節課在性質講解中我采取探索式教學方法,即采取觀察猜測---直觀驗證---托盤實驗---得出性質。使學生主動參與提出問題和探索問題的過程,從而激發學生的學習興趣,活躍學生的思維。為了突破學生對不等式性質應用的困難,采取了類比操作化抽象為具體的方法來設置教學。整節課采取精講多練、講練結合的方法來落實知識點。
三、學法指導:
鑒于七年級的學生理解能力和邏輯推理能力還比較薄弱,應以激勵的原則進行有效的教學。鼓勵學生一種類型的題多練,并及時引導學生用小結方法,克服思維定勢。
例題講解采取數形結合的方法,使學生樹立“轉化”的數學思想。充分復習舊知識,使獲取新知識的過程成為水到渠成,增強學生學習的成就感及自信心,從而培養濃厚的學習興趣。
四、(主要環節)教學流程:
1.創設情境,復習引入
等式的基本性質是什么?
學生活動:獨立思考,指名回答.
教師活動:注意強調等式兩邊都乘以或除以(除數不為0)同一個數,所得結果仍是等式.
請同學們繼續觀察習題:
觀察:用“”或“”填空,并找一找其中的規律.
(1)55+2____3+2,5-2____3-2
(2)–1,-1+2____3+2,-1-3____3-3
(3)6>2,6×5____2×5,6×(-5)____2×(-5)
(4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)
學生活動:觀察思考,兩個(或幾個)學生回答問題,由其他學生判斷正誤.
五、教法說明
設置上述習題是為了溫故而知新,為學習本節內容提供必要的知識準備.
不等式有哪些基本性質呢?研究時要與等式的性質進行對比,大家知道,等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式(實質是移項法則),請同學們觀察①②題,并猜想出不等式的性質.
學生活動:觀察思考,猜想出不等式的性質.
教師活動:及時糾正學生敘述中出現的問題,特別強調指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質,同時教師板書.
不等式基本性質1不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數的性質(強調所乘的數可正、可負、也可為0)請大家思考,不等式類似的性質會怎樣?
學生活動:觀察③④題,并將題中的5換成2,-5換成一2,按題的要求再做一遍,并猜想討論出結論.
六、教法說明
觀察時,引導學生注意不等號的方向,用彩色粉筆標出來,并設疑“原因何在?”兩邊都乘(或除以)同一個負數呢?為什么?
師生活動:由學生概括總結不等式的其他性質,同時教師板書.
不等式基本性質2不等式兩邊都乘(或除以)同一個正數,不等號的方向不變.
不等式基本性質3不等式兩邊都乘(或除以)同一個負數,不等號的方向改變.
師生活動:將不等式-2<3兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結論.
學生活動:看課本第124頁有關不等式性質的敘述,理解字句并默記.
強調:要特別注意不等式基本性質3.
實質:不等式的三條基本性質實質上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當進行“+”、“-”法時,不等號方向不變;當乘(或除以)同一個正數時,不等號方向不變;只有當乘(或除以)同一個負數時,不等號的方向才改變.
學生活動:思考、同桌討論.
歸納:只有乘(或除以)負數時不同,此外都類似.
(1)如果x-54,那么兩邊都可得到x9
(2)如果在-78的兩邊都加上9可得到
(3)如果在5-2的兩邊都加上a+2可得到
(4)如果在-3-4的兩邊都乘以7可得到
(5)如果在80的兩邊都乘以8可得到
師生活動:學生思考出答案,教師訂正,并強調不等式性質的應用.
2.嘗試反饋,鞏固知識
請學生先根據自己的理解,解答下面習題.
例1 利用不等式的性質解下列不等式并用數軸表示解集.
(1)x-7>26(2)-4x≥3
學生活動:學生獨立思考完成,然后一個(或幾個)學生回答結果.
教師板書(1)(2)題解題過程.(3)(4)題由學生在練習本上完成,指定兩個學生板演,然后師生共同判斷板演是否正確.
七、教法說明
解題時要引導學生與解一元一次方程的思路進行對比,并將原題與或對照,看用哪條性質能達到題目要求,要強調每步的理論依據,尤其要注意不等式基本性質3與基本性質2的區別,解題時書寫要規范.【教法說明】要讓學生明白推理要有依據,以后作類似的練習時,都寫出根據,逐步培養學生的邏輯思維能力.
(四)總結、擴展
本節重點:
(1)掌握不等式的三條基本性質,尤其是性質3.
(2)能正確應用性質對不等式進行變形.
(五)課外思考
對比不等式性質與等式性質的異同點.
八、布置作業
七年級數學說課稿 13
一、教材分析
(一)教材地位:這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標:
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.
情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.
(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發現勾股定理。
突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.
二、教法與學法分析:
學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、教學過程設計
1.創設情境,提出問題
2.實驗操作,模型構建
3.回歸生活,應用新知
4.知識拓展,鞏固深化
5.感悟收獲,布置作業
(一)創設情境提出問題
(1)圖片欣賞勾股定理數形圖1955年希臘發行美麗的勾股樹20xx年國際數學的一枚紀念郵票大會會標
設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的'距離是2.5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.
二、實驗操作模型構建
1.等腰直角三角形(數格子)2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結勾股定理.
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律.
三.回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎題,情境題,探索題.
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.
基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.
五、感悟收獲布置作業:
這節課你的收獲是什么?
作業:
1、課本習題2.1
2、搜集有關勾股定理證明的資料.
板書設計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說明:
1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.
七年級數學說課稿 14
一、教材分析
平行線的判定是在學生對平行線有了初步認識及學習了三線八角之后引入的。它不但加深了對“角與平行線”的認識,而且為繼續研究平行線的性質、三角形、四邊形等知識打下堅實的“基石”,是幾何說理的重要組成部分。在本節內容之前學生對兩條直線相交或平行的認識,一般停留在直觀、表象的層面。本章的任務就是引導學生由表及里,深入認識相交線和平行線的本質特征,通過操作,思考,歸納和推導得到平行線的判定方法,同時在這一過程中獲得邏輯思維和說理表達的初步訓練。
二、學生分析
我校學生整體的學習能力偏弱,因此邏輯思維能力也相對薄弱,文字語言、符號語言和圖形語言之間的轉換能力也比較薄弱。因此在本單元的教學中,我們將教學過程分成了體會感知幾何說理表達,了解劃分邏輯段、補充完善幾何說理過程、獨立完成幾何說理過程三個階段實施。同時,兩課時的教學目標制定如下:
三、教學目標
第一課時:
1.知道平行線的概念及表示方法;會過直線外一點畫已知直線的平行線,體驗并理解平行線的基本性質。
2.在操作過程中,理解平行線的判定方法1:同位角相等,兩直線平行。并會用這一基本事實進行初步的說理,從中感知推理的規則和過程。
第二課時:
1.利用平行線的判定方法,導出平行線的判定方法;
2.初步會用平行線的判定方法來判定兩直線平行,并進一步學習幾何說理和表達;
3.讓學生體會“把新問題轉化為已經解決的問題”所體現的化歸思想;
4.讓學生參與推導過程,樹立學習幾何知識的信心,提高學習數學的熱情。
四、教學難點、重點
第一課時:
1、在操作過程中體驗并理解平行線的基本性質,掌握平行線判定方法一。
2、初步會用判定方法一判定兩直線平行,初步學習幾何說理和表達;
第二課時:
1.利用平行線的判定方法1,導出平行線的判定方法2、3;
2.初步會用平行線的判定方法2、3來判定兩直線平行,進一步學習幾何說理和表達。
五、教學設計過程
第一課時:
一、復習
1.同位角,內錯角,同旁內角的概念。
2.找出圖中的同位角,內錯角,同旁內角并指出他們分別是由哪兩條直線被第三條直線所截得到。
(通過復習相關知識,為后面學生想到同位角相等推出直線平行做鋪墊)
二、學習新課
(一)概念學習
1.問題的引入:
在周圍世界中到處可見平行線的形象,你能舉出在周圍所看到的形象為平行線的例子嗎?
(學生舉例)
(教師可適當補充舉例)
(直觀感受平行)
2.通過直觀圖形得出平行線概念:
同一平面內不相交的兩條直線叫做平行線,“平行”用符號“//”表示。
提問:在同一平面內,兩條不重合的直線有幾種位置關系?
如圖:直線a和b是平行線,也稱它們互相平行,記作“a∥b”,讀作“a平行于b”
3.如何畫平行線呢?
操作1:利用直尺和三角尺畫已知直線的平行線。
(通過此問題的研究,讓學生在自己動手操作的過程中,掌握畫已知直線平行線的常用方法,同時為引出平行線判定方法一做準備。)
4.思考1:過直線a外一點P畫直線a的平行線,可以畫幾條?
操作2:用平移三角尺的方法畫出經過點P且平行于a的直線b。
通過操作的結果得出以下的性質:
(1).平行線基本性質:過直線外一點有且只有一條直線與已知直線平行。
(通過此問掌握平行公理,同時鞏固畫已知直線平行線的方法)
5.思考2:在畫平行線中,三角尺起什么作用?
(教師可提示引導,在三角尺平移的過程中那些量不變)
(構成三線八角圖,能否借助于相關角的.大小關系來判定兩直線平行)
畫直線a的平行線b時,直尺所在的直線截a、b所得的同位角∠1和∠2的大小相等
(2).導出平行線判定方法1:兩條直線被第三條直線所截,如果同位角相等,那么這兩直線平行。(簡單地說成:同位角相等,兩直線平行)
符號語言表示:
如圖:因為∠1=∠2
所以a//b(同位角相等,兩直線平行)
(熟悉文字語言、符號語言、圖形語言的相互轉化)
(二)應用新知
1、填空,如圖:
(1)如果∠1=∠B,那么_____//______。
(2)如果___________,那么AD//BC。
(本題是定理的直接運用,(1)為填結論,2)為填條件,通過此題熟悉定理的簡單運用)
2、如果同一平面內的兩條直線垂直于同一條直線,那么這兩條直線平行嗎?
(1)答:____________(寫平行或不平行)
(2)根據圖示,說明直線a與直線b平行的理由。
解:因為a⊥c,b⊥c
所以∠1=______,∠2=______(垂直的意義)
得∠1=∠2(等量代換)
所以a_______b()
結論:同一平面內垂直于同一條直線的兩條直線平行。(可以作為今后說理的依據)
3、如圖,如果∠1=110°,∠2=70°,那么AB//CD嗎?為什么?
解:將∠1的鄰補角記作∠3,則∠1+∠3=180°(鄰補角的意義)
因為∠1=110°()
所以∠3=180°-∠1=70°(等式性質)
又因為∠2=70°()
得∠2_____∠3()
所以AB//CD()
(此兩題為定理的簡單運用,第一題需要由垂直得出同位角相等的結論,第二題由鄰補角的關系得出同位角相等,進而滿足定理條件,推出直線平行。此兩題講解時,老師要做簡要分析,如:第一題問要推直線平行,需要什么條件,第二題可問由∠1=110°,可推出那些角等。同時,教師要進行邏輯段的劃分,讓學生有獲得體驗感悟。為了降低難度,此兩題以填空的形式呈現。)
4、如圖,已知D、B、C在一直線,CE平分∠ACD,∠2=∠B,那么AB//CE嗎?為什么?
(此題結合角平分線的性質推出同位角相等,進而證明平行,整體邏輯段較少,因此嘗試讓學生自己說理表達,書寫邏輯段,老師結合學生實際情況做適當指導講解)
三.課堂小結
1.平行線的概念;
2.判定兩條直線平行的第一種方法;
3.平行線的基本性質;
四.作業
1、如圖,已知點P是三角形ABC的邊BC上的一點。
(1)過點P畫PD平行于AB,交AC于點D。
(2)過點P畫PE平行于AC,交AB于點E。
2、下列圖中不能判斷直線a與b平行的是()
3、如圖,已知∠1=∠2=∠3,請填寫理由,說明AB//CD,EF//MN。
解:因為∠1=∠2()
∠1=∠4()
所以∠2=∠4()
得AB//CD()
因為∠1=∠3()
又_____________(對頂角相等)
得______________(等量代換)
所以____________(同位角相等,兩直線平行)
4、如圖,已知∠D=80°,∠BED=80°,能判定AB//CD嗎?并說明理由。
5、如圖,直線l與直線a,b,c分別相交,且∠1=∠2=∠3
(1)從∠1=∠2可以得出那兩條直線平行?為什么?
(2)從∠1=∠3可以得出那兩條直線平行?為什么?
(3)b∥c嗎?為什么?
練習說明:
五道練習題中,第一題主要用于鞏固練習畫平行線的方法。后面四道練習題主要是對判定定理一的應用,難度逐步提高。第二題是定理的簡單運用,需要學生通過鄰補角、對頂角等關系轉化成同位角相等的條件,但不需要進行說理表達,主要考察學生對定理的理解情況。第三題是在熟悉定理的前提下,考察學生說理表達、邏輯推理的能力,但以填空形式呈現,使難度降低。第四、五題是在第二、三題的基礎上讓學生自己嘗試獨立書寫說理過程。同時,第五題本是書本上的例題,我放在習題中的目的是為了讓學生有充足的時間研究,為第二課時引出判定定理二、三做鋪墊。
第二課時:
一、復習引入
1.“三線八角”的研究:兩條直線被第三條直線所截,在形成的八個角中根據位置關系的不同,出現了“同位角、內錯角、同旁內角”這三種角。
2.上節課中,學習了判定兩條直線平行的基本方法,簡單的說:同位角相等,兩直線平行
二、新課
今天,繼續來研究平行線的判定問題,引出課題。
請同學們猜想:除了同位角相等,兩直線平行,還有其它的判定兩條直線平行的方法嗎?
(學生有了第一課時的經驗,同時,作業的最后一題中就隱含了內錯角相等,可推出兩直線平行的結論,學生就有可能從內錯角、同旁內角這兩類角的特殊關系考慮,老師可做適當提示。)
可能結論:①內錯角相等,兩直線平行;②同旁內角互補,兩直線平行;③同旁內角相等,兩直線平行
逐一說理:如圖①已知直線a、b被直線l所截,∠1=∠2,試說明a∥b。
如圖②已知直線a、b被直線l所截,∠1∠2=180°,試說明a∥b。
結合圖形③(反例),說明第三種猜測錯誤:
歸納、總結部分:
到現在為止,學過了三種判定兩條直線平行的方法:①同位角相等,兩直線平行;內錯角相等,兩直線平行;③同旁內角互補,兩直線平行。
符號語言表示:
如圖:因為∠1=∠2
所以a//b(同位角相等,兩直線平行)
因為∠2=∠3
所以a//b(內錯角相等,兩直線平行)
因為∠2+∠4=180°
所以a//b(同旁內角互補,兩直線平行)
(在此環節中學生體驗猜想——說理——歸納的過程,初步體會說明一個命題正確需要說理,說明一個命題錯誤,只要舉一個反例。同時,學生進一步體會說理表達的基本形式。進一步熟悉文字語言、符號語言、圖形語言的相互轉化)
三、應用新知
1.如圖直線a、b被直線l所截,已知①∠1=∠2,②∠2=∠3,③∠1∠4=180°,試說明a∥b。
解:∵∠1=∠2(已知)
∴a∥b()
∵∠2=∠3(已知)
∴a∥b()
∵∠1∠4=180°(已知)
∴a∥b()
2.如圖,已知∠1=40°,∠B=40°,試說明DE∥BC。
解:∵∠1=40°(已知)
∠B=40°(已知)
∴∠=∠()
∴DE∥BC()
3.如圖,已知∠B=50°,∠1=130°,試說明:AB∥CD。
解:∵∠B=50°()
∠1=130°()
∴∠1∠B=°
∴AB∥CD()
4.如圖,已知∠1=115°,∠2=65°,那么AB∥CD嗎?為什么?
(第一題是定理的直接運用,起到鞏固三個定理,進一步明確定理的條件及結論的作用。二、三兩題是定理的簡單應用,需要學生結合圖形,分析條件,判斷運用三個定理中的哪一個定理解決問題。比如第三題可以用判定2,也可用判定3,就可以做一個比較優劣。同時以填空的形式降低難度,學生在這兩題中進一步體會說理表達的基本規范,教師進一步指導學生認識邏輯段的劃分。第四題三個判定定理都能運用,靈活性較大,因此讓學生自己嘗試解決,先讓學生進一步嘗試獨立書寫說理過程,其次,將學生的不同解法展現,拓寬學生思路,相互學習。)
四、課堂小結
1.學習了判定兩條直線平行的三種方法;
2.會運用它們判定兩條直線平行。
五、作業
1、填空:如圖,(1)如果∠1=∠2,那么_____//_____。
(2)如果∠3=∠4,那么_____//____。
(3)如果∠5=∠6,那么____//_____。
(4)如果∠7=∠8,那么____//_____。
2、填空:如圖,(1)因為∠A=∠3(已知)
所以_______//________()
(2)寫出兩個能得到BC//DE的條件_________。
(3)若∠1=70°,當∠5=______時,BC//DE。
3、如圖,直線l分別與直線a、b相交,已知∠1=110°,∠2=70°。
(1)填寫a//b的理由。(解法一)
解:把∠1的鄰補角記為∠3,則∠1+∠3=180°(鄰補角的意義)。
因為∠1=110°,()
所以∠3=180°-∠1=70°,又因為∠2=70°,得∠2=∠3()
所以a//b()
(2)填寫a//b的理由。(解法二)
解:把∠1的對頂角記為∠4,則∠1=∠4()。
因為____________,(已知)
所以____________,(等量代換)
又因為∠2=70°,得_________________(等式性質)
所以a//b()
(3)請嘗試用“同位角相等,兩直線平行。”說明a//b。
4、如圖,已知∠1=∠3,BE平分∠ABC,要說明DE//BC,請按照正確的說理順序把下面幾句話重新排列,并說明每一步的理由。
(1)因為∠1=∠3
(2)所以∠2=∠3
(3)因為BE平分∠ABC
(4)所以DE//BC
(5)所以∠1=∠2
5、如圖,已知∠C=∠D,∠D=∠1試說明:AC∥DF,DB∥EC
(選作)6、如圖,在△ABC中,DE垂直BC,∠FEG=90°,∠1=∠2,那么AB//EG嗎?并說明理由。
練習說明:
第一題是對定理的直接運用,但要考察學生在較復雜的圖形中找出符合條件的基本圖形。第二題,在第一題的基礎上提高要求,需要學生結合圖形自己找出證題的條件。第三題是把練習冊上的一道練習改編所得,其中第(1)題沒變,主要填寫各步的理由,而第(2)題則和第(1)題相反,給出理由,補全步驟。第(3)問則是全部自己書寫,但明確方法,三個問題層層遞進,逐步加深。同時,第三題有和課堂練習4基本相同,只有數字不同,這也是對課堂學生學習情況的一種檢驗。第四題綜合運用了角平分線的性質和判定定理2,但是給出了說理的所有步驟,要求排出正確步驟,有了一定的指導性,既引導學生在分析過程中形成正確思路,又一定程度降低了難度。第五題在前面的基礎上更進一步,要求學生獨立完成,對說理過程的規范表達有要求。第六綜合性較強,涉及垂直的定義,同角的余角相等,內錯角相等等,對學生的邏輯推理及書面表達能力的要求都比較高,因此,留作選做題。
七年級數學說課稿 15
《平面直角坐標系》是人教版九年義務教育七年級數學下冊第六章第一節第二次課的內容,它是在學習了數軸和有序數對后安排的一次概念性教學,也是初中生與坐標系的第一次親密接觸。平面直角坐標系的建立架起了數與形之間的橋梁,是數形結合的具體體現。這一節課主要是讓學生認識平面直角坐標系,了解點與坐標的對應關系;在給定的平面直角坐標系中,能根據坐標描出點的位置,能由點的位置寫出點的坐標。因此,本節課的學習,是今后進一步學習習近平面直角坐標系的有關知識和借助平面直角坐標系學習一次函數、二次函數的一個基礎,它在整個初中數學教材體系中有著舉足輕重的作用。
說目標與重難點
1.知識與能力目標:
使學生認識平面直角坐標系,理解并掌握橫軸、縱軸、原點及點的坐標,了解點與坐標的對應關系;能準確地在平面直角坐標系中描出點的位置和根據點的位置寫出點的坐標,培養學生思維的準確性和深刻性。
2.過程與方法目標:
通過自主閱讀,用游戲活動和動手實踐的方式,讓學生認識平面直角坐標系,掌握用“坐標”表示平面內點的位置的方法,培養學生自主獲取知識的能力。
3.情感態度價值觀目標:
利用游戲、觀察、實踐、歸納等方法,積淀學生的數學文化涵養,鼓勵學生去發現、去思考,使學生認識到數學的科學價值和應用價值,培養熱愛數學,勇于探索的精神。
其中認識平面直角坐標系,能正確地畫出平面直角坐標系是本節課的教學重點;
會用“坐標”表示平面內點的位置和坐標軸上的點的特征是本節課的教學難點。
說學情
七年級的學生具有活潑好動,好奇的天性,他們正處于獨立思維發展的重要階段,對數學的求知欲較強,具有初步的自主、合作探究的學習能力,對數軸有一定的認識,因此,對于平面直角坐標系的構成和建立較為容易理解。
說教學策略
數學課程標準指出:“學生是數學學習的主人,教師是數學學習的'組織者、引導者和合作者”,學生的數學學習內容應當是現實的,有趣的和富有挑戰性的”。教師的責任是為學生的發展創設一個和諧開放地思考、討論、探究的氛圍,創造 “海闊憑魚躍,天高任鳥飛”的課堂教學境界。為此,這節課我主要采用了情景激趣法、自主學習嘗試法、合作探究交流法等教學方法,設計了“與文本對話——與生活對話——與同學對話——與教師對話 ” 等一系列教學程序。
說教程
一、游戲激趣,導入新課(約2分鐘) “破譯密碼”游戲
【設計意圖: 以游戲的形式導入,具有一定的新奇性、挑戰性,能有效地激發學生的學習興趣。】
二、與文本對話,理解概念( 約17分鐘 )
1.接觸概念(讓學生閱讀教材,自主學
2.認識概念 為了幫助學生抓住概念中的關鍵詞,理解概念,我設計了以下幾個問題:(讓學生帶著問題自學教材,認識概念。)
⑴什么叫平面直角坐標系?
⑵平面直角坐標系有哪些特征? (①兩條數軸②互相垂直③原點重合④單位長度一致)
⑶平面直角坐標系內的點可以用什么來表示?(有序數對)
⑷有序數對是如何具體來表現點的坐標的?
自學教材后,可讓學生回答以上問題,不正確的地方,教師不急于糾正,對于問題⑵和⑷,也可試著讓學生歸納,但不要求全面,不完整的地方,教師暫不補充。
3.深化概念
讓學生閱讀下面兩段材料,進一步找到問題的答案,補充不完整的地方,嘗試性地完成活動1和活動2
活動1.你會畫嗎? 在作業紙上試著畫一個直角坐標系,比一比看誰畫得最完整。
活動2.你會標嗎?
【設計意圖:這一環節的設計主要是為了培養學生自主學習的能力,讓學生在自學中初步認識概念。通過材料的閱讀,活動的實踐,讓學生在自畫、自糾中,加深對概念的理解,培養學生良好的畫圖習慣。】
三、與生活對話,融化概念(約5分鐘)
活動3.你會找嗎? 讓學生在如圖建立的直角坐標系中找到自己的位置,并說出自己的坐標
活動4.你會舉例嗎? 讓學生舉出生活中應用平面直角坐標系的實例.
(如:象棋、圍棋棋盤,雷達探測圖,地球經緯度,計算機鍵盤,電影院座位等)
【設計意圖:設計這兩個活動,是為了將知識與實際生活聯系起來,讓學生體驗到生活中處處有數學。同時有效地訓練了知識的應用,及時反饋了教學信息,培養了學生思維的深刻性。】
四、與同學對話,運用概念(約13分鐘)
活動5 你會做嗎?“描點”與“報坐標”比賽(讓學生在活動1中建立的直角坐標系里完成這一活動)
這一活動教師先將4個組長定為評委,其余同學以兩人為一組,全班分成若干組,同時進行,教師宣布比賽規則,最后,評出優勝組,予以獎勵。
活動6 你會猜嗎? 在如圖的直角坐標系中讀出下列各點,說說它們的位置,猜猜它們有什么特征。
這一活動將學生原有的4個大組重新分為8個小組,讓學生各小組間行合作性地討論、交流)
【設計意圖:這兩個活動的設計是為了體現“學生是數學學習的主人,教師是組織者、引導者、合作者“。讓學生在“做數學中學數學”;在觀察、實踐、討論中,大膽地猜想,尊重了學生的個性,培養了自主探究、合作交流的精神。】
五、與教師對話,歸納總結(約5分鐘)
學生在自主學習,合作交流,共同完成活動6的基礎上,各小組代表交流猜想,教師就學生的猜想,針對性的設計一些問題(如:①哪幾個點在X軸上?②它們的坐標是怎樣的?③有些什么特征?等),構建師生平等對話,最后,教師總結性地歸納:坐標軸上的點的坐標特征。
【設計意圖:設計這一環節是為了培養學生運用數學語言概括的能力,通過師生的平等對話,變教師講規律為學生找規律,教師最后的總結使數學知識精確化。】
六、拓展延伸,強化能力 (約3分鐘)
設計題目:各寫出5個滿足下列條件的點,并在坐標系中分別描出它們:
(1)橫坐標與縱坐標相等
(2)橫坐標與縱坐標相反
(3)橫坐標相等,縱坐標不等
(4)縱坐標相等,橫坐標不等
你能找出每組的規律嗎?
【設計意圖:這一環節是讓學生帶著問題出課堂,激發他們思考。】
動手實踐、自主探究、合作交流是本節課學生獲取知識的重要方法。學生在具體的操作活動和嘗試性練習中進行獨立思考,在與同伴的交流、討論中形成對知識的理解,六個活動的設計由易到難,層層推進,有機地將學生的眼、口、手、腦調動了起來,充分發揮了學生的主觀能動性,讓學生在活動中學會探索,學會學習,從而有效地落實了“三維”目標。
第四篇:初中數學說課稿
初中數學說課稿模板
各位評委,大家好!今天我說課的題目是___,所選用的教材為人民教育出版社義務教育課程標準實驗教科書。
根據新課標的理念,對于本節課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法分析,教學過程分析四個方面加以說明。
一、教材分析
1、教材的地位和作用
本節教材是初中數學___年級第___章第___節的內容,是初中數學的重要內容之一。一方面,這是在學習了___的基礎上,對___的進一步深入和拓展;另一方面,又為學習___等知識奠定了基礎,是進一步研究___的工具性內容。鑒于這種認識,我認為,本節課不僅有著廣泛的實際應用,而且起著承前啟后的作用。
2、學情分析
從心理特征來說,初中階段的學生邏輯思維從經驗型逐步向理論型發展,觀察能力,記憶能力和想象能力也隨著迅速發展。但同時,這一階段的學生好動,注意力易分散,愛發表見解,希望得到老師的表揚,所以在教學中應抓住這些特點,一方面運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面,要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
從認知狀況來說,學生在此之前已經學習了,對___已經有了初步的認識,這為順利完成本節課的教學任務打下了基礎,但對于 的理解,(由于其抽象程度較高,)學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。
3、教學重難點
根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為:
難點確定為:
二、教學目標分析
新課標指出,教學目標應包括只是與技能目標,過程與方法目標,情感與態度目標這三個方面,而這三維目標又應是緊密聯系的一個右擊整體,學生學會知識與技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識與技能為主線,滲透情感態度價值觀,并把前面兩者充分體現在過程與方法中。借此,我將三維目標進行整合,確定本節課的教學目標為:
1.(了解、理解、熟記、初步掌握、會運用 對 進行 等);
2.通過___的學習,培養學生 觀察分析、類比歸納的探究___能力,加深對___函數與防城、數形結合、從特殊到一般、類比與轉化、分類討論 等數學思想的認識。
3.通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養成積極思考,獨立思考的好習慣,并且同時培養學生的團隊合作精神。
三、教學方法分析
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的知道下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。
四、教學過程分析
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:
(1)復習就知,溫故知新
設計意圖:建構注意主張教學應從學生已有的知識體系出發,___是本節課深入研究___的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
(2)創設情境,提出問題
設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望‘
通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節———
(3)發現問題,探求新知
設計意圖:現代數學教學論指出,___的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過 觀察分析、獨立思考、小組交流 等活動,引導學生歸納。
(4)分析思考,加深理解
設計意圖:數學教學論指出,數學概念(定理等)要明確其 內涵和外延(條件、結論、應用范圍等),通過對___定義 的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。
通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入第 環節。
(5)強化訓練,鞏固雙基 設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1??例2??,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。
(6)小結歸納,拓展深化
我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主題作用,從學習的只是、方法、體驗是那個方面進行歸納,我設計了這么三個問題:
① 通過本節課的學習,你學會了哪些知識; ② 通過本節課的學習,你最大的體驗是什么;
③ 通過本節課的學習,你掌握了哪些學習數學的方法?(7)布置作業,提高升華
以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。
以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態。
案例:初中數學說課稿《一次函數與一元一次不等式》
教材分析
1、地位和作用
這一節內容是初中數學新教材八年級上冊第十一章第三節的內容。它是在學生學習了前面一節一次函數后,回過頭重新認識已經學習過的一些其他數學概念,即通過討論一次函數與一元一次不等式的關系,從運動變化的角度,用函數的觀點加深對已經學習過的不等式的認識,構建和發展相互聯系的知識體系。它不是簡單的回顧復習,而是居高臨下的進行動態分析。
2、活動目標
①理解一次函數與一元一次不等式的關系。會根據一次函數圖像解決一元一次不等式解決問題。
②學習用函數的觀點看待不等式的方法,初步形成用全面的觀點處理局部問題。
③經歷不等式與函數問題的探討過程,學習用聯系的觀點看待數學問題的辨證思想。④增強學生學數學,用數學,探索數學奧妙的愿望,體驗成功的感覺,品嘗成功的喜悅。
總的來講,希望達到張孝達對我們教育工作者的要求:給我們所有的學生,一雙能用數學視角觀察世界的眼睛,一個能用數學思維思考世界的大腦。
二、學情分析
八年級學生的思維已逐步從直觀的形象思維為主向抽象的邏輯思維過渡,而且具備一定的信息收集的能力。
三、學法分析
1、學生自主探索,思考問題,獲取知識,掌握方法,真正成為學習的主體。
2、學生在小組合作學習中體驗學習的快樂。合作交流的友好氛圍,讓學生更有機會體驗自己與他人的想法,從而掌握知識,發展技能,獲得愉快的心理體驗。
四、教法分析
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結為兩種認識:
⑴從函數值的角度看,就是尋求使一次函數y=ax+b的值大于(或小于0)的自變量x的取值范圍。
⑵從函數圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合。
教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數的關系。
1、“動”―――學生動口說,動腦想,動手做,親身經歷知識發生發展的過程。
2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發強烈的探索欲望。
3、“樂”―――本節課的設計力求做到與學生的生活實際聯系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。
4、“滲”―――在整個教學過程中,滲透用聯系的觀點看待數學問題的辨證思想。
五、教學過程設計
一、復習回顧
1.一次函數的定義。2.一次函數的圖象。
3.直線y=kx+b與方程的聯系。
那么一元一次不等式與一次函數是怎樣的關系呢?本節課研究一元一次不等式與一次函數的關系。
教師活動:引導學生回顧一次函數相關概念以及一次函數與方程的關系。設計意圖:回顧所學知識作好新知識的銜接。
二、導探激勵
問題1:作出函數y=2x-5的圖象,觀察圖象回答下列問題:(1)x取何值時,2x-5=0?(2)x取哪些值時, 2x-5>0?(3)x取哪些值時, 2x-5<0?(4)x取哪些值時, 2x-5>3? 教師活動:展示問題1,適當時間后請學生解答并說明理由,教師借助課件作結論性評判。
設計意圖:問題1可以直接解不等式(或方程)求解,但這里意圖是讓學生通過直接圖象得到。引導學生體會既可以運用函數圖象解不等式,也可以運用解不等式幫助研究函數問題,二者互相滲透,互相作用。
學生可以用不同方法解答,教師意圖是盡量用圖象求解。問題2:用畫函數圖象的方法解不等式:-2x+3<3x-7.分析:
由一次函數與一元一次不等式的關系可先將其化為一般形式,再畫圖求解;也可以將-2x+3與3x-7看作是兩個
關于x的一次函數,即y1=-2x+3,y2=3x-7。
于是不等式的解集即對應著y1 原不等式化為5x-10>0,畫出直線y=5x-10如圖所示,可以看出x>2時這條直線上的點在x軸上方,即這時y=5x-10>0,所以不等式的解集為x>2.解法2: 將原不等式的兩邊分別看作是兩個一次函數,畫出直線l1︰y=-2x+3,y2=3x-7,如圖所示,可以看出它們的交點的橫坐標為2,當x>2時,對于同一個x,直線y=-2x+3上的點在直線y=3x-7上相應的點的下方,這時-2x+3<3x-7,所以不等式的解集為x>2.三、達測深化 做一做: 兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函數關系式,作出函數圖象,觀察圖象回答下列問題: (1)何時哥哥追上弟弟? (2)何時弟弟跑在哥哥前面?(3)何時哥哥跑在弟弟前面? (4)誰先跑過20m?誰先跑過100m?(5)你是怎樣求解的?與同伴交流。 教師活動:展示做一做,鼓勵學生從多角度思考問題。請部分學生展示其解法。教師借助課件對學生解答作出評判。展示練習,在學生思考后,用課件展示圖象以便學生識圖。 設計意圖:函數、方程、不等式都是刻畫現實世界中量與量之間變化規律的重要模型,通過具體例子滲透三者之間的內在聯系,幫助學生從整體上認識不等式,感受函數、方程、不等式的作用。 四、小結 通過本節課的學習,你有哪些收獲? 五、作業 P19 讀一讀 P20 習題1.6 說課稿與教案的區別與聯系 1.說課說什么?說課的內容一般說來有以下五個方面: ⑴說課標 說課標就是要把課程標準中的課程目標(三維目標)作為本課題教學的指導思想和教學依據,從課程論的高度駕馭教材和指導教學設計。 說課標,要重點說明有關課題教學目標、教學內容及教學操作等在課程標準中的原則性要求,從而為自己的教學設計尋找到用力的依據。 說課標,可以結合到說教材中去進行。⑵說教材 教材是課程的載體。能否準確而深刻地理解教材,高屋建瓴地駕馭教材,合乎實際地處理教材,科學合理地組織教材,是備好課、上好課的前提,也是說課的首要環節。 說教材的要求有: ①說清楚本節教材在本單元甚至本冊教材中的地位和作用,即弄清教材的編排意圖或知識結構體系。 ②說明如何依據教材內容(并結合課程標準和學生)來確定本節課的教學目標或任務。課時目標是課時備課時所規劃的課時結束時要實現的教學結果。課時目標越明確、越具體,反映教者的備課認識越充分,教法的設計安排越合理。分析教學目標要從知識與技能、過程與方法、情感態度與價值觀三個方面加以說明。 ③說明如何精選教材內容,并合理地擴展或加深教材內容,通過一定的加工將其轉化為教學內容,即搞清各個知識點及其相互之間的聯系。 ④說明如何確定教學重點和教學難點。 ⑤說明教材處理上值得注意和探討的問題。⑶說學法 現代教育對受教育者的要求,不僅是學到了什么,更主要的是學會怎樣學習。實施課程標準后,要求教師轉換角色,基于這一轉變,說課者就必須說明如何根據教學內容、圍繞教學目標指導學生學習,教給學生什么樣的學習方法,培養學生哪些能力,如何調動學生積極思維,怎樣激發學生學習興趣等。說課活動中雖然沒有學生,看不到師生之間和學生之間的多邊活動,但從教師的說課過程中要體現以學生為主體,充分發揮學生在學習活動中的作用、調動學生的學習積極性。在最大程度上體現課改精神——教師是課堂教學的組織者、引導者、參與者、啟發者。具體要說清兩大問題: ①針對本節教材特點及教學目的,學生宜采用怎樣的學習方法來學習它,這種學法的特點怎樣?如何在課堂上操作? ②在本節課中,教師要做怎樣的學法指導?怎樣使學生在學會過程中達到會學?怎樣在教學過程中恰倒好處地融進學法指導? ⑷說教法 說教法,應說出“怎么教”的辦法以及“為什么這樣教”的根據,具體要做到以下幾個方面: ①要說出本節課所采用的最基本或最主要的教法及其所依據的教學原理或原則。②要說出本節課所選擇的一組教學方法、手段,對它們的優化組合及其依據。無論以哪種教法為主,都是結合學校的設備條件以及教師本人的特長而定的。要注意實效,不要生搬硬套某一種教學方法,要注意多種方法的有機結合,提倡教學方法的百花齊放。 ③要說明教師的教法與學生應采用的學法之間的聯系。④要重點說說如何突出重點、化解難點的方法。⑸說教程 教程即教學過程,說教學過程是說課的重點部分,因為通過這一過程的分析才能看到說課者獨具匠心的教學安排,它反映著教師的教學思想,教學個性與風格。也只有通過對教學過程設計的闡述,才能看到其教學安排是否合理、科學,是否具有藝術性。說教程要求做到: ①說出教學全程的總體結構設計,即起始——過程——收束的內容安排。說教學程序要把教學過程所設計的基本環節說清楚。但具體內容只須概括介紹,只要聽講人能聽清楚“教的是什么”、“怎樣教的”就行了。不能按教案像給學生上課那樣講。 另外注意一點是,在介紹教學過程時不僅要講教學內容的安排,還要講清“為什么這樣教”的理論依據(包括大綱依據、課程標準依據、教學法依據、教育學和心理學依據等)。 ②重點說明教材展開的邏輯順序、主要環節、過渡銜接及時間安排。 ③說明如何針對課型特點及教學法要求,在不同教學階段師與生、教與學、講與練是怎樣協調統一的。 ④要對教學過程作出動態性預測,考慮到可能發生的變化及其調整對策。 以上五個方面,只是為說課內容提供一個大致的范圍,并不意味著具體說課時都要面面俱到,逐項說來,應該突出重點,抓住關鍵,以便在有限是時間內進行有效的陳述,該展開的內容充分地展開,該說透的道理盡量去說透,這樣才能取得良好的效果。 2.對說課的要求 要說好課,應該注意以下幾個問題: ①突出“說”字 說課不等于備課,不能照教案讀;說課不等于講課,不能視聽課對象為學生去說;說課不等于背課,不能按教案只字不漏地背;說課不等于讀課,不能拿事先寫好的說課稿去讀。說課時,要抓住一節課的基本環節去說,說思路、說方法、說過程、說內容、說學生,緊緊圍繞一個“說”字,突出說課特點,完成說課進程。 ②把握“說”的方法 說課的方法很多,應該因人制宜,因教材施說:可以說物、說理、說實驗、說演變、說本質、說事實、說規律、正面說、反面說,但一定要沿著教學法思路這一主線說,以防跑野馬。 ③語氣得體、簡練準確 說課時,不但要精神飽滿,而且要充滿激情。要使聽課者首先從表象上感受到說課者對說好課的自信和能力,從而感染聽者,引起聽者的共鳴。 說課的語言應具有較強的針對性——教師同行.語言表達應十分簡練干脆,避免拘謹,力求有聲有色,靈活多變.前后整體要連貫緊湊,過渡要流暢自然。 ④說出特點、說出風格 說課的對象不是學生,而是教師同行。所以說課時不宜把每個過程說得過于詳細,應重點說出如何實施教學過程、如何引導學生理解概念、掌握規律的方法,說出培養學生學習能力與提高教學效果的途徑。說課要重理性,講課注重感性和實踐,因此,用極有限的時間完成說課內容不容易,必須做到詳略得當、簡繁適宜、準確把握說度。說得太詳太繁,時間不允許,也沒必要;說得過略過簡,說不出基本內容,聽眾無法接受。 那么,如何把握說度呢?最主要的一點是因地制宜,靈活選取擇說法,把課說活,說出該課的特色,把課說得有條有理、有理有法、有法有效,說得生動有趣;其次是發揮個人的特長,說出個人的風格,這就把握了說課的度。 初中數學說課稿-《數軸》 各位領導、各位教師: 大家好! 今天我說課的題目是“數軸” 我用的教材是魯教版六年級上冊教科書。 下面我將從教材分析、教學目標、教學方法、教學過程、最后綜述等五個方面向大家介紹我對本節課的理解與設計,不妥之處,敬請指教。一:教材分析: 《數軸》是魯教版六年級上冊第二章第二節的內容。在此之前我們已經學習了有理數,這為本節課的學習起著鋪墊的作用。1 教材的地位與作用 本節課主要是在學生學習了有理數概念的基礎上,從標有刻度的溫度計表示溫度高低這一事例出發,引出數軸的畫法和用數軸上的點表示數的方法,初步向學生滲透數形結合的數學思想,以使學生借助直觀的圖形來理解有理數的有關問題。數軸不僅是學生學習相反數、絕對值等有理數知識的重要工具,還是以后學好不等式的解法、函數圖象及其性質等內容的必要基礎知識。教學重點和難點 重點: 正確理解數軸的概念和有理數在數軸上的表示方法是本節課的教學重點。難點:建立有理數與數軸上的點的對應關系(數與形的結合)是本節課的教學難點。3 學情分析 ⑴知識掌握上,六年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統的去講述。 ⑵學生學習本節課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析。 ⑶由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。 ⑷心理上,學生對數學課的興趣,老師應抓住這有利因素,引導學生認識到數學課的科學性,學好數學有利于其他學科的學習以及學科知識的滲透性。二:教學目標: 根據新課標的要求及六年級學生的認知水平我特制定的本節課的教學目標如下: 知識與技能: 使學生理解數軸的三要素,會畫數軸。 過程與方法: 能將已知的有理數在數軸上表示出來,能說出數軸上的已知點所表示的有理數,理解所有的有理數都可以用數軸上的點表示 情感態度與價值觀: 向學生滲透數形結合的數學思想,讓學生知道數學來源于實踐,培養學生對數學的學習興趣。 三:教學方法: 依據本節重點,我主要采用啟發式教學法和師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法由于七年級學生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,學生采取自主式、合作式、探討式的學習方法。教學 中積極利用板書和練習中的圖形,向學生提供更多的活動機會和空間,使學生在動腦、動手、動口的過程中獲得充足的體驗和發展,從而培養學生的數形結合的思想。 在教學過程中,不但要傳授學生課本知識,還要培養學生主動觀察、主動思考、親自動手、自我發現等學習能力,增強學生的綜合素質,從而達到教學的終極目標。教學中,教師創設疑問,學生想辦法解決疑問,通過教師的啟發與點撥,學生能較快的找到解決疑問的方法,找到解決問題的關鍵。本節課我為了體現學生為主體性和教師的主導輔助作用,啟發式、合作式、探究式的原則始終貫穿于整個教學過程。具體設計如下: 教學過程中設計了溫故知新,激發情趣 得出定義,揭示內涵 手腦并用,深入理解 啟發誘導,初步運用 反饋矯正,注重參與 歸納小結,強化思想 布置作業,引導預習七個教學環節: 三 教學設計: (一)、溫故知新,激發情趣: 首先復習提問:有理數包括那些數?學生回答后讓大家討論:你能找出用刻度表示這些數的實例嗎?學生會舉出很多例子,但是由于溫度計與數軸最為接近,它又是學生熟悉的帶刻度的度量工具,所以在教學中我將用它來抽象概括為數軸這一數學模型,于是讓學生觀察一組溫度計,并提問: (1)零上5°C用 5 表示。 (2)零下15°C 用-15 表示。 (3)0°C 用 0 表示。 然后讓大家想一想:能否與溫度計類似,在一條直線上畫上刻度,標出讀數,用直線上的點表示正數、負數和0呢?答案是肯定的,從而引出課題:數軸。結合實例使學生以輕松愉快的心情進入了本節課的學習,也使學生體會到數學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。 (二)、得出定義,揭示內涵: 教師設問:到底什么是數軸?如何畫數軸呢? (1)畫直線,取原點(這里說明在直線上任取一點作為原點,這點表示0,數軸畫成水平位置是為了讀、畫方便,同時也為了有美的感覺。) (2)標正方向(這里說明我們在水平位置的數軸上規定從原點向右為正方向是習慣與方便所作,由于我們只能畫出直線的一部分,因此標上箭頭指明正方向,并表示無限延伸。) (3)選取單位長度,標數(這里說明任選適當的長度作為單位長度,標數時從原點向右每隔一個單位長度取一點,依次表示1、2、3…負數反之。單位長度的長短,可根據實際情況而定,但同一單位長度所表示的量要相同。) 由于畫數軸是本節課的教學重點,教師板書這三個步驟,給學生以示范。 畫完數軸后教師引導學生討論:“怎樣用數學語言來描述數軸?”(通過教師的親切的語言啟發學生,以培養師生間的默契) 通過討論由師生共同得到數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。 至此,我們將一個具體的事物“溫度計”經過抽象而概括為一個數學概念“數軸”,使學生初步體驗到一個從實踐到理論的認識過程。 (三)、手腦并用,深入理解: 1、讓學生討論:下列圖形哪些是數軸,哪些不是,為什么? A、B、C、D、E、F、A、B、C三個圖形從數軸的三要素出發,D和F是學生可能出現的錯誤,給學生足夠的觀察、思考的時間然后展開充分的討論,教師參與到學生的討論之中去接觸學生,認識學生,關注學生。 2、為進一步強化概念,在對數軸有了正確認識的基礎上,請大家在練習本上畫一個數軸,(請同學畫在黑板上) 學生在畫數軸時教師巡視并予以個別指導,關注學生的個體發展,畫完后教師給出評價,如“很好”“很規范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發展;并強調:原點、正方向和單位長度是數軸的三要素,畫數軸時這三要素缺一不可。 我設計以上兩個練習,一個是動腦想,通過分析、判斷正誤來加深對正確概念的理解;一個是通過動手操作加深對概念的理解。 (四)、啟發誘導,初步運用: 有了數軸以后,所有的有理數都可以表示在數軸上,那么反過來,數軸上的點是否只表示有理數呢?作為一個問題我讓學生去思考,為后面實數的學習埋下伏筆,這里不再展開。 安排課本23頁的例1,利用黑板上的例題圖形讓學生來操作,教師提出要求: 1、要把點標在線上 2、要把數標在點的上方 通過學生實際操作,可以加深對數軸的理解,進一步掌握用數軸上的點表示數的方法,同時激發學生的學習興趣,調動學生的積極性,從而使學生真正成為教學的主體。 當然,此題還可以再說出幾個有理數讓學生去標點,好讓更多的學生去展示自己,并進一步讓學生從中感受已知有理數能用數軸上的點表示,從而加深對數形結合思想的理解。 (五)、反饋矯正,注重參與: 為鞏固本節的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論: 3、數軸上的點P與表示有理數3的點A距離是2,(1)試確定點P表示的有理數; (2)將A向右移動2個單位到B點,點B表示的有理數是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據學生的特點,師生共同小結: 1、為了鞏固本節課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節課你學會了用什么來表示有理數? 2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。 (七)、布置作業,引導預習: 為面向全體學生,安排如下: 1、全體學生必做課本25頁1、2、3 2、最后布置一個思考題: 與溫度計類似,數軸上兩個不同的點所表示的兩個有理數大小關系如何? (來引導學生養成預習的學習習慣) 七:板書設計:(略) 總之,在教學過程中,我始終注意發揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發現結論,實現師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。 以上是我對本節課的設想,不足之處請老師們多多批評、指正,謝謝第五篇:初中數學說課稿