第一篇:平行線性質1教案
平行線的性質(第1課時)
教學目標
1.使學生理解平行線的性質,能正確區分平行線的性質和判定。
2.通過本節課的教學,培養學生的概括能力和“觀察-猜想-證明”的科學探索方法,培養學生的辯證思維能力和邏輯思維能力。
3.培養學生的主體意識,向學生滲透討論的數學思想,培養學生思維的靈活性和廣闊性。教學重點:平行線性質的研究和發現過程
教學難點:正確區分平行線的性質和判定
教學方法:開放式
教學用具:多媒體輔助
教學過程
一、問題引入
請同學們先復習一下前面所學過的平行線的判定方法,并說出它們的已知和結論分別是什么?
(學生回答)兩條直線被第三條直線所截,⑴若同位角相等,則兩直線平行;
⑵若內錯角相等,則兩直線平行;
⑶若同旁內角互補,則兩直線平行.
現在同學們已經掌握了利用同位角相等,或者內錯角相等,或者同旁內角互補, 判定兩條直線平行的三種方法.在這一節課里:大家把思維的指向反過來: 如果兩條直線平行,那么同位角、內錯角、同旁內角的數量關系又該如何表達?
二、實踐探究
1.學生畫圖活動:用直尺和三角尺畫出兩條平行線AB∥CD,再畫一條截線EF與直線AB、CD相交,標出所形成的八個角。
3.學生對測量所得數據進行討論。
圖中哪些角是同位角?它們具有怎樣的數量關系?
圖中哪些角是內錯角?它們具有怎樣的數量關系?
圖中哪些角是同旁內角?它們具有怎樣的數量關系?
在詳盡分析后,讓學生寫出猜想.4.學生驗證猜測.學生活動:如果改變AB和CD的位置關系,即直線AB與CD不平行,那么剛才發現的結論還成立嗎?請同學們動手畫出圖形,并用量角器量一量各角的大小,驗證一下你的結論.
得到結論:當直線AB與CD不平行時,前面的猜想都不成立。這說明只有AB∥CD時,猜想才能成立.
5.師生歸納平行線的性質,教師板書.(老師)請大家仔細分析一下前面所得出的結論,觀察它們的表現形式,你可以將它們的關系分為哪幾類呢?
(學生)可以分為兩類:一類是兩個角相等;另一類是兩個角互補.
(1)具有相等關系的兩個角,有的是同位角,有的是內錯角
(2)具有互補關系的兩個角,有的是同旁內角
(老師)不考慮沒有定義的角的位置關系,只對同位角、內錯角、同旁內角進行歸納總結,若兩條平行線被第三條直線所截,你可以得出哪些結論?
若兩條平行線被第三條直線所截,則(1)同位角相等,(2)內錯角相等,(3)同旁內角互補。
簡單地說就是:(板書)兩直線平行,(1)同位角相等,(2)內錯角相等,(3)同旁內角互補.
這就是本節課我們所要研究的課題--平行線的性質
6.性質證明
從平行線的作法中,我們已經知道公理:同位角相等,兩直線平行。現在我們將它作為擴大了的公理得:兩條平行線被第三條直線所截,同位角相等,簡單地說,就是:
兩直線平行,同位角相等.
下面以此為基礎,我們來證明:
1.兩直線平行,內錯角相等;(甲組)
2.兩直線平行,同旁內角互補.(乙組)
學生甲組: 學生乙組:
∵AB ∥ CD(已知)∵AB ∥ CD(已知)
∴ ∠1=∠5(兩直線平行,同位角相等)∴ ∠1=∠5(兩直線平行,同位角相等)又∵∠1=∠3(對頂角相等)又∵∠1+∠2=180°(鄰補角的定義)∴∠3=∠5(等量代換)∴∠2+∠5= 180°(等量代換)
7.練習
如圖,已知兩平行線AB、CD被直線AE所截。C(1)從∠1=110 °可以知道∠2是多少度?為什么? E(2)從∠1=110 °可以知道∠3是多少度?為什么?
(3)從∠1=110 °可以知道∠4是多少度?為什么? D(多媒體演示)
解:(1)∠2=110°
∵AB∥CD(已知)
∴∠1=∠2(兩直線平行,內錯角相等)
又∵ ∠1=110°(已知)
∴∠2=110°(等量代換)
(2)∠3=110°
∵AB∥CD(已知)
∴∠1=∠3(兩直線平行,同位角相等)
又∵ ∠1=110°(已知)
∴∠3=110°(等量代換)
(3)∠4=70°
∵AB∥CD(已知)
∴∠1+∠4=180°(兩直線平行,同旁內角互補)
又∵ ∠1=110°(已知)
∴∠4=70°
8.教師引導學生理清平行線的性質與平行線判定的區別.學生交流后,師生歸納:兩者的條件和結論正好相反:
由角的數量關系(指同位角相等,內錯角相等,同旁內角互補), 得出兩條直線平行的論述
是平行線的判定,這里角的關系是條件,兩直線平行是結論.由已知的兩條直線平行得出角的數量關系(指同位角相等,內錯角相等, 同旁內角互補)的論述是平行線的性質,這里兩直線平行是條件,角的關系是結論.三、課堂小結
本節課你學到了哪些知識?
(1)平行線的性質有哪三條?
(2)如何區分平行線的判定和性質?
四、課堂檢測
1.∠1和∠2是直線AB、CD被直線EF所截而成的內錯角,那么∠1和∠2 的大小關系是()
A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.無法確定
2.如圖,若AD∥BC,則∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,則∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.A
2D6
3.兩條直線被第三條直線所截,則同旁內角互補.()
4.兩條直線被第三條直線所截,如果同旁內角互補,那么同位角相等.()
5.兩條平行線被第三條直線所截,則一對同旁內角的平分線互相平行.()
五、課后作業
課本第139頁:
第1、2、3、4題.
七、課后反思
第二篇:平行線性質教案
平行線的性質教案2 教學目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空間觀念,推理能力和有條理表達能力。
2.經歷探索直線平行的性質的過程,掌握平行線的三條性質,并能用它們進行簡單的推理和計算.重點、難點
重點:探索并掌握平行線的性質,能用平行線性質進行簡單的推理和計算.難點:能區分平行線的性質和判定,平行線的性質與判定的混合應用.教學過程
一、引導學生逆向思維
現在同學們已經掌握了利用同位角相等,或者內錯角相等,或者同旁內角互補, 判定兩條直線平行的三種方法.在這一節課里:大家把思維的指向反過來: 如果兩條直線平行,那么同位角、內錯角、同旁內角的數量關系又該如何表達?
二、實踐探究
1.學生畫圖活動:用直尺和三角尺畫出兩條平行線a∥b,再畫一條截線c與直線a、b相交,標出所形成的八個角(如課本P21圖5.3-1).2.學生測量這些角的度數,把結果填入表內.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度數
3.學生根據測量所得數據作出猜想.圖中哪些角是同位角?它們具有怎樣的數量關系? 圖中哪些角是內錯角?它們具有怎樣的數量關系? 圖中哪些角是同旁內角?它們具有怎樣的數量關系? 在詳盡分析后,讓學生寫出猜想.4.學生驗證猜測.學生活動:再任意畫一條截線d,同樣度量并計算各個角的度數,你的猜想還成立嗎? 5.師生歸納平行線的性質,教師板書.平行線具有性質: 性質1:兩條平行線被第三條直線所截,同位角相等,簡稱為兩直線平行, 同位角相等.性質2:兩條平行線被第三條直線所截,內錯角相等,簡稱為兩直線平行, 內錯相等.性質3:兩條直線按被第三條線所截,同旁內角互補,簡稱為兩直線平行, 同旁內角互補.教師讓學生結合右圖,用符號語言表達平行線的這三條性質,教師同時板書平行線的性質和平行線的判定.平行線的性質平行線的判定
因為a∥b, 因為∠1=∠2,所以∠1=∠2 所以a∥b.因為a∥b, 因為∠2=∠3,所以∠2=∠3, 所以a∥b.因為a∥b, 因為∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教師引導學生理清平行線的性質與平行線判定的區別.學生交流后,師生歸納:兩者的條件和結論正好相反: 由角的數量關系(指同位角相等,內錯角相等,同旁內角互補), 得出兩條直線平行的論述是平行線的判定,這里角的關系是條件,兩直線平行是結論.由已知的兩條直線平行得出角的數量關系(指同位角相等,內錯角相等, 同旁內角互補)的論述是平行線的性質,這里兩直線平行是條件,角的關系是結論.7.進一步研究平行線三條性質之間的關系.教師:大家能根據性質1,推出性質2成立的道理嗎? 結合上圖,教師啟發分析:考察性質
1、性質2的結論發生了什么變化? 學生回答∠1換成∠3,教師再問∠1與∠3有什么關系?并完成說理過程,教師糾正學生錯誤,規范地給出說理過程.因為a∥b,所以∠1=∠2(兩直線平行,同位角相等);又∠3=∠1(對頂角相等),所以∠2=∠3.教師說明:這是有兩步的說理,第一步推理根據平行線性質1,第二步推理的條件不僅有∠1=∠2,還有∠3=∠1.∠2=∠3是根據等式性質.根據等式性質得到的結論可以不寫理由.學生仿照以下說理,說出如何根據性質1得到性質3的道理.8.平行線性質應用.例(課本P23)如圖是一塊梯形鐵片的線全部分,量得∠A=100°,∠B=115°, 梯形另外兩個角分別是多少度?
教師把學生情況,可啟發提問:①梯形這條件如何使用?②∠A與∠D、∠B 與∠C的位置關系如何,數量關系呢?為什么? 講解按課本.三、鞏固練習
2.補充:如圖,BCD是一條直線,∠A=75°,∠1=53°,∠2=75°,求∠B的度數.本題綜合應用平行線的判定和性質,教師要引導學生觀察圖形,考察已知角的數量關系,確定解題的思路.一、判斷題.1.兩條直線被第三條直線所截,則同旁內角互補.()2.兩條直線被第三條直線所截,如果同旁內角互補,那么同位角相等.()3.兩條平行線被第三條直線所截,則一對同旁內角的平分線互相平行.()
二、填空題.1.如圖(1),若AD∥BC,則∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,則∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1)(2)(3)
平行線的性質教案2 2.如圖(2),在甲、乙兩地之間要修一條筆直的公路, 從甲地測得公路的走向是南偏西56°,甲、乙兩地同時開工,若干天后公路準確接通, 則乙地所修公路的走向是_________,因為____________.3.因為AB∥CD,EF∥CD,所以______∥______,理由是________.4.如圖(3),AB∥EF,∠ECD=∠E,則CD∥AB.說理如下: 因為∠ECD=∠E,所以CD∥EF()又AB∥EF,所以CD∥AB().三、選擇題.1.∠1和∠2是直線AB、CD被直線EF所截而成的內錯角,那么∠1和∠2 的大小關系是()A.∠1=∠2 B.∠1>∠2;C.∠1<∠2 D.無法確定
2.一個人驅車前進時,兩次拐彎后,按原來的相反方向前進, 這兩次拐彎的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°
四、解答題
1.如圖,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度數.2.如圖,已知:DE∥CB,∠1=∠2,求證:CD平分∠ECB.答案:
一、1.× 2.∨ 3.×
二、1.∠1,∠5,∠8,∠4,∠BAD;∠2,∠6,∠3,∠7,∠BCD 2.北偏東56°,兩直線平行,內錯角相等 3.AB、EF,兩條直線都與第三條直線平行,這兩條直線也互相平行 4.內錯角相等,兩直線平行, 兩條直線都與第三條直線平行,這兩條直線也互相平行
三、1.D 2.A
四、1.70° 2.因為DE∥CB,所以∠1=DCB(兩直線平行,內錯角相等)又∠1=∠2 所以∠2=∠DCB 即CD平分∠ECB.5.3平行線的性質(第2課時)平行線的性質(二)教學目標
1.經歷觀察、操作、推理、交流等活動,進一步發展空間觀念,推理能力和有條理表達能力.2.理解兩條平行線的距離的含義,了解命題的含義,會區分命題的題設和結論.3.能夠綜合運用平行線性質和判定解題.重點、難點 重點:平行線性質和判定綜合應用,兩條平行的距離,命題等概念.難點:平行線性質和判定靈活運用.教學過程
一、復習引入
1.平行線的判定方法有哪些?(注意:平行線的判定方法三種,另外還有平行公理的推論)2.平行線的性質有哪些.3.完成下面填空.已知:如圖,BE是AB的延長線,AD∥BC,AB∥CD,若∠D=100°,則∠C=_____, ∠A=______,∠CBE=________.4.a⊥b,c⊥b,那么a與c的位置關系如何?為什么?
二、進行新課
1.例1 已知:如上圖,a∥c,a⊥b,直線b與c垂直嗎?為什么? 學生容易判斷出直線b與c垂直.鑒于這一點,教師應引導學生思考:(1)要說明b⊥c,根據兩條直線互相垂直的意義, 需要從它們所成的角中說明某個角是90°,是哪一個角?通過什么途徑得來?(2)已知a⊥b,這個“形”通過哪個“數”來說理,即哪個角是90°.(3)上述兩角應該有某種直接關系,如同位角關系、內錯角關系、同旁內角關系,你能確定它們嗎? 讓學生寫出說理過程,師生共同評價三種不同的說理.2.實踐與探究
(1)下列各圖中,已知AB∥EF,點C任意選取(在AB、EF之間,又在BF的左側).請測量各圖中∠B、∠C、∠F的度數并填入表格.∠B ∠F ∠C ∠B與∠F度數之和
圖(1)圖(2)通過上述實踐,試猜想∠B、∠F、∠C之間的關系,寫出這種關系,試加以說明.(1)(2)教師投影題目: 學生依據題意,畫出類似圖(1)、圖(2)的圖形,測量并填表,并猜想:∠B+∠F=∠C.在進行說理前,教師讓學生思考:平行線的性質對解題有什么幫助? 教師視學生情況進一步引導: ①雖然AB∥EF,但是∠B與∠F不是同位角,也不是內錯角或同旁內角.不能確定它們之間關系.②∠B與∠C是直線AB、CF被直線BC所截而成的內錯角,但是AB與CF不平行.能不能創造條件,應用平行線性質,學生自然想到過點C作CD∥AB,這樣就能用上平行線的性質,得到∠B=∠BCD.③如果要說明∠F=∠FCD,只要說明CD與EF平行,你能做到這一點嗎? 以上分析后,學生先推理說明, 師生交流,教師給出說理過程.作CD∥AB,因為AB∥EF,CD∥AB,所以CD∥EF(兩條直線都與第三條直線平行, 這兩條直線也互相平行).所以∠F=∠FCD(兩直線平行,內錯角相等).因為CD∥AB.所以∠B=∠BCD(兩直線平行,內錯角相等).所以∠B+∠F=∠BCF.(2)教師投影課本P23探究的圖(圖5.3-4)及文字.①學生讀題思考:線段B1C1,B2C2……B5C5都與兩條平行線的橫線A1B5和A2C5垂直嗎?它們的長度相等嗎? ②學生實踐操作,得出結論:線段B1C1,B2C2……,B5C5同時垂直于兩條平行直線A1B5和A2C5,并且它們的長度相等.③師生給兩條平行線的距離下定義.學生分清線段B1C1的特征:第一點線段B1C1兩端點分別在兩條平行線上,即它是夾在這兩條平行線間的線段,第二點線段B1C1同時垂直這兩條平行線.教師板書定義:(像線段B1C1)同時垂直于兩條平行線, 并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離.④利用點到直線的距離來定義兩條平行線的距離.教師畫AB∥CD,在CD上任取一點E,作EF⊥AB,垂足為F.學生思考:EF是否垂直直線CD?垂線段EF的長度d是平行線AB、CD的距離嗎? 這兩個
問題學生不難回答,教師歸納: 兩條平行線間的距離可以理解為:兩條平行線中,一條直線上任意一點到另一條直線的距離.教師強調:兩條平行線的距離處處相等,而不隨垂線段的位置改變而改變.3.了解命題和它的構成.(1)教師給出下列語句,學生分析語句的特點.①如果兩條直線都與第三條直線平行,那么這條直線也互相平行;②等式兩邊都加同一個數,結果仍是等式;③對頂角相等;④如果兩條直線不平行,那么同位角不相等.這些語句都是對某一件事情作出“是”或“不是”的判斷.(2)給出命題的定義.判斷一件事情的語句,叫做命題.教師指出上述四個語句都是命題,而語句“畫AB∥CD”沒有判斷成分,不是命題.教師讓學生舉例說明是命題和不是命題的語句.(3)命題的組成.①命題由題設和結論兩部分組成.題設是已知事項,結論是由已知事項推出的事項.②命題的形成.命題通常寫成“如果……,那么……”的形式,“如果”后接的部分是題設,“那么”后接的部分是結論.有的命題沒有寫成“如果……,那么……”的形式,題設與結論不明顯,這時要分清命題判斷了什么事情,有什么已知事項,再改寫成“如果……,那么……”形式.師生共同分析上述四個命題的題設和結論,重點分析第②、③語句.第②命題中,“存在一個等式”而且“這等式兩邊加同一個數”是題設, “結果仍是等式”是結論。
第③命題中,“兩個角是對頂角”是題設,“這兩角相等”是結論。
三、鞏固練習
1.“等式兩邊乘同一個數,結果仍是等式”是命題嗎?它們題設和結論分別是什么? 2.命題“兩條平行線被第三第直線所截,內錯角相等”是正確的?命題“如果兩個角互補,那么它們是鄰補角”是正確嗎?再舉出一些命題的例子,判斷它們是否正確.解答:1.是命題,題設是“等式兩邊乘同一個數”,結論是“結果仍是等式”.2.第一個命題正確,第二個命題錯誤。可舉出例子說明,如兩條直線平行,同旁內角互補,但這兩個同旁內角不是鄰補角。對于學生所舉的錯誤命題,教師應給歸納一下,有兩類:第一類是命題題設不足于確定命題結正確,如“同位角相等”,這里條件不夠;第二類命題是在命題的題設下,結論不正確。
一、填空題.1.用式子表示下列句子:用∠1與∠2互為余角,又∠2與∠3互為余角,根據“同角的余角相等”,所以∠1和∠3相等_________________.2.把命題“直角都相等”改寫成“如果……,那么……”形式___________.3.命題“鄰補角的平分線互相垂直”的題設是_____________, 結論是____________.4.兩條平行線被第三條直線所截,同旁內角的度數的比為2:7, 則這兩個角分別是____________度.二、選擇題.1.設a、b、c為同一平面內的三條直線,下列判斷不正確的是()A.設a⊥c,b⊥c,則a⊥b B.若a∥c,b∥c,則a∥b
C.若a∥b,b⊥c,則a⊥c D.若a⊥b,b⊥c,則a⊥c
2.若兩條平行線被第三條直線所截,則互補的角但非鄰補角的對數有()A.6對 B.8對 C.10對 D.12對
3.如圖,已知AB∥DE,∠A=135°,∠C=105°,則∠D的度數為()A.60° B.80° C.100° D.120°
4.兩條直線被第三條直線所截,則一組同位角的平分線的位置關系是()A.互相平行 B.互相垂直;C.相交但不垂直 D.平行或相交
三、解答題.1.已知,如圖1,∠AOB紙片沿CD折疊,若O′C∥BD,那么O′D與AC平行嗎?請說明理由.2.如圖,已知B、E分別是AC、DF上的點,∠1=∠2,∠C=∠D.(1)∠ABD與∠C相等嗎?為什么.(2)∠A與∠F相等嗎?請說明理由.3.如圖,已知EAB是直線,AD∥BC,AD平分∠EAC,試判定∠B與∠C的大小關系,并說明理由.4.如(圖4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度數;(2)∠A+∠B+∠C的度數.答案:
一、1.因為∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果兩個角是直角,那么這兩個角相等
3.兩個角是鄰補角,這兩個角的平分線互相垂直 4.40°,140°
二、1.D 2.B 3.D 4.D
三、1.平行
因為O′C∥BD
所以∠2=∠3(兩直線平行,內錯角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以AC∥O′D(內錯角相等,兩直線平行)
2.(1)相等.因為∠1=∠2,所以BD∥CE(內錯角相等,兩直線平行)
所以∠ABD=∠C(兩直線平行,同位角相等)
(2)相等 因為∠ABD= ∠C 又∠D=∠C
所以∠D=∠ABD
所以DF∥AC(內錯角相等,兩直線平行)
所以∠A=∠F(兩直線平行,內錯角相等)
3.∠B=∠C 因為AD∥BC
所以∠B=∠EAD(兩直線平行, 同位角相等), ∠C=∠CAD(兩直線平行,內錯角相等)
又∠EAD=∠CAD(角平分線定義)所以∠B=∠
第三篇:(教案1)2.3平行線的性質
2.3平行線的性質
主備人:祁梅華 ●教學目標(一)教學知識點 1.平行線的性質
2.運用這些性質進行簡單的推理或計算.(二)能力訓練要求
1.經歷觀察、操作、推理、交流等活動,進一步發展空間觀念、推理能力和有條理表達的能力.2.經歷探索平行線的特征的過程,掌握平行線的特征,并能解決一些問題.(三)情感與價值觀要求
通過學生動手操作、觀察,來發展他們的空間觀念,培養其主動探索和合作的能力.●教學重點
由兩直線平行得到同位角相等、內錯角相等、同旁內角互補.●教學難點
平行線的特征與直線平行的條件的綜合應用.●教學方法 小組討論法
學生在教師的指導下,進行以小組為單位討論,最終得出平行線的特征.●教具準備
制作電腦動畫來說明平行線的特征.投影片五張 ●教學過程
一、學
1.創設現實情景,引入新課
[師]前面兩節課,我們共同探討了直線平行的條件,哪位同學給大家敘述一下:直線平行的條件呢?
[生]同位角相等,兩直線平行.內錯角相等,兩直線平行.同旁內角互補,兩直線平行.[師]很好.大家來觀察上面的三個直線平行的條件的共同點是什么呢? [生]都是由已知角相等或角互補,推出兩直線平行.[師]同學們總結得很對,那反過來,如果有兩條直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
這節課我們來學習直線平行的特征.二、自主探究
1、我們來做一做如圖2-36,直線a與直線b平行.圖2-36 測量同位角∠1和∠5的大小,它們有什么關系?圖中還有其他的同位角嗎?它們的大小有什么關系?
換另一組平行線試試,你能得到相同的結論嗎?
2、如圖2-37中的∠1與∠2是同位角,∠1是65°,∠2是50°,它們不相等.圖2-37
3、在兩條直線平行的情況下,同位角相等,那此時內錯角關系怎樣?同旁內角關系怎樣?下面我們再來探索: 如圖2-38,直線a與直線b平行.圖2-38(1)圖中有幾對內錯角?它們的大小有什么關系?為什么?(2)圖中有幾對同旁內角?它們的大小有什么關系?為什么?(3)換另一組平行線試一試,你能得到相同的結論嗎?(討論方法同前)
二、教
我們得到了平行線的特征.兩條平行直線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.簡記為:
兩直線平行,同位角相等.兩直線平行,內錯角相等.兩直線平行,同旁內角互補.三、練
1、如圖2-39,圖2-39 ??1??5a∥b→? ??3??6??3??5?180??
大家再想一想:你還能探索出平行線的哪些特征?
2、如圖2-40,一束平行光線AB與DE射向一個水平鏡面后被反射,此時∠1=∠2,∠3=∠4.(1)∠
1、∠3的大小有什么關系?∠2與∠4呢?(2)反射光線BC與EF也平行嗎?
圖2-41 解:如圖2-42,與∠1相等的角有:∠3,∠5,∠7,∠9,∠11,∠13,∠15.3、讀一讀:“測量地球的周長”
四、評
1、小結
本節課我們主要學習了平行線的特征及其應用,還了解了直線平行的條件與平行線的特征的區別.平行線的特征:
兩條平行線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.這些特征要掌握,還有一些特征同學們只需了解即可.如:兩條平行線中的一條直線與第三條直線垂直,那么另一條直線也與第三條直線垂直.2、當堂檢測
1.如圖2-41所示,AB∥CD,AC∥BD,分別找出與∠1相等或互補的角.圖2-42 Ⅴ.課后作業
必做題(一)課本習題2.4 1、2、3.選做題配套練習冊1、2、3 板書設計
§2.3平行線的性質
一、平行線的特征
?同位角相等?兩直線平行→?內錯角相等
?同旁內角互補?
如圖:
??1??5a∥b→? ??3??6??4??6?180??
第四篇:平行線性質
平行線性質
平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行并且不在一條直線上的直線。
有關平行線:
1.平行線的定義:在同一平面內,不相交的兩條直線叫做平行線。
如:AB平行于CD,寫作AB∥CD
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
3.平行公理的推論(平行的傳遞性):
平行同一直線的兩直線平行。
∵a∥c,c∥b
∴a∥b
平行線的判定:
1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2.兩條直線被第三條所截,如果內錯角相等,那么這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3.兩條直線被第三條所截,如果同旁內角互補,那么這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:1.兩條平行線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等。
2.兩條平行線被第三條直線所截,同旁內角互補.簡單說成:兩直線平行,同旁內角互補。
3.兩條平行線被第三條直線所截,內錯角相等.簡單說成:兩直線平行,內錯角相等。
兩個角的數量關系兩直線的位置關系:
垂直于同一直線的兩條直線互相平行。
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那么這兩個角相等或互補。
基本規律
1.平行線的性質和判定中的條件和結論恰好相反。
2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。
3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。
平行線的性質
1.兩直線平行,同位角相等。
2.兩直線平行,內錯角相等。
3.兩直線平行,同旁內角互補。
4.在同一平面內的兩線平行并且不在一條直線上的直線。
有關平行線:
1.平行線的定義:在同一平面內,不相交的兩條直線叫做平行線。
如:AB平行于CD,寫作AB∥CD
2.平行公理:過直線外一點有且只有一條直線與已知直線平行。
3.平行公理的推論(平行的傳遞性):
平行同一直線的兩直線平行。
∵a∥c,c∥b
∴a∥b
平行線的判定:
1.兩條直線被第三條所截,如果同位角相等,那么這兩條直線平行。
簡單說成:同位角相等,兩直線平行。
2.兩條直線被第三條所截,如果內錯角相等,那么這兩條直線平行。
簡單說成:內錯角相等,兩直線平行。
3.兩條直線被第三條所截,如果同旁內角互補,那么這兩條直線平行。
簡單說成:同旁內角互補,兩直線平行。
平行線的性質:1.兩條平行線被第三條直線所截,同位角相等.簡單說成:兩直線平行,同位角相等。
2.兩條平行線被第三條直線所截,同旁內角互補.簡單說成:兩直線平行,同旁內角互補。
3.兩條平行線被第三條直線所截,內錯角相等.簡單說成:兩直線平行,內錯角相等。
兩個角的數量關系兩直線的位置關系:
垂直于同一直線的兩條直線互相平行。
平行線間的距離,處處相等。
如果兩個角的兩邊分別平行,那么這兩個角相等或互補。
基本規律
1.平行線的性質和判定中的條件和結論恰好相反。
2.兩條平行線的距離是指垂直線段的長度,兩條平行線間的距離處處相等。
3.命題必須是一個完整的句子,而且這個句子必須對某件事作出判斷。
第五篇:平行線性質
?
《平行線的性質》教學設計
?
?
?
? 作者: 來源: 時間:2009-5-18 10:19:16 閱讀47次 【大 中 小】
一、教學目標
1、知識與技能目標:經歷觀察、操作、推理、交流等活動,進一步發展空間觀念、推理能力和有條理表達的能力。
2、能力目標:經歷探索平行線性質的過程,掌握平行線的性質,并能解決一些實際問題。
3、情感態度目標:在自己獨立思考的基礎上,積極參與小組活動對平行線的性質的討論,敢于發表自己的看法,并從中獲益。
4、品質素養目標:培養學生勤于思考、勇于探索、鉆研的品質。
為實現以上教學目標,突出重點,解決難點,充分發揮現代教育技術的作用,我制作了多媒體課件,運用多媒體輔助教學,變靜為動,融聲、形、色為一體為學生提供生動、形象、直觀的觀察材料,激發學生學習的積極性和主動性。
二、教學重點和難點
重點:平行線的三個性質以及綜合運用平行線性質、判定等知識解題。
難點:區分性質和判定以及怎樣綜合運用同位角、內錯角、同旁內角的關系解題。
三、教材分析
平行線是最簡單、最基本的幾何圖形,在生活中隨處可見,它不僅是研究其他圖形的基礎,而且在實際中也有著廣泛的應用。因此,探索和掌握好它的有關知識,對學生更好的認識世界、發展空間觀念和推理能力都是非常重要的。
教材設置了一個通過探索平行線性質的活動,在活動中,鼓勵學生充分交流,運用多種方法進行探索,盡可能地發現有關事實,并能應用平行線性質解決一些問題,運用自己的語言說明理由,使學生的推理能力和語言表達能力得到提高。為學生今后的學習打下了基礎。
因此,無論在知識技能上,還是在學生能力的培養及感情教育等方面,這節課都起著十分重要的作用。
四、學生情況分析
考慮本校處在城鄉結合部,大部分學生的基礎比較差,缺乏自學能力,動手能力比較差,所以,這個學期應該重視學生學習興趣和態度的培養、重視學生的自主探索和合作交流以及新意識的培養。利用七年級學生都有好勝、好強的特點,扭轉學數學難、數學枯燥的這種局面。形成一種勤動手、勤動腦,勤探索和肯合作交流的良好氣氛
五、課前準備
課前準備:多媒體課件、三角尺、直尺。
六、教學過程
問題與情境
師生互動
設計意圖
活動1 你身邊的問題
問題: 如圖,工人在修一條高速公路時在前方遇到一座高山,為了降低施工難度,工程師決定繞過這座山,如果第一個彎是左拐300,那么第二個彎應朝什么方向。才能不改變原來的方向。
學生觀察,小組討論,交流問題并發表見解, 教師進一步引導學生分析,引導學生將這個問題如何轉化成數學問題。
本次活動應關注的問題是:
1、不改變方向,在數學中理解應是什么,2、在這個問題中包含了什么問題
3、如何將它轉化為數學問題。
通過實例,讓學生從具體的實例中發現數學問題,進而尋求解決問題的方法,使學生懂得數學來源于現實,服務于現實生活,同時也調動了學生的積極性,提高了學生的興起, 活動2: 探究平行線的性質
問題:
1、上節課學習了用一把直尺和一塊三角板可以畫兩條平行線,想一想在這個過程中三角尺取到什么作用,你能不能用兩把直尺畫出兩條平行線,如果不能,為什么?
2、自己閱讀課本的21頁“探究”部分,并把空填好。
用電腦展示在畫平行線時三角尺在其中取到的作用。
學生通過學習測量比較得到這些角中上下兩個角的關系, 關注的問題是:
1、注意性質具有一般性。不能簡單從幾個特殊的例子,就斷定它就具有某種性質,而需要一個從特殊到一般的推導過程。
2、理清兩條直線平行,同位角相等,內錯角也相等,同旁內角互補之間的關系。
通過動手測量提高學生的動手操作能力,并培養學生從特殊需要到一般的推理能力,使其從感性上升到理性認識。
活動3: 運用與推理
問題: 你能根據性質1,說出性質2,性質3成立的理由嗎?如圖, 因為a∥b.所以∠1=∠2(_______)又∠3=∠_____,(對頂角相等)所以∠2=∠3, 類似地,對于性質3,你能說出道理嗎? 想一想:這節課開始的那個問題應該如何解決? 學生回答,再由同學補充。老師糾正。
教師引導學生觀察因為所以之間的關系。
能過學生做和說,培養學生的一定的表達能力和邏輯推理能力。
活動4 鞏固與提高
問題1:如圖直線a,b被直線c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4為多少度。為什么?
2、如果∠1=60?∠3=120?直線a、b有什么關系?為什么? 問題2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3為多少度? 解:因為∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因為 ∠2 =60?()所以 ∠4=∠______=______()又因為 ∠4與∠3________()所以 ∠3=180?_____=______?BR> 問題3:填一填
如圖,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因為∠1=∠ABC, 所以 AD∥_____()(2)因為 ∠3=∠5 所以 AB∥_____()(3)因為∠2=∠4 所以 ______∥______()(4)因為∠1=∠ADC 所以______∥______()(5)因為∠ABC ∠BCD=180 所以 _______∥______()問題4,學與用: 某市為建設社會主義新農村,村村通煤氣,市政工作人員已經在道路的兩側鋪設了兩條平行的燃氣管道,如果公路一側鋪設的角度為100?為了便于連接,那么另一側應以什么角度鋪設?為什么? 小結: 布置作業
課本25頁的第1、2、3題
由學生獨立完成,老師指導,引導學生注意這些之間的關系。
應關注的問題是:
1、平行線的性質和判定的不同。
2、幾何推理證明的要領。
3、正確分清推理中因為和所以所表達的意義
通過具體問題,使學生更進一步理解和認識平行線的性質和判定的區別和聯系。進一步認識角與角之間的關系,進一步鍛煉學生幾何證明題的邏輯推理能力