第一篇:淺談納米材料的應用(論文)1
納米材料的應用
張健華
計算機網絡技術專業101班
摘要:納米技術是當今世界最有前途的決定性技術。納米技術目前已成功用于許多領域,包括醫學、藥學、化學及生物檢測、制造業、光學以及國防等等。有人曾經預測在21世紀納米技術將成為超過網絡技術和基因技術的“決定性技術”,由此納米材料將成為最有前途的材料。世界各國相繼投入巨資進行研究,美國從2000年啟動了國家納米計劃,國際納米結構材料會議自1992年以來每兩年召開一次,與納米技術有關的國際期刊也很多。關鍵詞:納米材料
納米技術
特殊材料
應用
一、納米發展小史
1959年,著名物理學家、諾貝爾獎獲得者理查德●費曼預言,人類可以用小的機器制作更小的機器,最后實現根據人類意愿逐個排列原子、制造產品,這是關于納米科技最早的夢想。1991年,美國科學家成功地合成了碳納米管,并發現其質量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發現標志人類對材料性能的發掘達到了新的高度。1999年,納米產品的年營業額達到500億美元。
二、何為納米材料
納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,例如:人的頭發絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。
一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。
三、納米材料的特殊性質
納米材料高度的彌散性和大量的界面為原子提供了短程擴散途徑,導致了高擴散率,它對蠕變,超塑性有顯著影響,并使有限固溶體的固溶性增強、燒結溫度降低、化學活性增大、耐腐蝕性增強。因此納米材料所表現的力、熱、聲、光、電等性質,往往不同于該物質在粗晶狀態時表現出的性質。與傳統晶體材料相比,納米材料具有高強度——硬度、高擴散性、高塑性——韌性、低密度、低彈性模量、高電阻、高比熱、高熱膨脹系數、低熱導率、強軟磁性能。這些特殊性能使納米材料可廣泛地用于高力學性能環境、光熱吸收、非線性光學、磁記錄、特殊導體、分子篩、超微復合材料、熱交換材料、敏感元件、催化劑等領域。
四、納米技術在各領域的應用
4.1 納米技術在陶瓷領域方面的應用
陶瓷材料作為材料的三大支柱之一,在日常生活及工業生產中起著舉足輕重的作用。但是,由于傳統陶瓷材料質地較脆,韌性、強度較差,因而使其應用受到了較大的限制。隨著納米技術的廣泛應用,納米陶瓷隨之產生,希望以此來克服陶瓷材料的脆性,使陶瓷具有象金屬一樣的柔韌性和可加工性。英國材料學家Cahn指出納米陶瓷是解決陶瓷脆性的戰略途徑。所謂納米陶瓷,是指顯微結構中的物相具有納米級尺度的陶瓷材料,也就是說晶粒尺寸、晶界寬度、第二相分布、缺陷尺寸等都是在納米量級的水平上。要制作納米陶瓷,這就需要解決:粉體尺寸形貌和粒徑分布的控制,團聚體的控制和分散,塊體形態、缺陷、粗糙度以及成分的控制。
雖然納米陶瓷還有許多關鍵技術需要解決,但其優良的低溫和高溫力學性能、抗彎強度、斷裂韌性,使其在切削刀具、軸承、汽車發動機部件等諸多方面都有廣泛的應用,并在許多超高溫、強腐蝕等苛刻的環境下起著其他材料不可替代的作用,具有廣闊的應用前景。
4.2 納米技術在微電子學上的應用
納米電子學是納米技術的重要組成部分,其主要思想是基于納米粒子的量子效應來設計并制備納米量子器件,它包括納米有序(無序)陣列體系、納米微粒與微孔固體組裝體系、納米超結構組裝體系。納米電子學的最終目標是將集成電路進一步減小,研制出由單原子或單分子構成的在室溫能使用的各種器件。
目前,利用納米電子學已經研制成功各種納米器件。單電子晶體管,紅、綠、藍三基色可調諧的納米發光二極管以及利用納米絲、巨磁阻效應制成的超微磁場探測器已經問世。并且,具有奇特性能的碳納米管的研制成功,為納米電子學的發展起到了關鍵的作用。
納米電子學立足于最新的物理理論和最先進的工藝手段,按照全新的理念來構造電子系統,并開發物質潛在的儲存和處理信息的能力,實現信息采集和處理能力的革命性突破,納米電子學將成為對世紀信息時代的核心。
4.3 納米技術在生物工程上的應用
眾所周知,分子是保持物質化學性質不變的最小單位。生物分子是很好的信息處理材料,每一個生物大分子本身就是一個微型處理器,分子在運動過程中以可預測方式進行狀態變化,其原理類似于計算機的邏輯開關,利用該特性并結合納米技術,可以此來設計量子計算機。美國南加州大學的Adelman博士等應用基于DNA分子計算技術的生物實驗方法,有效地解決了目前計算機無法解決的問題-“哈密頓路徑問題”,使人們對生物材料的信息處理功能和生物分子的計算技術有了進一步的認識。
未來,納米計算機的問世,將會使當今的信息時代發生質的飛躍。它將突破傳統極限,使單位體積物質的儲存和信息處理的能力提高上百萬倍,從而實現電子學上的又一次革命。
4.4 納米技術在光電領域的應用
納米技術的發展,使微電子和光電子的結合更加緊密,在光電信息傳輸、存貯、處理、運算和顯示等方面,使光電器件的性能大大提高。將納米技術用于現有雷達信息處理上,可使其能力提高10倍至幾百倍,甚至可以將超高分辨率納米孔徑雷達放到衛星上進行高精度的對地偵察。但是要獲取高分辨率圖像,就必需先進的數字信息處理技術。科學家們發現,將光調制器和光探測器結合在一起的量子阱自電光效應器件,將為實現光學高速數學運算提供可能。在經過多個科學家研究的發現,無能量閾納米激光器的運行還可以得出速度極快的激光器。由于只需要極少的能量就可以發射激光,這類裝置可以實現瞬時開關。已經有一些激光器能夠以快于每秒鐘200億次的速度開關,適合用于光纖通信。由于納米技術的迅速發展,這種無能量閾納米激光器的實現將指日可待。4.5 納米技術在化工領域的應用
納米粒子作為光催化劑,有著許多優點。首先是粒徑小,比表面積大,光催化效率高。另外,納米粒子生成的電子、空穴在到達表面之前,大部分不會重新結合。因此,電子、空穴能夠到達表面的數量多,則化學反應活性高。其次,納米粒子分散在介質中往往具有透明性,容易運用光學手段和方法來觀察界面間的電荷轉移、質子轉移、半導體能級結構與表面態密度的影響。目前,工業上利用納米二氧化鈦-三氧化二鐵作光催化劑,用于廢水處理(含SO32-或 Cr2O72-體系),已經取得了很好的效果。
用沉淀溶出法制備出的粒徑約30~60nm的白色球狀鈦酸鋅粉體,比表面積大,化學活性高,用它作吸附脫硫劑,較固相燒結法制備的鈦酸鋅粉體效果明顯提高。
4.6 納米技術在醫學上的應用
隨著納米技術的發展,在醫學上該技術也開始嶄露頭角。研究人員發現,生物體內的RNA蛋白質復合體,其線度在15~20nm之間,并且生物體內的多種病毒,也是納米粒子。10nm以下的粒子比血液中的紅血球還要小,因而可以在血管中自由流動。如果將超微粒子注入到血液中,輸送到人體的各個部位,作為監測和診斷疾病的手段??蒲腥藛T已經成功利用納米 SiO2微粒進行了細胞分離,用金的納米粒子進行定位病變治療,以減少副作用等。另外,利用納米顆粒作為載體的病毒誘導物已經取得了突破性進展,現在已用于臨床動物實驗,估計不久的將來即可服務于人類。
研究納米技術在生命醫學上的應用,可以在納米尺度上了解生物大分子的精細結構及其與功能的關系,獲取生命信息??茖W家們設想利用納米技術制造出分子機器人,在血液中循環,對身體各部位進行檢測、診斷,并實施特殊治療,疏通腦血管中的血栓,清除心臟動脈脂肪沉積物,甚至可以用其吞噬病毒,殺死癌細胞。這樣,在不久的將來,被視為當今疑難病癥的愛滋病、高血壓、癌癥等都將迎刃而解,從而將使醫學研究發生一次革命。
4.7 納米技術在其它方面的應用
利用先進的納米技術,在不久的將來,可制成含有納米電腦的可人-機對話并具有自我復制能力的納米裝置,它能在幾秒鐘內完成數十億個操作動作。在軍事方面,利用昆蟲作平臺,把分子機器人植入昆蟲的神經系統中控制昆蟲飛向敵方收集情報,使目標喪失功能。
利用納米技術還可制成各種分子傳感器和探測器。利用納米羥基磷酸鈣為原料,可制作人的牙齒、關節等仿生納米材料。將藥物儲存在碳納米管中,并通過一定的機制來激發藥劑的釋放,則可控藥劑有希望變為現實。另外,還可利用碳納米管來制作儲氫材料,用作燃料汽車的燃料“儲備箱”。利用納米顆粒膜的巨磁阻效應研制高靈敏度的磁傳感器;利用具有強紅外吸收能力的納米復合體系來制備紅外隱身材料,都是很具有應用前景的技術開發領域。
納米技術目前從整體上看雖然仍然處于實驗研究和小規模生產階段,但從歷史的角度看:上世紀70年代重視微米科技的國家如今都已成為發達國家。當今重視發展納米技術的國家很可能在21世紀成為先進國家。納米技術對我們既是嚴峻的挑戰,又是難得的機遇。必須加倍重視納米技術和納米基礎理論的研究,為我國在21世紀實現經濟騰飛奠定堅實的基礎。整個人類社會將因納米技術的發展和商業化而產生根本性的變革。
【參考文獻】
[1]邵剛勤,魏明坤,等.超細晶粒WC硬質合金研制動態[J].武漢理工業大學學報
(含30頁ppt)
第二篇:納米論文
聚合物基-納米二氧化硅復合材料的應用研究進展
班級12材料2班學號1232230042姓名王曉婷
摘要本文介紹了近年來國內外納米SiO2聚合物復合材料的制備方法,討論了制備方法的特點,闡述了聚合物納米SiO2復合材料的研究進展, 并展望了聚合物納米SiO2 的應用前景。
關鍵詞納米SiO2復合材料;聚合物;制備;應用 前言
納米SiO2是目前應用最廣泛的納米材料之一,它特有的表面效應、量子尺寸效應和體積效應等,使其與有機聚合物復合而成的納米二氧化硅復合材料, 既能發揮納米SiO2自身的小尺寸效應、表面效應以及粒子的協同效應, 又兼有有機材料本身的優點, 使復合材料具有良好的機械、光、電和磁等功能特性, 引起了國內外研究者的廣泛關注[
1,2]
。本文就納米Si02一聚合物復合材料的制備方法、制備方法的特點和應用進行一次全面的綜述。
2聚合物/ 納米Si O2 復合材料的制備
2.1 共混法
共混法是制備聚合物/無機納米復合材料最直接的方法,適用于各種形態的納米粒子,但是由于納米粒子存在很大的界面自由能,粒子極易自發團聚。要將無機納米粒子直接分散于有機基質中制備聚合物納米復合材料,必須通過化學預分散和物理機械分散打開納米粒子團聚體,消除界面能差,才能實現均勻分散并與基體保持良好的親和性。具體途徑如下。
2.1.1 高分子溶液(或乳液)共混
首先將聚合物基體溶解于適當的溶劑中制成溶液(或乳液),然后加入無機納米粒子,利用超聲波分散或其他方法將納米粒子均勻分散在溶液(或乳液)中。
姜云鵬等利用PVA與納米Si02表面的羥基形成的氫鍵實現了納米si02對PVA的改性;張志華等用溶膠一凝膠反應制備納米Si02顆粒,然后通過超聲分散機將顆粒分散到聚氨酯樹脂中制備出了聚氨酯/Si02納米復合材料;以上各種方法都使不同材料的各方面性能得到了改善。
2.1.2熔融共混
將納米無機粒子與聚合物基體在密煉機、雙螺桿等混煉機上熔融共混。
郭衛紅等[5]在密煉機上將PMMA和納米Si02粒子熔融共混后,用雙螺桿造粒制得納米復[4][3]合材料。石璞[6]通過熔融共混法將納米si02粒子均勻地分散于PP基體中制得復合材料,由于復合偶聯劑的一端易與離子表面上大量的羥基發生化學反應形成穩定的氫鍵,另一端與聚丙烯相容性較好,使納米粒子基本沒有團聚,實現了增強、增韌的目的。張彥奇等[7]將納米Si02經超聲分散并經偶聯劑處理后與LLDPE等組分預混、擠出、造粒,制備了線性低密度聚乙烯(LU)PE)/納米Si02復合材料,所得薄膜霧度顯著提高。
2.2在位分散聚合法
首先采用超聲波分散、機械共混等方法在單體溶液中分散納米粒子,或采用偶聯劑對納米粒子表面進行處理,然后單體在納米粒子表面進行聚合,形成納米粒子良好分散的納米復合材料(in situ polymerization)。通過這種方法,無機粒子能夠比較均一地分散于聚合物基體中。
歐玉春等[8]利用帶有羥基的丙烯酸酯表面處理劑對Si02進行表面處理,應用本體法聚合制備si02/PMMA納米復合材料,結果顯示納米Si02的加入可以提高聚甲基丙烯酸甲酯材料的機械性能、玻璃化溫度及材料的耐水性。Jose-Luiz Luna—Xavier等[9]采用原位聚合法以陽離子偶氮化合物AIBA為引發劑,液相納米Si02為核,聚甲基丙烯酸甲酯為殼合成了納米Si02一聚甲基丙烯酸甲酯乳液聚合物。由于陽離子偶氮化合物AIBA為引發劑的使用增強了與納米si02的相互作用,使效率大大提高。
2.3溶膠-凝膠法
溶膠一凝膠法(Sol-gel)是制備聚合物/無機納米復合材料的一種重要方法。通過烷氧基金屬有機化合物的水解、縮合,將細微的金屬氧化物顆粒復合到有機聚合物中并得到良好分散,從而在溫和條件下制備出具有特殊性能的聚合物/無機納米復合材料。
2.4硅酸鈉溶膠一凝膠法
溶膠一凝膠法在制備聚合物/納米si02復合材料時顯示出很多優勢。但是,所用的無機組分的前驅物正硅酸烷基酯價格昂貴、有毒,因此為了降低制備成本,改善生產條件和減少環境污染,張啟衛等[10]用硅酸鈉為無機si02組分的前驅物,與PVAC或PMMA的THF溶膠混合,經溶膠一凝膠過程制備出聚合物/Si02雜化材料。結果表明,si02含量在一定范圍時,由于發生了納米級微區效應,有機一無機兩相間相容性好,不產生相分離,材料透光率提高,熱穩定性增強。
3聚合物/ 納米Si O2 復合材料的研究進展
3.1 納米SiO2/環氧樹脂復合材料
Mascia等通過紅外光譜和定性黏度分析得知,納米SiO2 和環氧樹脂隨著環氧樹脂的分子量增加、加入偶聯劑、增加溶劑的極性以及提高反應溫度都會使二者的相容性提高[11]。寧榮昌等用分散混合法研究了納米SiO2有無表面處理及其含量對復合材料性能的影響, 采用透射電鏡和正電子湮沒技術(PALS)對納米SiO2 的分布和自由體積的尺寸及濃度進行了表征[12]。結果表明, SiO2表面處理后, 復合材料性能得到提高, 使環氧樹脂增強和增韌;且納米SiO2含量為3 % 時,自由體積濃度最小, 納米復合材料的性能最佳。劉競超等通過原位分散聚合法制得了納米SiO2/環氧樹脂復合材料[13]。結果表明, 對復合材料力學性能的影響較大的是偶聯劑, 在最優工藝條件下制得的復合材料沖擊強度、拉伸強度比基體分別提高了124% 和30%;復合材料的Tg和耐熱性也有所提高。
3.2 納米SiO2/丙烯酸酯類復合材料
歐玉春等用原位聚合方法制備了分散相粒徑介于130 nm 左右的PMMA/SiO2(聚甲基丙烯酸甲酯/二氧化硅)復合材料[14]。結果表明, 經表面處理的SiO2在復合材料基體中分散均勻, 界面粘結好;SiO2粒子的填充使基體的Tg和損耗峰上升, 隨著SiO2含量的增加, 對應試樣的Tg和損耗峰值增大;隨著SiO2含量的增加, 基體的拉伸強度、彈性模量表現為先下降后升高, 而基體的斷裂伸長率表現為先升高后下降。武利民等通過原位聚合、高速剪切法分散共混和球磨法分散共混等3 種方法制備丙烯酸酯/納米SiO2復合乳液, 以相同的方法制備丙烯酸酯/微米SiO2復合乳液[15]。結果表明, 共混法制得的納米復合物的拉伸強度、斷裂伸長率和玻璃化轉變溫度隨納米SiO2含量的增加先上升然后逐漸下降。涂層對紫外光的吸收和透過隨納米SiO2 含量的增加分別呈上升和下降趨勢, 而微米SiO2復合丙烯酸酯乳液, 其涂層對紫外光的吸收和透過基本不受微米SiO2 的影響。
3.3 納米SiO2/硅橡膠復合材料
王世敏等對納米SiO2/二甲基硅氧烷復合材料的光學、力學性能進行了研究[16]。結果表明, 復合材料對波長λ>390 nm 的可見光基本能透過, 透過率達80%, 硬度隨納米SiO2的增加呈上升趨勢。Mackenzie 等制備的納米SiO2/硅氧烷復合材料在非氧化氣氛中加熱到1 000 ℃以上, 分子發生重排, 形成塊狀微孔體;繼續加熱到1 400 ℃時,有機碳仍不分解, 且熱膨脹系數很小[17]。由于聚硅氧烷的高柔順性, 在溶膠-凝膠過程中不會因干燥而破裂, 該材料可以作為涂層改善基體(如聚合物、金屬)表面的物理化學性質。潘偉等研究SiO2納米粉對硅橡膠復合材料的導電機理、壓阻及阻溫效應的影響[18]。結果表明,隨著SiO2納米粉的增加, 壓阻效應越來越顯著,在一定壓力范圍內, 材料電阻隨壓力呈線性增加;同時, SiO2納米粉的加入使復合材料的電阻隨溫度增加而增加。
3.4 納米SiO2/聚碳酸酯材料
聚碳酸酯具有較好的透明性, 較高的硬度, 以及較強的蠕變性。為了進一步提高其應用價值, 王金平等以聚碳酸酯為基體, 采用溶膠-凝膠法技術在聚碳酸酯表面覆蓋一層納米SiO2無機涂層, 涂層與聚碳酸酯較好的結合, 使材料的耐磨性得到明顯提高[19]。
3.5 納米SiO2/聚酰亞胺復合材料 聚酰亞胺(PI)是一種廣泛應用于航空、航天及微電子領域的功能材料, 它的優點是介電性良好,力學性能優良, 但其吸水性強和熱膨脹性高的缺點限制了他的應用。而采用納米SiO2改性后的PI 在這方面得到了很大改善。楊勇等的研究表明, 采用納米SiO2改性后的PI 其熱穩定性得到加強, 熱膨脹系數得到降低[20]。曹峰等研究PI/SiO2復合材料的力學性能時發現, 隨著SiO2含量的增加, 其楊氏模量、拉伸強度、斷裂強度增加, 加入適量的插層劑, 有利于增加有機分子與無機物分子之間的相容性, 從而可制備強度和韌性更加優異的復合材料[21]。
3.6 納米SiO2/聚烯烴類復合材料
張彥奇等采用熔融共混法制備了線性低密度聚乙烯(LLDPE)/納米SiO2復合材料[22]。結果表明, 納米SiO2使LLDPE 的拉伸彈性模量、沖擊強度、拉伸強度提高, 且均在納米SiO2用量為3 份左右時達到最大值;加入少量的納米SiO2后, LLDPE 薄膜對長波紅外線(7~11 μm)的吸收能力較純LLDPE 膜有顯著提高, 透光率略有下降, 但霧度提高。曲寧等利用納米SiO2、馬來酸酐接枝PE(PE-g-MAH)和PP 通過熔融共混制備了PP/納米SiO2復合材料[23]。結果表明, 經表面處理、用量為4 %的納米SiO2 與4 % 的PE-g-MAH 發生協同作用, 可以使PP/納米SiO2復合材料的沖擊強度提高40 %,拉伸強度提高10%, 耐熱溫度提高22℃。
3.7 納米SiO2/尼龍復合材料
E.Reynaud 等研究了不同粒徑和含量的納米SiO2 與尼龍6 通過原位聚合得到的納米復合材料的特性[24]。形貌分析出粒子的存在不影響復合材料的結晶相;粒子的加入明顯增強了基體的彈性模量,且復合材料的性能受粒子尺寸和分散狀況的影響。
3.8 納米SiO2/聚醚酮類樹脂復合材料
邵鑫等研究了納米SiO2對聚醚砜酮(PPESUK)復合材料摩擦學性能的影響[25]。結果表明, 納米SiO2不但可以提高PPESUK 的耐磨性, 而且還有較好的減摩作用, 其最佳用量為25%。靳奇峰等采用懸浮液共混法制備了納米SiO2填充新型雜萘聯苯聚醚酮(PPEK)復合材料[26]。當納米SiO2用量為1 % 時, 復合材料的綜合力學性能最佳。納米SiO2的加入使得復合材料的摩擦性能比純PPEK 有了明顯提高, 當納米SiO2用量為7 % 時,材料的摩擦磨損性能最好, 并且在大載荷下納米SiO2 更能有效改善復合材料的摩擦磨損性能。
3.9納米SiO2/聚苯硫醚(PPS)復合材料
張文栓等首先將納米SiO2粒子與硅烷偶聯劑KH-550 的乙醇溶液混合, 在40 ℃以下用超聲波振蕩60 min 后脫去溶劑, 烘干后與PPS 在高速攪拌機中混合均勻, 然后用雙螺桿擠出機造粒制得PPS/納米SiO2復合材料[27]。納米SiO2粒子呈顆粒狀均勻分布在PPS 基體中, 尺寸在10~40 nm 范圍內。當納米SiO2用量為3 % 時, PPS/納米SiO2 復合材料的力學性能最佳, 拉伸強度、彎曲彈性模量和缺口沖擊強度分別提高13.4%、7.4% 和27.3%。張而耕等用轉化劑、分散劑和穩定劑制備了PPS/納米SiO2水基涂料[28]。PPS/納米SiO2復合涂層的耐沖蝕磨損性比普通涂層提高了約50 倍, 能夠用于零部件的防沖蝕磨損。
3.10納米SiO2/PMMA 復合材料
張啟衛等利用溶膠-凝膠法制備了PMMA/納米SiO2復合材料[29]。發現PMMA 與納米SiO2兩相間的相容性好, 材料透光率可達80 %, 并且熱穩定性和Tg都比純PMMA 有較大的提高。郭衛紅等將經過表面處理的納米SiO2分散于PMMA 單體中形成膠體, 原位聚合制備了PMMA/納米SiO2復合材料[30]。結果表明, 復合材料的耐紫外線輻射能力提高1 倍以上, 沖擊強度提高80 %。同時由于納米粒子尺寸小于可見光波長, 復合材料具有高的光澤度和良好的透明度。
4總結與展望
聚合物/納米SiO2復合材料具有優良的綜合性能, 展現出誘人的應用前景。盡管近年來對其研究較多, 并取得了較大進展, 但是對它的研究還不夠深入, 還有許多問題亟待研究和解決, 如納米SiO2在聚合物基體中的均勻分散問題, 納米復合材料的相界面結構, 納米SiO2 對聚合物性能影響的機理等。相信隨著制備技術的進一步完善及對材料的結構與性能關系的進一步了解, 人們將能按照需要來設計和生產高性能和多功能的聚合物/納米SiO2復合材料。納米Si02可以改性多種高分子材料,通常對聚合物的機械性能如拉伸強度、彈性模量、斷裂伸長率,以及熱穩定性、動態力學行為、光學行為等都有較大影響。因此人們都在力求解決很多問題,諸如納米Si02在聚合物基體中的均勻分散;納米Si02復合材料中有機相和無機相的相界面結構;Si02粒徑大小、幾何形狀等形態參數及添加量對復合材料性能的影響;納米Si02對聚合物基體材料性能影響的機理等。隨著研究的不斷深入,納米Si02一聚合物體系將在越來越多的領域發揮出它的重要作用。
參考文獻
[1]Gabrielson L, Edirisinghe M J.On the dispersion offine ceramic powders in polymers.Journal of MaterialsScience Letters, 1996, 15(13): 1 105~1 107 [2]徐國財, 張立德.納米復合材料.北京: 化學工業出版社, 2002.32~43
[3]姜云鵬,SiO2 改性聚苯硫醚力學性能的研究.高分子材料科學與工程,2002,18(5):177 [4]張志華,吳廣明,等.材料科學與工程學報,2003,21(4):498
[5]郭衛紅,李盾,等.納米SiO2 增強增韌聚氯乙烯復合材料的研究.塑料工業,1998,26(5):10 [6]石璞,晉剛,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.國塑料,2002,16(1):3 [7]張彥奇,華幼卿.納米SiO2 填充雜萘聯苯聚醚酮復合材料的性能研究.應用化學,2003,20(2):638 [8] 歐玉春,楊鋒,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.分子學報,1997,2:199 [9]Jose-Luiz L X,Alain G,Elodie B L J Colloid and InterfacaSci,2002,250(1):82 [10] 張啟衛,章永化,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.料科學與工程,2002,20(3):381 [11]Mascia Leno, Tang Tao.Curing and morphology ofepoxy resin-silica hybrids.Journal of MaterialsChemistry, 1998, 8(11): 2 417~2 421 [12]鄭亞萍, 寧榮昌.納米SiO2 環氧樹脂復合材料性能研究.玻璃鋼/復合材料, 2001(2): 34~36
[13]鄭亞萍, 寧榮昌.納米SiO2/環氧樹脂復合材料性能研究.高分子材料科學與工程, 2002, 18(5): 148~154 [14]歐玉春, 楊鋒, 莊嚴, 等.原位分散聚合聚甲基丙烯酸甲酯/二氧化硅納米復合材料研究.高分子學報, 1997(2): 199~205 [15]熊明娜, 武利民, 周樹學, 等.丙烯酸酯/納米SiO2 復合乳液的制備和表征.涂料工業, 2002(11): 1~3 [16]王世敏, 吳崇浩, 趙雷, 等.聚二甲基硅氧烷/SiO2雜化材料的制備與性能的研究.材料科學與工程學報,2003, 21(2): 205~207 [17]Mackenzie John D, Chung Y J, Hu Y.RubberyOrmosils and their Applications.Journal ofNon-Crystalline Solids, 1992, 147-148: 271~278 [18]潘偉, 翟普, 劉立志.SiO2 納米粉對炭黑/硅橡膠復合材料的壓阻、阻溫特性的影響.材料研究學報,1997, 11(4): 397~401 [19]王金平, 俞志欣, 何捷, 等.用sol-gel 法在pc 上制備有機-無機復合耐磨涂層.功能材料, 1999, 30(3): 323~325 [20]楊勇, 朱子康, 漆宗能.溶膠-凝膠法制備可溶性聚酰亞胺/二氧化硅納米復合材料的研究.功能材料,1999, 30(1): 78~81 [21]曹峰, 朱子康, 印杰, 等.新型光敏PI/SiO2 雜化材料的制備與性能研究.功能高分子學報, 2000, 13(3): 25~29 [22]張彥奇, 華幼卿.LLDPE/納米SiO2 復合材料的力學性能和光學性能研究.高分子學報, 2003(5): 683~84 [23]Reynaud E, Jouen T, Gauthier C, et al.Nanofillersin polymeric matrix: a study on silica reinforcedPA6.Polymer, 2001, 42(21): 8 759~8 768 [24]邵鑫, 田軍, 劉維民, 等.納米SiO2 對聚醚砜酮復合材料摩擦學性能的影響.材料工程, 2002(2):38~39 [25]靳奇峰, 廖功雄, 蹇錫高, 等.納米SiO2 填充雜萘聯苯聚醚酮復合材料的性能研究.宇航材料工藝, 2005(2): 18~19 [26]張而耕, 王志文.PPS/SiO2 納米復合涂層的制備和性能測試.機械工程材料, 2003, 27(5): 36~37 [27]張啟衛, 章永化, 陳守明, 等.聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.應用化學, 2002, 19(9): 874~875 [28]郭衛紅, 唐頌超, 周達飛, 等.納米SiO2 在MMA 單體中在原位分散聚合的研究.材料導報, 2000(10):71~72 [29]張毅, 馬秀清, 李永超, 等.納米SiO2 增強增韌不飽和聚酯樹脂的研究.中國塑料, 2004, 18(2): 35~36 [30]周文英, 李海東, 牛國良, 等.納米SiO2 改性不飽和聚酯樹脂.纖維復合材料, 2003(14): 14~15
第三篇:納米論文
納米技術在醫學上的應用
[摘要]納米醫學是納米技術與醫藥技術結合的產物,納米醫學研究在疾病診斷和治療方面顯示出了巨大的應用潛力。近幾年,納米技術突飛猛進,作為納米技術的重要領域的納米生物工程也取得了輝煌的成就。本文從納米醫學、納米生物技術和納米生物材料三個方面,講述了納米生物工程的重大進展。本文就納米診斷技術、組織修復和再生醫學中的納米材料、納米藥物載體、納米藥物等方面的研究現狀與進展進行綜述,并探討納米醫學的發展前景。
[引言] 納米技術的基本概念是用單個原子、分子制造和操作物質的技術,是現代高科技前沿技術.納米技術應用前景廣闊,幾乎涉及現有科學技術的所有領域,世界各國都把納米技術列為重點發展項目,投入巨資搶占納米技術戰略高地.[關鍵詞]納米醫學;納米生物材料;診斷;治療
1、跨世紀的新學科——納米科技
所謂/納米科技,就是在0.1~100納米的尺度上,研究和利用原子和分子的結構、特征及相互作用的高新科學技術,它是現代科學和先進工程技術結合的產物。1990年7月,第一屆國際納米科技會議的召開,標志著納米科技的正式誕生。時至今日,納米科技涉及到幾乎現有的所有科學技術領域。它的誕生,使人類改造自然的能力直接延伸到分子和原子。它的最終目標,是人類按照自己的意志操縱單個原子,在納米尺度上制造具有特定功能的產品,實現生產方式的飛 躍。目前,納米科技已經取得一系列成果,正處于重大突破的前夜。研究者認為,這一興起于本世紀90年代的納米科技,必將雄踞于21世紀,對人類社會產生重大而深遠的影響。
2、納米醫學的提出
納米醫學的形成除了納米技術之外,其醫學本身也應具有可應用納米技術的客觀基礎和必要條件??陀^基礎是指,像其他物質一樣,醫學研究的主體———人體本身是由分子和原子構成的。實現納米醫學的必要條件是,要在分子水平上對人體有更為全面而詳盡的了解。隨著現代生物學和現代醫學的不斷發展,人類在生物學和醫學等領域的研究內容已開始從細胞、染色體等微米尺度的結構深入到更小的層次,進入到單個分子甚至分子內部的結構。這些極其微細的分子結構的特征:尺度空間在0.1-100 nm,屬于納米技術的尺度范圍。研究這些納米尺度的分子結構和生命現象的學科,就是納米生物學和納米醫學。納米醫學是一門涉及物理學、化學、量子學、材料學、電子學、計算機學、生物學以及醫學等眾多領域的綜合 性交叉學科。Freitas曾給納米醫學下過一個較詳細的定義:他認為,納米醫學是利用人體分子工具和分子知識,預防、診斷、治療疾病和創傷,劫除疼痛,保護和改善人體健康的科學和技術。目前的納米醫學研究水平還處于初級階段,當然,由于各國科學工者的不懈努力,納米醫學研究領域已初露曙光,有部分研究成果已開始接近臨床應用。
從定義來看,納米醫學可以分為兩大類,一是在分子水平上的醫學研究,基因藥物和基因療法等就是典型體現;二是把其他領域的納米研究成果引入醫學領域,如某種納米裝置在醫療和診斷上的應用。納米醫學的奧秘在于,可以從納米量級的尺度來進行原來不可能達到的醫療操作和疾病防治。當生命物質的結構單元小到納米量級的時候,其性質會有意想不到的變化。這種變化既包括物質的原有性能變得更好,還可能有我們所意想不到的性能和效益,從而用來治病防病。
3、納米技術的醫學應用 3.1 診斷疾病
在診斷方面,將應用納米醫學技術手段,在診室內進行全面的基因檢查和特殊細菌涂層標記物的實時全身掃描;檢測腫瘤細胞抗原、礦質沉積物、可疑的毒素、源于遺傳或生活方式的激素失衡,以及其它以亞毫米空間分辨率制成所定目標三維圖譜的特定分子。在納米醫學時代,這些強有力的手段將使醫務人員能夠檢查患者的任何部位,且可詳盡到分子水平,并能以合理的費用,在數分鐘或數秒鐘內獲得所需的結果。許多以往診斷比較困難或無法診斷的疾病,隨著納米技術的介入,將很容易被確診。為判斷胎兒是否具有遺傳缺陷,以往常采用價格昂貴并對人體有損害的羊水診斷技術。如今應用納米技術,可簡便安全地達到目的。孕8周左右血液中開始出現非常少量的胎兒細胞,用納米粒很容易將這些胎兒細胞分離出來進行診斷。目前美國已將此項技術應用于臨床診斷。肝癌患者由于早期沒有明顯癥狀,一旦發現常已到晚期,難以治愈,因而早期診斷極為重要。中國醫科大學第二臨床學院把納米粒應用于醫學研究,經過4年的努力,完成了超順磁性氧化鐵超微顆粒脂質體的研究。動物實驗證明,運用這項研究成果,可以發現直徑3mm以下的肝腫瘤。這對肝癌的早期診斷、早期治療有著十分重要的意義。3.2 納米藥物和納米藥物載體
這是納米醫學中的一個非?;钴S的領域,適時準確地釋放藥物是它的基本功能之一??茖W家正在為糖尿病人研制超小型的,模仿健康人體內的葡萄糖檢測系統。它能夠被植入皮下,監測血糖水平,在必要的時候釋放出胰島素,使病人體內的血糖和胰島素含量總是處于正常狀態。美國密西根大學的博士正在設計一種納米/智能炸彈,它可以識別出癌細胞的化學特征。這種智能炸彈很小,僅有20nm左右,能夠進入并摧毀單個的癌細胞。
德國醫生嘗試借助磁性納米微粒治療癌癥,并在動物實驗中取得了較好療效。將一些極其細小的氧化鐵納米微粒注入患者的腫瘤里,然后將患者置于可變的磁場中,氧化鐵納米微粒升溫到45~ 47度,這一溫度可慢慢熱死癌細胞。由于腫瘤附近的機體組織中不存在磁性微粒,因此這些健康組織的溫度不會升高,也不會受到傷害??茖W家指出,將磁性納米顆粒與藥物結合,注入到人體內,在外磁場作用下,藥物向病變部位集中,從而達到定向治療的目的,將大大提高腫瘤的藥物治療效果。
納米藥物與傳統的分子藥物的根本區別在于它是顆粒藥物。廣義的納米藥物可分為兩類:一類是納米藥物載體,即指溶解或分散有分子藥物的各種納米顆粒,如納米球、納米囊、納米脂質體等。二是納米藥物,即指直接將原料藥物加工成的納米顆粒,或利用嶄新的納米結構或納米特性,發現基于新型納米顆粒的高效低毒的治療或診斷藥物。前者是對傳統藥物的改良,而后者強調的是把納米材料本身作為藥物。
3.2.1 納米藥物
直接以納米顆粒作為藥物的應用之一是抗菌藥物。納米抗菌藥物具有廣譜、親水、環保、遇水后殺菌力更強、不會誘導細菌耐藥性等多種性能。以這種抗菌顆粒為原料,成功地開發出了創傷貼、潰瘍貼等納米醫藥類產品。例如,納米二氧化鈦樹脂基托材料具有一定的抗變形鏈球菌和抗白色念珠菌的效果,當樹脂基托中抗菌劑的濃度達到3%時,即可達到滿意的抗菌效果。
無機納米顆粒作為新型的抗癌藥物為腫瘤治療提供了新的思路。研究人員用Gd@C82(OH)22處理得肝癌的小鼠,在10.7mol/kg的注射劑量下能有效地抑制腫瘤生長,同時對機體不產生任何毒性。其抑瘤效應不是通過納米顆粒對腫瘤的直接殺傷起作用,而是可能通過激活機體免疫來實現對腫瘤的抑制作用。納米羥基磷灰石在體外對惡性腫瘤細胞產生明顯的抑制作用,而對正常細胞作用甚微,可望通過進一步的研究獲得一種區別于傳統的化療藥物的納米無機抗癌藥物。此外,有的物質納米化后出現新的治療作用,如二氧化鈦納米粒子可抑制癌細胞增殖;二氧化鈰納米顆??梢郧宄壑械碾娍剐苑肿硬⒎乐我恍┯捎谝暰W膜老化而帶來的疾病。
3.2.2 納米藥物載體
實現細胞和亞細胞層次上藥物的靶向傳遞和智能控制釋放,是降低藥物毒副作用、提高治療效果的共性問題。納米粒子介導的藥物輸送是納米醫學領域的一個關鍵技術,在藥物輸送方面具有許多優越性。目前,用作藥物載體的材料有金屬納米顆粒、生物降解性高分子納米顆粒及生物活性納米顆粒等。理想的納米藥物載體應具備以下性質:毒性較低或沒有毒性;具有適宜的制備及提純方法;具有合適的粒徑與形狀;具有較高的載藥量;具有較高的包封率;對藥物具有良好的釋放特性;具有良好的生物相容性,可生物降解或可被機體排出;具有較長的體內循環時間,并能在療效相 關部位持久存。3.3 納米生物技術
納米生物技術是納米技術和生物技術相結合的產物,它即可以用于生物醫學,也可以服務于其它社會需求。所包含的內容非常豐富,并以極快的速度增加和發展,難以概述。
3.3.1生物芯片技術
生物芯片是在很小幾何尺度的表面積上,裝配一種或集成多種生物活性,僅用微量生理或生物采樣,即可以同時檢測和研究不同的生物細胞、生物分子和DNA的特性,以及它們之間的相互作用,獲得生命微觀活動的規律。生物芯片可以粗略地分為細胞芯片、蛋白質芯片(生物分子芯片)和基因芯片(即DNA芯片)等幾類,都有集成、并行和快速檢測的優點,已成為21世紀生物醫學工程的前沿科技。
近2年,已經通過微制作(MEMS)技術,制成了微米量級的機械手,能夠在細胞溶液中捕捉到單個細胞,進行細胞結構、功能和通訊等特性研究。美國哈佛大學的教授領導的研究人員,發展了微電子工業普遍使用的光刻技術在生物學領域的應用,并研制出效果更好的軟光刻方法。以此,制出了可以捕捉和固定單個細胞的生物芯片,通過調節細胞間距等,研究細胞分泌和胞間通訊。此類細胞芯片還可以作細胞分類和純化等。它的功能原理非常簡單,僅利用芯片表面微單元的幾何尺寸和表面特性,即可達到選擇和固定細胞及細胞面密度控制。
美國圣地亞國家實驗室的發現實現了納米愛好者的預言。正像所預想的那樣,納米技術可以在血流中進行巡航探測,即時發現諸如病毒和細菌類型的外來入侵者,并予以殲滅,從而消除傳染性疾病。
研究人員做了一個雛形裝置,發揮芯片實驗室的功能,它可以沿血流流動并跟蹤像鐮狀細胞血癥和感染了愛滋病的細胞。血液細胞被導入一個發射激光的腔體表面,從而改變激光的形成。癌細胞會產生一種明亮的閃光;而健康細胞只發射一種標準波長的光,以此鑒別癌變。3.3.2納米探針
一種探測單個活細胞的納米傳感器,探頭尺寸僅為納米量級,當它插入活細胞時,可探知會導致腫瘤的早期DNA損傷。
3.4組織修復和再生醫學中的納米材料
將納米技術與組織工程技術相結合,構建具有納米拓撲結構的細胞生長支架正在形成一個嶄新的研究方向。相對于微米尺度,納米尺度的拓撲結構與機體內細胞生長的自然環境更為相似。納米拓撲結構的構建有可能從分子和細胞水平上控制生物材料與細胞間的相互作用,引發特異性細胞反應,對于組織再生與修復具有潛在的應用前景和重要意義。將納米纖維水凝膠作為神經組織的支架,在其中生長的鼠神經前體細胞的生長速度明顯快于對照材料。向高分子材料中加入碳納米管可以顯著改善原有聚合物的傳導性、強度、彈性、韌性和耐久性,同時還可以改進基體材料的生物相容性。研究發現,隨著復合物中碳納米管含量的增加,神經元細胞和成骨細胞在復合材料上的黏附與生長也越來越活躍,而星形細胞和成纖維細胞的活性則呈現同等程度的下降。研究人員設計的人造紅細胞輸送氧的能力是同等體積天然紅細胞的236倍,可應用于貧血癥的局部治療、人工呼吸、肺功能喪失和體育運動需要的額外耗氧等。研究人員成功合成了模擬骨骼亞結構的納米物質,該物質可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模數匹配,不易骨折,且與正常骨組織連接緊密,顯示出明顯的正畸應用優勢。
納米自組裝短肽材料RADA16-I與細胞外基質具有很高相似性,RADA16-I納米支架可以作為一種臨時性的細胞培養人工支架,它能很好地支持功能型細胞在受損位置附近生長、遷移和分化,因而有利于細胞抵達傷口縫隙,使組織得以再生。有研究人員利用RADA16-I納米支架修復了倉鼠腦部的急性創傷,并且恢復了倉鼠的視覺功能。RADA16-I形成的水凝膠可用作新型的簡易止血劑,用于多種組織和多種不同類型傷口的止血。
4、我國發展納米生物學和納米醫學的現狀和發展策略
目前,我國在納米生物和醫學領域內的研究基礎還比較薄弱,通過采取各種激勵措施和各種研究計劃的實施,特別是國家自然科學基金委的納米技術重大研究計劃對納米生物和納米醫學項目的支持,我國在納米生物和納米醫學方面的研究狀況有了很大的改善,生物、醫學界的許多院、所相繼建立了有關納米技術的研究室,如中國醫學科學院基礎醫學研究所、軍事醫學科學院毒物藥物研究所和生物物理研究所等都設立了納米研究室,初步形成了一只較強的研究隊伍。近年來,來自化學、物理、信息、藥物、生物和醫學等領域的科學家通過幾次研討會進一步明確了納米生物和納米醫學領域的研究方向和內容,并建立了較密切的合作。我國在納米生物和納米醫學的研究領域也涌現了一批極具特色的研究成果,如在生物傳感器、生物芯片、新型藥物載體和靶向藥物、新型納米藥物劑型、新造影劑、重大疾病的機制、納米材料的應用和生物安全性及重大疾病預防和早期診斷與治療技術等方面。但是,這些研究的水準與國際先進水平還有相當的差距,離國家、社會的需求也有相當遠的距離。
納米醫學工程的建立不僅是因為有其迫切的需要,而且也因為有了實現的可能。如今,納米科技在國際上已嶄露頭角,世界各發達國家紛紛開展納米科技的研究。在我國,科技界對納米科技的重要性有了共識,納米科技研究已取得引人注目的成果。學科發展和社會需要是推動社會發展的巨大動力,學科發展可以創造新的需求,社會需求可以促進學科向深度和廣度發展。納米生物醫學工程正在出現,我們無力將它阻擋。雖然它的廣泛應用尚有待時日,并潛在危險,但若沒有它,我們現在面臨的許多生物醫學工程問題就不可能得到滿意的解決。
人類正在被歷史及自身推向一個嶄新的陌生世界,倘若人類能直接利用原子、分子進行生產活動,這將是一個質的飛躍,將改變人類的生產方式,并空前地提高生產能力,有可能從根本上解決人類面臨的諸多困難和危機。我們有必要把納米科技和生物醫學工程概念進行拓展,把納米科技的理論與方法引入生物醫學工程的相關研究領域,創立新的邊緣學科——納米生物醫學工程??梢韵嘈?納米醫學工程將會成為納米科技的重要分支,并開創生物醫學工程新紀元??茖W家認為,納米科技在生物醫學方面,甚至有可能超過信息技術和基因工程,成為決勝未來的關鍵性技術。[參 考 文 獻] [1]劉吉平,郝向陽.納米科學與技術[M].北京:科學出版社,2002:2,227-229,234-238,239-242,230-234.[2]李道萍.21世紀嶄新的學科——納米醫學[J]1世界新醫學信息文摘,2003,1(3):208-210.[3]李會東.納米技術在生物學與醫學領域中的應用[J].湘潭師范學院學報(自然科學版),2005,27(2):49-51.[4]皮洪瓊,吳俊,袁直等.注射用生物可降解胰島素納米微球的制備[J]1應用化學,2001,18(5):365-369.[5]常津.阿毒素免疫磁性毫微粒的體內磁靶向定位研究[J].中國生物醫學工程學報,1996,15(4):216-221.[6]張共清,梁屹.納米技術在生物醫學的應用[J]1中國醫學科學院學報,2002,24(2):197-201.〔7〕中國社會科學院語言研究所詞典編輯室編.現代漢語詞典.北京:商務印書館2002年版:1711〔8〕奇云.21世紀的納米醫學.健康報,2001(4):12〔9〕紀小龍.納米醫學怎樣診治疾病.健康報,2001,7,19[9]奇 云.納米醫學——21世紀的科技新領域[N].中國醫藥報,1995年6月8日~1995年7月18日,第1160期-1178期,第7版.[10]奇 云.納米材料——21世紀的新材料[J].科技導報,1992(10):28-31.[11]奇 云.納米電子學研究進展[J].現代物理知識,1994,6(5):24-25.[12]奇 云.納米生物學的誘人前景[N].光明日報,1993年5月7日,第15864號第3版.[13]奇 云.納米化學研究進展[J].自然雜志,1993,16(9、10):2-5.[14]奇 云.納米化學研究進展[J].現代化工,1993,13(8):38-39.[15] 華中一.納米科學與技術[J].科學,2000,52(5):6-10..
第四篇:納米材料論文
納米科技及納米材料
【摘 要】納米技術是當今世界最有前途的決定性技術。納米材料在結構、光電和化學性質等方面的誘人特征,引起物理學家、材料學家和化學家的濃厚愛好。80年代初期納米材料這一概念形成以后,世界各國對這種材料給予極大關注。它所具有的獨特的物理和化學特性,使人們意識到它的發展可能給物理、化學、材料、生物、醫藥等學科的研究帶來新的機遇。文章簡要地概述了納米技術,納米材料的分類、特性以及納米材料在催化、涂料、醫藥等領域的應用,并展望了納米材料廣闊的應用前景。
【關鍵詞】納米技術;納米材料;分類;特性;應用;前景
一、納米科技及納米材料的涵義
納米科技是20世紀80年代末誕生并正在崛起的新科技,是一門在0.1~ 100 nm尺度空間內,研究電子、原子和分子運動規律和特性的高技術學科。其涵義是人類在納米尺寸(10-9--10-7m)范圍內認識和改造自然,最終目標是通過直接操縱和安排原子、分子而創造特定功能的新物質。納米科技是現代物理學與先進工程技術相結合的基礎上誕生的,是一門基礎研究與應用研究緊密聯系的新興科學技術。其中納米材料是納米科技的重要組成部分。
納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質來說,納米是一個很小的單位,廣義地說,納米材料是指在三維空間中至少有一維處在納米尺度范圍(1-100nm)或由他們作為基本單元構成的材料。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區別常規尺寸材料的一些特殊物理化學特性。
二、納米材料的分類
按其顆粒組成的尺寸和排列狀態,可分為納米晶體和納米非晶體。前者指所包含的納米微粒為晶體,后者由具有短程序的非晶態納米微粒組成,如納米非晶態薄膜.
按其結構來分,納米材料的基本單元可以分為四類:零維的原子團簇和納米微粒;一維調制的納米單層或多層薄膜;二維調制的納米纖維結構;三維調制的納米相材料。
三、納米材料的特性
納米材料的特性既不同于原子,又不同于結晶體,可以說它是一種不同于本體材料的新材料,其物理化學性質與本體材料有明顯差異。主要表現在:納米材料性能表現出強烈的尺寸依賴性。當粒子尺寸減小到納米級的某一尺寸時,則材料的物性會發生突變,與同組分的常規材料的性能完全不同,且同類材料的不同性能有不同的臨界尺寸,對同一性能,不同材料相應的臨界尺寸也有差異,所以當物質的粒子尺寸達到納米數量級時,將會表現出優于同組分的晶態或非晶態的性質。如熔點下降、強烈的化學活性和催化活性及特殊的光學、電學、磁學和力學及燒結性能。這主要是由納米材料的下列效應引起:小尺寸效應(體積效應);表面與界面效應;量子尺寸效應(久保效應);宏觀量子隧道效應。
1、小尺寸效應指當超微粒的尺寸與光波波長,傳導電子的德布羅意波長及超導態的相干長度、透射深度等物理特征尺寸相當或更小時,它的周期性邊界被破壞,從而使其聲、光、電、磁,熱力學等性能呈現新的尺寸效應。陶瓷材料在通常情況下呈現脆性,而由納米超微粒制成的納米陶瓷卻具有良好的韌性和延展性。這是由于納米超微粒制成的固體材料具有大的界面,界面原子排列相當混亂,原子在外力變形條件下容易遷移。因此使原先脆性的材料表現出良好的韌性和延展性,使陶瓷材料具有新奇的力學性能。
2、表面與界面效應指納米晶體粒表面原子數與總原子數之比隨粒徑變小而急劇增大后所引起的性質上的變化。例如粒子直徑為10納米時,微粒包含4000個原子,表面原子占40%;粒子直徑為1納米時,微粒包含有30個原子,表面原子占99%。主要原因就在于直徑減少,表面原子數量增多,因此納米粉微粒通常具有相當高的表面能。
3、當粒子的尺寸降到一定值時,金屬費米能級附近的電子能級出現由準連續變為離散的現象。當能級間距大于熱能、磁能、靜電能、靜磁能、光子能或超導態的凝聚能時,納米微粒會呈現一系列與宏觀物體截然不同的特性,稱之為量子尺寸效應。例如,有種金屬納米粒子吸收光線能力非常強,在1.1365千克水里只要放入千分之一這種粒子,水就會變得完全不透明。納米材料的量子尺寸效應使納米材料具有:高度光學非線性;特異性催化和光催化性;強氧化性與強還原性。用這一特性可制得光催化劑、強氧化劑與強還原劑。可使用于制備無機抗菌材料。
4、微觀粒子具有貫穿勢壘的能力稱為隧道效應。納米粒子的磁化強度等也有隧道效應,它們可以穿過宏觀系統的勢壘而產生變化,這種被稱為納米粒子的宏觀量子隧道效應。
四、納米材料的應用
1、在催化方面的應用
催化劑在許多化學化工領域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數傳統的催化劑不僅催化效率低,而且其制備是憑經驗進行,不僅造成生產原料的巨大浪費,使經濟效益難以提高,而且對環境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒于作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,主要是在有機物制備方面。光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸堿,對光穩定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑或鈕催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優化反應路徑、提高反應速度方面的研究,是未來催化科學不可忽視的重要研究課題,很可能給催化在工業上的應用帶來革命性的變革。
2、在涂料方面的應用
納米材料由于其表面和結構的非凡性,具有一般材料難以獲得的優異性能,顯示出強大的生命力。表面涂層技術也是當今世界關注的熱點。納米材料為表面涂層提供了良好的機遇,使得材料的功能化具有極大的可能。借助于傳統的涂層技術,添加納米材料,可獲得納米復合體系涂層,實現功能的飛躍,使得傳統涂層功能改性。在涂料中加入納米材料,可進一步提高其防護能力,實現防紫外線照射、耐大氣侵害和抗降解、變色等,在衛生用品上應用可起到殺菌保潔作用。在標牌上使用納米材料涂層,可利用其光學特性,達到儲存太陽能、節約能源的目的。在建材產品如玻璃、涂料中加入適宜的納米材料,可以達到減少光的透射和熱傳遞效果,產生隔熱、阻燃等效果。日本松下公司已研制出具有良好靜電屏蔽的納米涂料,所應用的納米微粒有氧化鐵、二氧化鈦和氧化鋅等。這些具有半導體特性的納米氧化物粒子,在室溫下具有比常規的氧化物高的導電特性,因而能起到靜電屏蔽作用,而且氧化物納米微粒的顏色不同,這樣還可以通過復合控制靜電屏蔽涂料的顏色,克服炭黑靜電屏蔽涂料只有單一顏色的單調性。在涂料中加入納米SiO2,可使涂料的抗老化性能、光潔度及強度成倍地增加。納米涂層具有良好的應用前景,將為涂層技術帶來一場新的技術革命,也將推動復合材料的研究開發與應用。
3、在醫藥方面的應用
21世紀控制藥物釋放、減少副作用、提高藥效、發展藥物定向治療,已提到研究日程上來。納米粒子將使藥物在人體內的傳輸更為方便。用數層納米粒子包裹的智能藥物進入人體,可主動搜索并攻擊癌細胞或修補損傷組織;使用納米技術的新型診斷儀器,只需檢測少量血液就能通過其中的蛋白質和DNA診斷出各種疾病,美國麻省理工學院已制備出以納米磁性材料作為藥物載體的靶定向藥物,稱之為“定向導彈”。
納米生物學用來研究在納米尺度上的生物過程,從而根據生物學原理發展分子應用工程。在金屬鐵的超細顆粒表面覆蓋一層厚為5~20nm的聚合物后,可以固定大量蛋白質非凡是酶,從而控制生化反應。這在生化技術、酶工程中大有用處。使納米技術和生物學相結合,研究分子生物器件,利用納米傳感器,可以獲取細胞內的生物信息,從而了解機體狀態,深化人們對生理及病理的解釋。
五、納米材料的前景
21世紀將是納米技術的時代,納米科學是一門將基礎科學和應用科學集于一體的新興科學,主要包括納米電子學、納米材料學和納米生物學等。納米材料的應用涉及到各個領域,在機械、電子、光學、磁學、化學和生物學領域有著廣泛的應用前景。納米科學技術的誕生,將對人類社會產生深遠的影響,并有可能從根本上解決人類面臨的許多問題,特別是能源、人類健康和環境保護等重大問題。
21世紀初的主要任務是依據納米材料各種新穎的物理和化學特性,設計出各種新型的材料和器件。通過納米材料科學技術對傳統產品的改性,增加其高科技含量以及發展納米結構的新型產品,目前已出現可喜的苗頭,具備了形成21世紀經濟新增長點的基礎。納米材料將成為材料科學領域一個大放異彩的明星展現在新材料、能源、信息等各個領域,發揮舉足輕重的作用。隨著其制備和改性技術的不斷發展,納米材料在精細化工和醫藥生產等諸多領域會得到日益廣泛的應用。
參考文獻: [1]殷景華,王雅珍等.功能材料概論.哈爾濱:哈爾濱工業大學出版社,2004.9 [2]林鴻溢.納米材料與納米技術.材料導報,1993 [3] 劉吉平,郝向東.納米科學與技術[M] .北京:高等教育出版社,2002 [4 張立德,牟季美.納米材料學[M].沈陽:遼寧科學技術出版社,1994
第五篇:納米材料 論文
TiO2納米制備及其改性和應用研究進展
于琳楓(12化學1班)
摘 要: 二氧化鈦納米管由于新奇的物理化學性質引起了廣泛的關注,本文就近年來在制備方法﹑反應機理﹑二級結構及摻雜和應用方面予以綜述,并討論了今后可能的研究發展方向。
關鍵詞: 二氧化鈦, 納米管, 制備, 反應機理, 二級結構
0 引言
TiO2俗稱鈦白粉,無毒、無味、無刺激性、熱穩定性好,且原料來源廣泛易得.它有三種晶型:板鈦礦、銳鈦礦和金紅石型。TiO2最早用來做涂料。
自從1991年Iijima發現碳納米管以來,已經用碳納米管模板合成出各種不同的氧化物納米管,如SiO2,V2O5,Al2O3,MoO3等,二氧化鈦由于其化學惰性,良好的生物兼容性,較強的氧化能力,以及抗化學腐蝕和光腐蝕的能力,價格低廉,在能量轉換﹑廢水處理﹑環境凈化﹑傳感器﹑涂料﹑化妝品﹑催化劑﹑填充劑等諸多領域引起了人們極大的關注。研究結果表明:TiO2的晶粒大小,形狀,相組成或表面修飾以及其它成分的摻雜對其性質﹑功能有顯著的影響,納米管的比表面積大,因而具有較高的吸附能力,有良好的選擇性,可望具有新奇的光電磁性質,具有很好的應用前景。本文對二氧化鈦納米管的制備,形成機理的最新進展進行綜述,并對今后的發展方向予以展望。TiO2納米材料的制備
1.1 氣相法
TiO2納米材料的氣相合成主要是在化學技術和物理技術上發展起來的。由于反應溫度高。氣相法具有成核速度快、產品結晶度高、純度高、生成粒子團聚少、粒徑易控制等優點。氣相法可以合成各種形貌的TiO2薄膜或粉體:納米棒、納米管、納米帶等。最常使用的氣相法是高溫濺射沉積法(SPD).Ahonen等用鈦醇鹽做前驅體。采用SPD法合成了TiO2納米粉體和薄膜。其他的氣相制備技術 1
包括:直流電濺射法、高頻無線電濺射法、分子束取向生長法和等離子體法等。
1.2 液相法
目前制備TiO2納米材料應用最廣泛的方法是各種前驅體的液相合成法。這種方法的優點是:原料來源廣泛、成本較低、設備簡單、便于大規模生產。但是產品粒子的均勻性差,在干燥和煅燒過程中易發生團聚.應用最普遍的液相制備方法包括液相沉積法和微乳液法等。
1.2.1 液相沉積法
液相沉積法是以無機鈦鹽作原料,通過直接沉積來制備功能TiO2粉體和薄膜的液相法。Deki等用(NH4)2TiF6和H3BO3的水溶液為起始溶液,制備了TiO2薄膜.Imai等用添加了尿素的TiF4和Ti(SO4)2的水溶液制備了不同形貌的TiO2納米材料。液相沉積法具有以下優點:對儀器要求比較低,溫度要求低(30~50℃),基片選擇比較廣等。
1.2.2 微乳液法
微乳液法制備納米TiO2是近年來才發展起來的一種方法。微乳液是指熱力學穩定分散的互不相溶的液體組成的宏觀上均一而微觀上不均勻的液體混合物。該法的制備原理是在表面活性劑作用下使兩種互不相溶的溶劑形成一個均勻的乳液。利用這兩種微乳液間的反應可得到無定型的TiO2,經煅燒、晶化得到TiO2納米晶體。賀進明等以TiCl4為原料、在十六烷基三甲基溴化銨、正己醇、水組成的微乳液體系中,在較低溫度下,制備了球形、花狀、捆綁絲和星形的金紅石型TiO2納米顆粒。微乳液法得到的粒子純度高、粒度小而且分布均勻,但穩定微乳液的制備較困難。因此,此法的關鍵在于制備穩定的微乳液。TiO2納米材料的反應機理
2.1氧化鈦納米管形成的反應機理
目前,對二氧化鈦納米管的形成機理和組成尚存在分歧。一般認為,銳鈦礦或者金紅石相以及無定形二氧化鈦在堿性條件下轉換為納米管都要經過單層的納米片的卷曲,類似于多層碳納米管形成的機理,即從1D到2D,再到 3D的組合過程。Sugimoto等研究證實了層狀的質子化的二氧化鈦納米片的存在,Sun和Masaki各自報道了鈦酸鉀或者鈦酸鈉形成的納米帶。在堿性條件下,各種鈦酸鹽可以形成層狀的結構,再通過折疊或卷曲形成納米管,但折疊或卷曲的順序
尚不確定。理論上鈦納米帶折疊或卷曲形成納米管時,可形成下列3種形狀:(a)蛇形的,即單層納米管的卷曲;(b)洋蔥式的,即幾個有弱相互作用的納米片的卷曲;(c)同心式的,通過卷曲或者折疊成多層的納米管。但實際上,(c)種形狀在合成時很難出現。Yao和Ma通過TEM研究分別證實了(a)和(b)構型鈦納米管的存在。
梁建等則認為鈦納米管的生長機理符合3-2-1D的生長模型,在水熱合成的過程中,在高壓高溫和強堿作用下,二氧化鈦塊體沿著(110)晶面被剝落成碎片,在片的兩面有不飽和懸掛鍵,隨著反應的進行,不飽和懸掛鍵增多,使薄片的表面活性增強,開始卷曲成管狀,以減少體系的能量,這一點從反應中間產物中觀察到大量的片狀及卷曲態得的到證明。Dimitry V.Bavykin[19]等系統地研究了合成溫度以及TiO2/NaOH mol 比對制備二氧化鈦納米管形貌的影響.認為 圖3-b 符合氧化鈦納米管的形成機理,并給出了形成機理的原始驅動力的解釋。Dimitry V.Bavykin等進行了氧化鈦納米管形成的熱力學和動力學研究。該模型見圖4 能夠很好的解釋實驗中增加TiO2/NaOH的摩爾比,氧化鈦納米管的平均管徑也增大。同時也可以解釋反應溫度增加有利于納米管的平均管徑增大。
2.2 納米管的熱穩定性及氧化鈦納米管的晶型
由于二氧化鈦納米管為無定形結構,在熱力學上,屬于介穩態。因此研究溫度對其熱穩定性的影響頗有必要。王保玉等以TiO2為原料制備成TiO2納米管,通過不同溫度焙燒得到不同的樣品,用TEM,XRD,FT-IR,BET等手段詳細的研究了溫度對晶型,比表面積的影響。研究表明,在300 ℃和400 ℃焙燒存在著兩次比表面積的突降,用化學法合成的納米管在400 ℃時,比表面積降到很小,管的結構嚴重被破壞。用化學法合成的納米管是無定形的,而模板法制備的納米管為銳鈦礦型的。這可能是因為化學法制備的納米管為多層,層與層之間不能形成三維空間的點陣結構。而王芹等研究則發現鈦納米管經過400 ℃熱處理后能保持其納米管的形貌,600 ℃有納米管間燒結的現象,800 ℃時管的形狀完全被破壞??梢姾铣煞椒ǖ牟煌?,氧化鈦納米管的熱穩定性也有很大的差異。
Graham Armstrong等用水熱法合成的氧化鈦納米管晶型為TiO2-B,具有竹子狀的二氧化鈦,是以TiO6八面體為基礎通過共用邊和共頂點形成的多晶,不同于銳鈦礦相,金紅石相和板鈦礦相,密度比上述三種晶型都稍低。但XRD的 3
結果表明,TiO2-B的結構中仍還有痕量的銳鈦礦相。梁建等用水熱法合成,控制溫度130 ℃,晶化時間2~3天,成功制備了多層的銳鈦礦和金紅石混晶的TiO2納米管。王保玉等研究發現,氧化鈦納米管為多層管,每個單層相當于 一個氧化鈦分子的厚度,層與層之間不在以化學鍵存在,Ti在納米管中的配位和八面體結構未達到飽和,拉曼光譜表明,TiO2納米管以無定型的形態存在。Tomoko Kasuga等用10 M NaOH溶液水熱條件下110 ℃處理20小時,得到具有針狀結構的納米管,晶型為銳鈦礦型??梢娂{米管的晶型,隨著水熱處理的溫度和時間變化而有所不同。TiO2納米材料的的二級結構
在水熱處理的過程中,除了生成納米管本身的一級結構外,還存在納米管之間的聚集,因而產生了氧化鈦納米管的二級結構。Dimitry V.Bavykin等研究發現,納米管的二級結構取決于前驅體二氧化鈦的量和所用NaOH的體積,其比例越小,生成的氧化鈦納米管越傾向聚集成球狀。這可能是由于在水熱條件下生成納米管的過程是一個比較緩慢的過程,影響因素較復雜造成的。TiO2納米材料的改性
TiO2納米材料的很多應用都是和其光學性質緊密相連的。但是,TiO2的帶隙在一定程度上限制了TiO2納米材料的效率。金紅石型TiO2的帶隙是3.0eV,銳鈦礦型是3.2eV,只能吸收紫外光,而紫外光在太陽光中只占很小的一部分(<10%)。因而,改善TiO2納米材料性能的一個目的就是將其光響應范圍從紫外光區拓展到可見光區,從而增加光活性。目前經常采用的改性方法包括貴金屬沉積、離子摻雜、染料敏化和半導體復合等方法。
5.1 貴金屬沉積
半導體表面貴金屬(包括Pt、Au、Pd、Rh、Ni、Cu和Ag)沉積可以通過浸漬還原、表面濺射等方法使貴金屬形成原子簇沉積附著在TiO2表面.由于貴金屬的費米能級比TiO2的更低,光激發電子能夠從導帶轉移到沉積在TiO2表面的貴金屬顆粒上,而光生價帶空穴仍然在TiO2上.這些行為大大降低了電子和空穴再結合的可能性,從而改善其光活性.Anpo和Takeuchi制備了Pt沉積TiO2用于光催化分解水制氫實驗,發現產氫效率得到了明顯提高.Sakthivel等研究了用Pt、Au和Pt沉積TiO2做光催化劑時對酸性綠16的光致氧化作用,發現與未沉積貴金屬的TiO2相比,光催化效率得到了不同程度的提高.5.2 離子摻雜
TiO2半導體離子摻雜技術是用高溫焙燒或輔助沉積等手段,通過反應將金屬離子轉入TiO2晶格結構之中。離子的摻雜可能在半導體晶格中引入缺陷位置和改變結晶度等。影響了電子和空穴的復合或改變了半導體的激發波長,從而改變TiO2的光活性。但是,只有一些特定的金屬離子有利于提高光量子效率,其他金屬離子的摻雜反而是有害的。Choi等系統地研究了21種金屬離子摻雜對
TiO2光催化活性的影響,發現Fe、Mo、Ru、Os、Re、V和Rh離子摻雜可以把TiO2的光響應拓寬到可見光范圍,其中Fe離子摻雜效果最好,而摻雜Co和Al會降低其光催化活性。Wu等定性分析了過渡金屬(Cr、Mn、Fe、Co、Ni和Cu)離子摻雜對TiO2的光催化活性的影響。Xu等比較了不同稀有金屬(La、Ce、Er、Pr、Gd、Nd和Sm)離子摻雜對TiO2光催化活性的影響。
陰離子摻雜可以改善TiO2在可見光下的光催化活性、光化學活性和光電化學活性。在TiO2晶體中摻雜陰離子(N、F、C、S等)可以將光響應移動到可見光范圍。不像金屬陽離子,陰離子不大可能成為電子和空穴的再結合中心,因而能夠更有效地加強光催化劑的催化活性。Asahi等測定了取代銳鈦礦TiO2中O的C、N、F、P和S的摻雜比例。發現p態N和2p態O的混合能使價帶邊緣向上移動從而使得TiO2帶隙變窄。盡管S摻雜同樣能使TiO2帶隙變窄,但是由于S離子半徑太大很難進入TiO2晶格。研究表明C和P摻雜由于摻雜太深不利于光生電荷載體傳遞到催化劑表面,所以對光催化活性的影響不是很有效。Ihara等將硫酸鈦和氨水的水解產物在400℃的干燥空氣中煅燒,得到了可見光激發的N摻雜TiO2光催化劑。
5.3 染料敏化
有機染料被廣泛地用作TiO2的光敏化劑來改善其光學性質。有機染料通常是具有低激發態的過渡金屬化合物,像吡啶化合物、苯二甲藍和金屬卟啉等。Yang等用聯吡啶、Carp等用苯二甲藍染料作為感光劑敏化TiO2,發現這些染料可以改善光生電子空穴對的電荷分離,從而改善了催化劑的可見光吸收。
5.4 半導體復合
半導體復合是提高TiO2光效率的有效手段。通過半導體的復合可以提高系統的電荷分離效率,擴展其光譜響應范圍.從本質上說,半導體復合可以看成是一種顆粒對另一種顆粒的修飾。Sukharev等將禁帶寬度與TiO2相近的半導體ZnO與TiO2復合,因復合半導體的能帶重疊使光譜響應得到發展。通過對ZnO/TiO2、TiO2/CdSe、TiO2/PbS、TiO2/WO3等體系的研究表明,復合半導體比單個半導體具有更高的光活性。GurunathanK等將CdS(帶隙2.4eV)和SnO2(帶隙3.5eV)復合在可見光下制氫得到了更高的產氫率??偨Y與展望
針對TiO2納米材料的性質、合成、改性和應用,人們已經做了廣泛的研究。隨著TiO2納米材料的合成和改性方面的突破,其性能得到不斷地改善,新應用也不斷的被發現。但從目前的研究成果看,可見光催化或分解水效率還普遍很低。因此如何通過對納米TiO2的改性,有效地利用太陽光中的可見光部分,降低TiO2光生電子空穴對的復合機率,提高其量子效率是今后的研究重點。
參考文獻
[1] 梁建,馬淑芳,韓培德等, 二氧化鈦納米管的合成及其表征,稀有金屬材料與工程, 34(2): 287-290, 2005.[2] 王保玉, 郭新勇, 張治軍等, 熱處理對TiO2納米管結構相變的影響高等學?;瘜W學報, 24: 1838-1841,2003.[3] 王芹, 陶杰, 翁履謙等, 氧化鈦納米管的合成機理與表征, 材料開發與應用, 19: 9-12, 2004.[4] 張青紅, 高濂, 鄭珊等, 制備均一形貌的長二氧化鈦納米管, 化學學報, 60(8): 1439-1444, 2002.[4] 賴躍坤, 孫嵐, 左娟等, 氧化鈦納米管陣列制備及形成機理, 物理化學學報, 20(9): 1063-1066, 2004.[5] 王芹, 陶杰, 翁履謙等, 氧化鈦納米管的水熱法合成機理研究, 南京航空航天大學學報, 37(1): 130-134, 2005.[6] 韓文濤, 馬建華, 郝彥忠, 二氧化鈦納米管的研究進展,河北科技大學學報, 26(3): 199-202,2005.[7]洪樟連.唐培松.周時鳳.樊先平.王智宇.錢國棟.王民權 水熱法制備納米TiO2的可見光波段光催化活性的溶劑效應[期刊論文]-稀有金屬材料與工程 2004(z1)[8]張景臣 納米二氧化鈦光催化劑[期刊論文]-合成技術及應用 2003(3)[9]蔡登科.張博.孟凡 納米TiO2在有機廢水處理方面的研究進展[期刊論文]-電力環境保護 2003(3)60.陳琦麗.唐超群.肖循.丁時鋒 二氧化鈦納米晶的制備及光催化活性研究[期刊論文]-材料科學與工程學報 2003(4)[10]江紅.戴春愛 納米TiO2光催化降解技術在污水處理方面的研究進展[期刊論文]-北方交通大學學報2003(6)
[11]余燈華.廖世軍 TiO2結構對光催化性能的影響及其提高的途徑[期刊論文]-環境污染治理技術與設備2003(2)[12]張青紅.高濂.孫靜 氧化硅對二氧化鈦納米晶相變和晶粒生長的抑制作用[期刊論文]-無機材料學報2002(3)[13]梅燕.賈振斌.曹江林.韓梅娟.張艷峰.魏雨 納米TiO2粉體的固定及其對甲醇的光電復合氧化[期刊論文]-太陽能學報 2002(2)[14]孫曉君.井立強.蔡偉民.周德瑞.徐朝鵬.李曉倩 用于可見光下Pt(Ⅳ)/TiO2光催化劑的制備和表征[期刊論文]-硅酸鹽學報 2002(6)[15]李汝雄.孫海影 超細TiO2的合成及其光催化分解水中有機物的研究[期刊論文]-北京石油化工學院學報 2002(2)[16]鄧曉燕.崔作林.杜芳林.彭春 納米二氧化鈦的熱分析表征[期刊論文]-無機材料學報 2001(6)73.余潤蘭.鄺代治.鄧戊有.王建偉 納米催化研究進展[期刊論文]-衡陽師范學院學報 2001(6)[17]井立強.孫曉君.鄭大方.徐躍.李萬程.蔡偉民 ZnO超微粒子的量子尺寸效應和光催化性能[期刊論文]-哈爾濱工業大學學報 2001(3)8