第一篇:納米材料航天應(yīng)用
納米材料定義:
納米材料是指在三維空間中至少有一維處于納米尺度范圍(1-100nm)或由它們作為基本單元構(gòu)成的材料,這大約相當(dāng)于10~100個(gè)原子緊密排列在一起的尺度。納米材料特性
特性 :(1)表面與界面效應(yīng)
這是指納米晶體粒表面原子數(shù)與總原子數(shù)之比隨粒徑變小而急劇增大后所引起的性質(zhì)上的變化。例如粒子直徑為10納米時(shí),微粒包含4000個(gè)原子,表面原子占40%;粒子直徑為1納米時(shí),微粒包含有30個(gè)原子,表面原子占99%。主要原因就在于直徑減少,表面原子數(shù)量增多。再例如,粒子直徑為10納米和5納米時(shí),比表面積分別為90米2/克和180米2/克。如此高的比表面積會(huì)出現(xiàn)一些極為奇特的現(xiàn)象,如金屬納米粒子在空中會(huì)燃燒,無(wú)機(jī)納米粒子會(huì)吸附氣體等等。
(2)小尺寸效應(yīng)
當(dāng)納米微粒尺寸與光波波長(zhǎng),傳導(dǎo)電子的德布羅意波長(zhǎng)及超導(dǎo)態(tài)的相干長(zhǎng)度、透射深度等物理特征尺寸相當(dāng)或更小時(shí),它的周期性邊界被破壞,從而使其聲、光、電、磁,熱力學(xué)等性能呈現(xiàn)出“新奇”的現(xiàn)象。例如,銅顆粒達(dá)到納米尺寸時(shí)就變得不能導(dǎo)電;絕緣的二氧化硅顆粒在20納米時(shí)卻開(kāi)始導(dǎo)電。再譬如,高分子材料加納米材料制成的刀具比金鋼石制品還要堅(jiān)硬。利用這些特性,可以高效率地將太陽(yáng)能轉(zhuǎn)變?yōu)闊崮堋㈦娔埽送庥钟锌赡軕?yīng)用于紅外敏感元件、紅外隱身技術(shù)等等。
(3)量子尺寸效應(yīng)
當(dāng)粒子的尺寸達(dá)到納米量級(jí)時(shí),費(fèi)米能級(jí)附近的電子能級(jí)由連續(xù)態(tài)分裂成分立能級(jí)。當(dāng)能級(jí)間距大于熱能、磁能、靜電能、靜磁能、光子能或超導(dǎo)態(tài)的凝聚能時(shí),會(huì)出現(xiàn)納米材料的量子效應(yīng),從而使其磁、光、聲、熱、電、超導(dǎo)電性能變化。例如,有種金屬納米粒子吸收光線能力非常強(qiáng),在1.1365千克水里只要放入千分之一這種粒子,水就會(huì)變得完全不透明。
(4)宏觀量子隧道效應(yīng)
微觀粒子具有貫穿勢(shì)壘的能力稱(chēng)為隧道效應(yīng)。納米粒子的磁化強(qiáng)度等也有隧道效應(yīng),它們可以穿過(guò)宏觀系統(tǒng)的勢(shì)壘而產(chǎn)生變化,這種被稱(chēng)為納米粒子的宏觀量子隧道效應(yīng)。納米材料發(fā)展:
納米技術(shù)的靈感,來(lái)自于已故物理學(xué)家理查德·費(fèi)曼1959年所作的一次題為《在底部還有很大空間》的演講。這位當(dāng)時(shí)在加州理工大學(xué)任教的教授向同事們提出了一個(gè)新的想法。從石器時(shí)代開(kāi)始,人類(lèi)從磨尖箭頭到光刻芯片的所有技術(shù),都與一次性地削去或者融合數(shù)以?xún)|計(jì)的原子以便把物質(zhì)做成有用的形態(tài)有關(guān)。范曼質(zhì)問(wèn)道,為什么我們不可以從另外一個(gè)角度出發(fā),從單個(gè)的分子甚至原子開(kāi)始進(jìn)行組裝,以達(dá)到我們的要求?他說(shuō):“至少依我看來(lái),物理學(xué)的規(guī)律不排除一個(gè)原子一個(gè)原子地制造物品的可能性。”
1990年,IBM公司阿爾馬登研究中心的科學(xué)家成功地對(duì)單個(gè)的原子進(jìn)行了重排,納米技術(shù)取得一項(xiàng)關(guān)鍵突破。他們使用一種稱(chēng)為掃描探針的設(shè)備慢慢地把35個(gè)原子移動(dòng)到各自的位置,組成了ibm三個(gè)字母。這證明范曼是正確的,二個(gè)字母加起來(lái)還沒(méi)有3個(gè)納米長(zhǎng)。不久,科學(xué)家不僅能夠操縱單個(gè)的原子,而且還能夠“噴涂原子”。使用分子束外延長(zhǎng)生長(zhǎng)技術(shù),科學(xué)家們學(xué)會(huì)了制造極薄的特殊晶體薄膜的方法,每次只造出一層分子。目前,制造計(jì)算機(jī)硬盤(pán)讀寫(xiě)頭使用的就是這項(xiàng)技術(shù)。
著名物理學(xué)家、諾貝爾獎(jiǎng)獲得者理查德· 費(fèi)曼預(yù)言,人類(lèi)可以用小的機(jī)器制作更小的機(jī)器,最后將變成根據(jù)人類(lèi)意愿,逐個(gè)地排列原子,制造產(chǎn)品,這是關(guān)于納米技術(shù)最早的夢(mèng)想;
70年代,科學(xué)家開(kāi)始從不同角度提出有關(guān)納米科技的構(gòu)想,1974年,科學(xué)家唐尼古奇最早使用納米技術(shù)一詞描述精密機(jī)械加工;
1982年,科學(xué)家發(fā)明研究納米的重要工具——掃描隧道顯微鏡,為我們揭示一個(gè)可見(jiàn)的原子、分子世界,對(duì)納米科技發(fā)展產(chǎn)生了積極促進(jìn)作用;
1990年7月,第一屆國(guó)際納米科學(xué)技術(shù)會(huì)議在美國(guó)巴爾的摩舉辦,標(biāo)志著納米科學(xué)技術(shù)的正式誕生;
1991年,碳納米管被人類(lèi)發(fā)現(xiàn),它的質(zhì)量是相同體積鋼的六分之一,強(qiáng)度卻是鋼的10倍,成為納米技術(shù)研究的熱點(diǎn),諾貝爾化學(xué)獎(jiǎng)得主斯莫利教授認(rèn)為,納米碳管將是未來(lái)最佳纖維的首選材料,也將被廣泛用于超微導(dǎo)線、超微開(kāi)關(guān)以及納米級(jí)電子線路等;
1993年,繼1989年美國(guó)斯坦福大學(xué)搬走原子團(tuán)“寫(xiě)”下斯坦福大學(xué)英文、1990年美國(guó)國(guó)際商用機(jī)器公司在鎳表面用36個(gè)氙原子排出“ibm”之后,中國(guó)科學(xué)院北京真空物理實(shí)驗(yàn)室自如地操縱原子成功寫(xiě)出“ 中國(guó)”二字,標(biāo)志著中國(guó)開(kāi)始在國(guó)際納米科技領(lǐng)域占有一席之地;
1997年,美國(guó)科學(xué)家首次成功地用單電子移動(dòng)單電子,利用這種技術(shù)可望在20年后研制成功速度和存貯容量比現(xiàn)在提高成千上萬(wàn)倍的量子計(jì)算機(jī);
1999年,巴西和美國(guó)科學(xué)家在進(jìn)行納米碳管實(shí)驗(yàn)時(shí)發(fā)明了世界上最小的“秤”,它能夠稱(chēng)量十億分之一克的物體,即相當(dāng)于一個(gè)病毒的重量;此后不久,德國(guó)科學(xué)家研制出能稱(chēng)量單個(gè)原子重量的秤,打破了美國(guó)和巴西科學(xué)家聯(lián)合創(chuàng)造的紀(jì)錄;
到1999年,納米技術(shù)逐步走向市場(chǎng),全年基于納米產(chǎn)品的營(yíng)業(yè)額達(dá)到500億美元;
近年來(lái),一些國(guó)家紛紛制定相關(guān)戰(zhàn)略或者計(jì)劃,投入巨資搶占納米技術(shù)戰(zhàn)略高地。日本設(shè)立納米材料研究中心,把納米技術(shù)列入新5年科技基本計(jì)劃的研發(fā)重點(diǎn);德國(guó)專(zhuān)門(mén)建立納米技術(shù)研究網(wǎng);美國(guó)將納米計(jì)劃視為下一次工業(yè)革命的核心,美國(guó)政府部門(mén)將納米科技基礎(chǔ)研究方面的投資從1997年的1.16億美元增加到2001年的4.97億美元。
2003年,納米技術(shù)在基礎(chǔ)研究和應(yīng)用研究方面都取得了突破性進(jìn)展。如:美國(guó)利用超高密度晶格和電路制作新方法,獲得高密度的鉑納米線;日本用單層碳納米管與有機(jī)熔鹽制成高度導(dǎo)電的聚合物納米管復(fù)合材料等。納米材料缺點(diǎn)
生產(chǎn)出來(lái)的成本高,應(yīng)用不廣泛,同時(shí)生產(chǎn)出來(lái)的納米產(chǎn)品的毒理學(xué)沒(méi)有廣泛的深入,在某種意義上講一些東西處于探索階段
前言納米材料由于具有獨(dú)特的小尺寸效應(yīng)而表現(xiàn)出不同于傳統(tǒng)材料的物理和化學(xué)性質(zhì)。利用納米材料這些獨(dú)特的性質(zhì)。可對(duì)傳統(tǒng)材料進(jìn)行改性,進(jìn)而開(kāi)發(fā)出更高性能的材料.開(kāi)辟出新的材料生產(chǎn)途徑.以滿足傳統(tǒng)材料所不能達(dá)到的要求.尤其是滿足航天航空領(lǐng)域?qū)Σ牧闲阅艿奶厥庖蟆?yīng)用納米材料可減小航天器電子元器件的體積和質(zhì)量.并提高其可靠性。納米材料的發(fā)展方向主要有功能納米材料及結(jié)構(gòu)納米材料納米材料在航天器結(jié)構(gòu)材料上的應(yīng)用 1.金屬及金屬基復(fù)合材料晶粒細(xì)化是提高金屬材料強(qiáng)度最有效的方法之一。利用添加納米陶瓷來(lái)增強(qiáng)金屬合金基材料的方法,就是把納米陶瓷粉體均勻分散于合金中.以提高合金的成核速率.同時(shí)抑制晶粒長(zhǎng)大.從而起到晶粒細(xì)化的作用。抑制材料使用過(guò)程中微裂紋的擴(kuò)展.提高產(chǎn)品的強(qiáng)度。例如,將納米碳化硅、納米氮化硅、納米氮化鈦、納米硅粉添加到金屬基體(鋁、銅、銀、鋼、鐵等合金)中。可制造出質(zhì)量輕、強(qiáng)度高、耐熱性好的新型合金材料。
(1)納米氮化鈦應(yīng)用于合金鋼、鐵納米氮化鈦具有硬度和熱穩(wěn)定性高、粒度小,以及分散性好的特點(diǎn)。在鋼水冷卻結(jié)晶過(guò)程中.納米氮化鈦成為晶核相.可大大增加成核數(shù)量,減小晶粒尺寸.達(dá)到細(xì)化合金晶粒的效果.使合金的綜合性能大大改善。
(2)納米碳化硅應(yīng)用于銀基復(fù)合材料通過(guò)向基體中加入均勻、細(xì)J.J\,具有良好穩(wěn)定性的顆粒.達(dá)到彌散強(qiáng)化合金的目的.是制備高強(qiáng)高導(dǎo)合金材料的重要途徑之一。納米碳化硅對(duì)于銀合金來(lái)說(shuō)是一種有效的增強(qiáng)相.當(dāng)納米碳化硅的質(zhì)量百分含量為l%時(shí).強(qiáng)化效果佳.材料的抗拉強(qiáng)度可達(dá)39IMPa.相對(duì)電導(dǎo)率為60.2%,強(qiáng)度和耐磨性均有所提高。(3)納米碳化硅彌散強(qiáng)化銅基復(fù)合材料高強(qiáng)高導(dǎo)銅基復(fù)合材料在集成電路的引線框架 各類(lèi)點(diǎn)焊、滾焊機(jī)的電極、觸頭材料,電樞、電動(dòng)工具的換相器等電子設(shè)備中具有廣泛的用途。但銅合金的高強(qiáng)度和高導(dǎo)電性一直是一對(duì)互相矛盾的特性.一般只能在犧牲電導(dǎo)率和熱導(dǎo)率的前提下改善銅的力學(xué)性能,以獲得高強(qiáng)度。采用納米碳化硅穩(wěn)定彌散強(qiáng)化銅基材料是解決 這一矛盾的較好方法 通過(guò)向基體中加入均勻、細(xì)小,具有良好穩(wěn)定性的納米碳化硅顆粒以達(dá)到彌散強(qiáng)化銅合金的目的.已成為制備高強(qiáng)高導(dǎo)銅基復(fù)合材料的研究熱點(diǎn)。
(4)納米碳化鋯應(yīng)用于硬質(zhì)合金納米碳化鋯是一種重要的高熔點(diǎn)、高強(qiáng)度和耐腐蝕的高溫結(jié)構(gòu)材料 納米碳化鋯用于硬質(zhì)合金材料中.可提高材料的強(qiáng)度和耐腐蝕性等性能。
2.聚合物基復(fù)合材料納米粒子加入聚合物基體后.可提高其耐磨性、硬度、強(qiáng)度和耐熱性等性能
(1)納米氮化鋁應(yīng)用于環(huán)氧樹(shù)脂在納米氮化鋁一環(huán)氧樹(shù)脂體系中.納米氮化鋁的用量為1%~5%時(shí).玻璃化轉(zhuǎn)變溫度提高.彈性模量達(dá)到極大值。將納米氮化鋁添)30~0環(huán)氧樹(shù)脂中制得的復(fù)合材料.在結(jié)構(gòu)上完全不同于添加粗晶的氮化鋁一環(huán)氧樹(shù)脂基復(fù)合材料:粗晶氮化鋁一般作為補(bǔ)強(qiáng)劑加入.其主要分布在高分子材料的鏈間.而納米氮化鋁由于表面嚴(yán)重的配不足、龐大的比表面積使其表現(xiàn)出極強(qiáng)的活性.同時(shí)。尚有一部分納米氮化鋁顆粒分布在高分子鏈的空隙中。與粗晶氮化鋁相比.納米氮化鋁具有很高的流動(dòng)性.可使環(huán)氧樹(shù)脂的強(qiáng)度、韌性及延展性均大幅提高。
(2)納米碳化硅在橡膠輪胎中的應(yīng)用在橡膠輪胎中添加一定量的納米碳化硅.在不改變?cè)鹉z配方的條件下進(jìn)行改性處理.可在不降低其原有性能和質(zhì)量的前提下.將耐磨性提高 15%~30%。另外。納米碳化硅還可應(yīng)用于橡膠膠輥、打印機(jī)定影膜等需耐磨、散熱、耐溫的橡膠產(chǎn)品中。
3.-r-程塑料及其它復(fù)合材料納米材料與工程塑料復(fù)合既能提高工程塑料的固有性能.又可賦予其高導(dǎo)電性、高阻隔性及優(yōu)良的光學(xué)性能等。因此。把納米材料應(yīng)用于工程
塑料的改性.可進(jìn)一步拓寬工程塑料的應(yīng)用范圍。
(1)工程塑料,{I內(nèi)米粒子復(fù)合材料采用納米粒子對(duì)有一定脆性的工程塑料增韌是改善工程塑料韌性和強(qiáng)度等力學(xué)性能的一種行之有效的方法。只要納米粒子與基體樹(shù)脂結(jié)合良好. 2010 6軍民兩用技術(shù)與產(chǎn)品納米粒子也可承受拉伸應(yīng)力.增韌、增強(qiáng)作用明顯少量納米氮化鈦粉體用于改性熱塑性工程塑料時(shí).可起到結(jié)晶成核劑的作用。將納米氮化鈦分散于乙二醇中.通過(guò)聚合使納米氮化鈦更好地分散于PET(聚對(duì)苯二甲酸乙二醇酯)工程塑料中.可加快PET工程塑料的結(jié)晶速率.使其成型簡(jiǎn)單.?dāng)U大其應(yīng)用范圍。而大量納米氮化鈦顆粒彌散 于PET中.可大幅提高PET工程塑料的耐磨性和抗沖擊性能。
(2)工程塑料/納米磁性金屬及其氮化物復(fù)合材料這種復(fù)合材料具有特殊的光電功
能(對(duì)電磁波有特殊的吸收作用)和優(yōu)良的磁性能及導(dǎo)電性.可廣泛應(yīng)用于軍事、航空航天、電子通訊等高技術(shù)領(lǐng)域 用偶聯(lián)劑進(jìn)行表面處理后的納米碳化硅.在添加量為10%左右時(shí). 可大大改善和提高PI(聚酰亞胺)、PEEK(聚醚醚酮)、PTFE(聚四氟乙烯)等特種塑料的性能.全面提高材料的耐磨、導(dǎo)熱、絕緣、抗拉伸、耐沖擊、耐高溫等性能。
4.陶瓷基復(fù)合材料陶瓷基復(fù)合材料是以陶瓷為基體.與各種納米材料復(fù)合制得的材料。陶瓷基體包括氮化硅、碳化硅等。這些先進(jìn)陶瓷具有耐高溫、強(qiáng)度和硬度高、相對(duì)重量較輕、抗腐蝕等優(yōu)異性能.而其致命的弱點(diǎn)是具有較強(qiáng)的脆性。在應(yīng)力作用下.會(huì)產(chǎn)生裂紋。甚至斷裂導(dǎo)致材料失效 而將納米材料與陶瓷基體復(fù)合.是提高陶瓷韌性和可靠性的一種有效方法.可得到韌性?xún)?yōu)良的納米增強(qiáng)陶瓷基復(fù)合材料陶瓷基復(fù)合材料已實(shí)用化或即將實(shí)用化的領(lǐng)域有刀具、滑動(dòng)構(gòu)件、發(fā)動(dòng)機(jī)制件、能源構(gòu)件等。例如,納米氮化硅摻雜制造的精密陶瓷結(jié)構(gòu)器件可用于冶金、化工、機(jī)械、航空、航天及能源等行業(yè)中使用的滾動(dòng)軸承的滾珠和滾子、滑動(dòng)軸承、套、閥.以及有耐磨、耐高溫、耐腐蝕要求的結(jié)構(gòu)器件中 納米材料在航天器功能
1.雷達(dá)及紅夕 隱身材料納米材料具有的小尺寸和量子尺寸效應(yīng)等特性.使金屬、金屬氧化物和某些非金屬材料在細(xì)化過(guò)程中.處于表面的原子越來(lái)越多.懸掛鍵增多、界面極化增強(qiáng).為吸波材料應(yīng)用提供了可能性。多重散射及量子尺寸效應(yīng)使納米粒子的電子能級(jí)能隙變寬.能隙寬度處于微波范圍(10%V 10-SeV)內(nèi)。因而可能成為新的吸波通道。納米陶瓷粉體是陶瓷類(lèi)紅外吸收劑的一種新類(lèi)型.主要包括納米碳化硅粉、納米氮化硅粉等。納米陶瓷類(lèi)紅外吸收劑具有吸收波段寬及吸收強(qiáng)度大等特性。納米碳化硅和磁性納米吸收劑(如磁性納米金屬粉等)復(fù)合后。吸波效果還能大幅度提高。納米氮化物吸收劑主要有氮化硅和氮化鐵.納米氮化硅在IOOH一1MHz范圍內(nèi)有比較大的介電損耗.納米氮化硅的這種強(qiáng)介電損耗是由于界面極化引起的納米氮化鐵具有很高的飽和磁感應(yīng)強(qiáng)度和飽和磁流密度.有可能成為性能優(yōu)良的納米雷達(dá)波吸收劑。
2.導(dǎo)電、導(dǎo)熱等功能材料納米氮化鈦具有優(yōu)良的導(dǎo)電性能.在A1,O 基體中加入納米氮化鈦顆粒可有效降低其電阻率。隨著納米氮化鈦加入量的增加.復(fù)合材料的電阻率逐漸降低.當(dāng)加入的納米氮化鈦體積含量達(dá)~U20%以后.復(fù)合材料的電阻率趨于穩(wěn)定。為5.5x10-3~.cm。添加超高導(dǎo)熱納米氮化鋁的硅膠具有良好的導(dǎo)熱性和電絕緣性、較寬的電絕緣使用溫度 工作溫度一6oX3200~2)、較低的稠度和良好的施工性能.可廣泛應(yīng)用于子器件的熱傳遞介質(zhì)中.能夠提高工作效率.如CPU與散熱器填隙、大功率三極管、可控 硅元件、二極管、與基材接觸的細(xì)縫處的熱傳遞介質(zhì)等納米氮化鋁粉體可大幅提高塑料的導(dǎo)熱率。將納米氮化鋁粉體以5%~10%的質(zhì)量比例添加到塑料中.可使塑料的導(dǎo)熱率從0.3w/(ni.k)提高到5W/(m.k),導(dǎo)熱率提高了l6倍多。與目前市場(chǎng)上的導(dǎo)熱填料(氧化鋁或氧化鎂等)相比,其添加量低。對(duì)制品的機(jī)械性能有提高作用。目前,相關(guān)廠家已大規(guī)模采購(gòu)納米氮化鋁粉體.新型納米導(dǎo)熱塑料將投放市場(chǎng)納米氮化鋁粉體與二氧化硅的匹
配性能好.在橡膠中容易分散.在不影響橡膠的機(jī)械性能的前提下(實(shí)驗(yàn)證明.對(duì)橡膠的機(jī)械性能還有提高作用)可大幅提升硅橡膠的導(dǎo)熱率.在添加過(guò)程中不像氧化物等會(huì)使黏度下降慢.添加量很小,現(xiàn)已廠泛應(yīng)用于軍事、航空。以及信息工程領(lǐng)域。
3.涂層材料
納米材料用作涂層可提高工件的耐磨性、抗剝蝕性和抗氧化性。研究表明,用納米碳化硅、碳化鋯、碳化鈦、氮化鈦、碳化硼等粉體作為金屬表面的復(fù)合涂層.可獲得超強(qiáng)耐磨性和潤(rùn)滑性.其耐磨性比軸承鋼高100倍.摩擦系數(shù)為0.06~0.1.同時(shí)還具有高溫穩(wěn)定性和耐腐蝕性。在液體火箭發(fā)動(dòng)機(jī)關(guān)鍵零部件中應(yīng)用納米技術(shù).可大大延長(zhǎng)這些零部件的使用壽命 4.特種密封材料發(fā)動(dòng)機(jī)出現(xiàn)故障最多的是各種密封面的失效.密封面的表面質(zhì)量是決定密封性能好壞的主要因素.和用納米材料改性密封零件基體或在密封表面覆蓋一層納米粉末極大地改善其密 性能。目前。密封橡膠所用的增強(qiáng)劑多為納米級(jí)炭黑.若改用納米氮化硅使其拉伸強(qiáng)度提高1 4倍.并改善其耐磨性和密封性。5.固體火箭推進(jìn)劑 將納米金屬粉添加到固體火箭推進(jìn)劑中.可顯著改善固體推進(jìn)劑的燃燒性能。例如,在固體火箭推進(jìn)劑中添加納米級(jí)鋁粉或鎳粉.推進(jìn)劑燃燒效率可得到較大提高、燃速顯著增大。含有納米金屬鋁粉的固體推進(jìn)劑燃速比含有常規(guī)鋁粉的固體推進(jìn)劑的燃速高5 20倍.
第二篇:納米材料的應(yīng)用
納米材料的應(yīng)用
納米是英文namometer的譯音,是一個(gè)物理學(xué)上的度量單位,1納米是1米的十億分之一;相當(dāng)于45個(gè)原子排列起來(lái)的長(zhǎng)度。通俗一點(diǎn)說(shuō),相當(dāng)于萬(wàn)分之一頭發(fā)絲粗細(xì)。就象毫米、微米一樣,納米是一個(gè)尺度概念,并沒(méi)有物理內(nèi)涵。當(dāng)物質(zhì)到納米尺度以后,大約是在1—100納米這個(gè)范圍空間,物質(zhì)的性能就會(huì)發(fā)生突變,出現(xiàn)特殊性能。這種既具不同于原來(lái)組成的原子、分子,也不同于宏觀的物質(zhì)的特殊性能構(gòu)成的材料,即為納米材料。如果僅僅是尺度達(dá)到納米,而沒(méi)有特殊性能的材料,也不能叫納米材料。過(guò)去,人們只注意原子、分子或者宇宙空間,常常忽略這個(gè)中間領(lǐng)域,而這個(gè)領(lǐng)域?qū)嶋H上大量存在于自然界,只是以前沒(méi)有認(rèn)識(shí)到這個(gè)尺度范圍的性能。第一個(gè)真正認(rèn)識(shí)到它的性能并引用納米概念的是日本科學(xué)家,他們?cè)?0世紀(jì)70年代用蒸發(fā)法制備超微離子,并通過(guò)研究它的性能發(fā)現(xiàn):一個(gè)導(dǎo)電、導(dǎo)熱的銅、銀導(dǎo)體做成納米尺度以后,它就失去原來(lái)的性質(zhì),表現(xiàn)出既不導(dǎo)電、也不導(dǎo)熱。磁性材料也是如此,象鐵鈷合金,把它做成大約20—30納米大小,磁疇就變成單磁疇,它的磁性要比原來(lái)高1000倍。80年代中期,人們就正式把這類(lèi)材料命名為納米材料。
在充滿生機(jī)的21世紀(jì),信息、生物技術(shù)、能源、環(huán)境、先進(jìn)制造技術(shù)和國(guó)防的高速發(fā)展必然對(duì)材料提出新的需求,元件的小型化、智能化、高集成、高密度存儲(chǔ)和超快傳輸?shù)葘?duì)材料的尺寸要求越來(lái)越小;航空航天、新型軍事裝備及先進(jìn)制造技術(shù)等對(duì)材料性能要求越來(lái)越高。新材料的創(chuàng)新,以及在此基礎(chǔ)上誘發(fā)的新技術(shù)。新產(chǎn)品的創(chuàng)新是未來(lái)10年對(duì)社會(huì)發(fā)展、經(jīng)濟(jì)振興、國(guó)力增強(qiáng)最有影響力的戰(zhàn)略研究領(lǐng)域,納米材料將是起重要作用的關(guān)鍵材料之一。納米材料和納米結(jié)構(gòu)是當(dāng)今新材料研究領(lǐng)域中最富有活力、對(duì)未來(lái)經(jīng)濟(jì)和社會(huì)發(fā)展有著十分重要影響的研究對(duì)象,也是納米科技中最為活躍、最接近應(yīng)用的重要組成部分。
近年來(lái),納米材料和納米結(jié)構(gòu)取得了引人注目的成就。1988年法國(guó)人首先發(fā)現(xiàn)了巨磁電阻效應(yīng),到1997年巨磁電阻為原理的納米結(jié)構(gòu)器件已在美國(guó)問(wèn)世,在磁存儲(chǔ)、磁記憶和計(jì)算機(jī)讀寫(xiě)磁頭將有重要的應(yīng)用前景。最近美國(guó)柯達(dá)公司研究部成功地研究了一種即具有顏料又具有分子染料功能的新型納米粉體,預(yù)計(jì)將給彩色印橡帶來(lái)革命性的變革。納米粉體材料在橡膠、顏料、陶瓷制品的改性等方面很可能給傳統(tǒng)產(chǎn)業(yè)和產(chǎn)品注入新的高科技含量,在未來(lái)市場(chǎng)上占有重要的份額。納米材料在醫(yī)藥方面的應(yīng)用研究也使人矚目,正是這些研究使美國(guó)白宮認(rèn)識(shí)到納米材料和技術(shù)將占有重要的戰(zhàn)略地位。原因之二是納米材料和技術(shù)領(lǐng)域是知識(shí)創(chuàng)新和技術(shù)創(chuàng)新的源泉,新的規(guī)律新原理的發(fā)現(xiàn)和新理論的建立給基礎(chǔ)科學(xué)提供了新的機(jī)遇,美國(guó)計(jì)劃在這個(gè)領(lǐng)域的基礎(chǔ)研究獨(dú)占“老大”的地位。我國(guó)納米材料研究始于80年代末,“八五”期間,“納米材料科學(xué)”列入國(guó)家攀登項(xiàng)目。國(guó)家自然科學(xué)基金委員會(huì)、中國(guó)科學(xué)院、國(guó)家教委分別組織了8項(xiàng)重大、重點(diǎn)項(xiàng)目,組織相關(guān)的科技人員分別在納米材料各個(gè)分支領(lǐng)域開(kāi)展工作,國(guó)家自然科學(xué)基金委員會(huì)還資助了20多項(xiàng)課題,國(guó)家“863”新材料主題也對(duì)納米材料有關(guān)高科技創(chuàng)新的課題進(jìn)行立項(xiàng)研究。1996年以后,納米材料的應(yīng)用研究出現(xiàn)了可喜的苗頭,地方政府和部分企業(yè)家的介入,使我國(guó)納米材料的研究進(jìn)入了以基礎(chǔ)研究帶動(dòng)應(yīng)用研究的新局面。目前,我國(guó)有60多個(gè)研究小組,有600多人從事納米材料的基礎(chǔ)和應(yīng)用研究,其中,承擔(dān)國(guó)家重大基礎(chǔ)研究項(xiàng)目的和納米材料研究工作開(kāi)展比較早的單位有:中國(guó)科學(xué)院上海硅酸鹽研究所、南京大學(xué)。中國(guó)科學(xué)院固體物理研究所、金屬研究所、物理研究所、中國(guó)科技大學(xué)、中國(guó)科學(xué)院化學(xué)研究所、清華大學(xué),還有吉林大學(xué)、東北大學(xué)、西安交通大學(xué)、天津大學(xué)、青島化工學(xué)院、華東師范大學(xué),華東理工大學(xué)、浙江大學(xué)、中科院大連化學(xué)物理研究所、長(zhǎng)春應(yīng)用化學(xué)研究所、長(zhǎng)春物理研究所、感光化學(xué)研究所等也相繼開(kāi)展了納米材料的基礎(chǔ)研究和應(yīng)用研究。我國(guó)納米材料基礎(chǔ)研究在過(guò)去10年取得了令人矚目的重要研究成果。已采用了多種物理、化學(xué)方法制備金屬與合金(晶態(tài)、非晶態(tài)及納米微晶)氧化物、氮化物、碳化物等化合物納米粉體,建立了相應(yīng)的設(shè)備,做到納米微粒的尺寸可控,并制成了納米薄膜和塊材。在納米材料的表征、團(tuán)聚體的起因和消除、表面吸附和脫附、納米復(fù)合微粒和粉體的制取等各個(gè)方面都有所創(chuàng)新,取得了重大的進(jìn)展,成功地研制出致密度高、形狀復(fù)雜、性能優(yōu)越的納米陶瓷;
近年來(lái),我國(guó)在功能納米材料研究上取得了舉世矚目的重大成果,引起了國(guó)際上的關(guān)注。根據(jù)國(guó)際納米材料研究的發(fā)展趨勢(shì),我國(guó)建立和發(fā)展了制備納米結(jié)構(gòu)(如納米有序陣列體系、介孔組裝體系、mcm-41等)組裝體系的多種方法,特別是自組裝與分子自組裝、模板合成、碳熱還原、液滴外延生長(zhǎng)、介孔內(nèi)延生長(zhǎng)等也積累了豐富的經(jīng)驗(yàn),已成功地制備出多種準(zhǔn)一維納米材料和納米組裝體系。這些方法為進(jìn)一步研究納米結(jié)構(gòu)和準(zhǔn)一納米材料的物性,推進(jìn)它們?cè)诩{米結(jié)構(gòu)器件的應(yīng)用奠定了良好的基礎(chǔ)。納米材料和納米結(jié)構(gòu)的評(píng)價(jià)手段基本齊全,達(dá)到了國(guó)際90年代末的先進(jìn)水平。綜上所述,“八五”期間我國(guó)在納米材料研究上獲得了一批創(chuàng)新性的成果,形成了一支高水平的科研隊(duì)伍,基礎(chǔ)研究在國(guó)際上占有一席之地,應(yīng)用開(kāi)發(fā)研究也出現(xiàn)了新局面,為我國(guó)納米材料研究的繼續(xù)發(fā)展奠定了基礎(chǔ)。10年來(lái),我國(guó)科技工作者在國(guó)內(nèi)外學(xué)術(shù)刊物上共發(fā)表納米材料和納米結(jié)構(gòu)的論文2400多篇,在國(guó)際上排名第五位,1998年 6月在瑞典斯特哥爾摩召開(kāi)的國(guó)際第四屆納米材料會(huì)議上,對(duì)中國(guó)納米材料研究給予了很高評(píng)價(jià),指出這幾年來(lái)中國(guó)在納米材料制備方面取得了激動(dòng)人心的成果,在大會(huì)總結(jié)中選擇了8個(gè)納米材料研究式作取得了比較好的國(guó)家在閉幕式上進(jìn)行介紹,中國(guó)是在美國(guó)、日本、德國(guó)、瑞典之后進(jìn)行了大會(huì)發(fā)言。
第三篇:納米材料及其應(yīng)用
暑 假 實(shí)習(xí)論 文
題 目: 納米材料及其應(yīng)用 學(xué) 院 軟件與通信工程學(xué)院 學(xué)生姓名 XXX 學(xué) 號(hào) XXXX 專(zhuān) 業(yè) 電子科學(xué)與技術(shù)
屆 別 2011屆 指導(dǎo)教師 白耀輝博士 李剛博士 堯文元博士
二O一一 年 七 月
納米材料及其應(yīng)用
內(nèi)容摘要
1.納米材料定義 2.國(guó)內(nèi)外研究進(jìn)展 3.應(yīng)用領(lǐng)域及原理 應(yīng)用領(lǐng)域
◇納米技術(shù)在陶瓷領(lǐng)域方面的應(yīng)用
◇納米技術(shù)在微電子學(xué)上的應(yīng)用
◇納米技術(shù)在生物工程上的應(yīng)用 應(yīng)用原理 ◇量子尺寸效應(yīng)
◇小尺寸效應(yīng)
◇納米材料的熱學(xué)特性 ◇納米材料的磁學(xué)特性 ◇納米材料的光學(xué)特性 4.制備方法
◇激光誘導(dǎo)化學(xué)氣相沉積法
◇低溫等離子體增強(qiáng)化學(xué)氣相沉積法(PECVD)◇液相法制備納米材料
一. 納米材料定義
納米材料是指晶粒尺寸為納米級(jí)(10-9米)的超細(xì)材料。它的微粒尺寸大于原子簇,小于通常的微粒,一般為100~102nm。它包括體積分?jǐn)?shù)近似相等的兩個(gè)部分:一是直徑為幾個(gè)或幾十個(gè)納米的粒子二是粒子間的界面。前者具有長(zhǎng)程序的晶狀結(jié)構(gòu),后者是既沒(méi)有長(zhǎng)程序也沒(méi)有短程序的無(wú)序結(jié)構(gòu)。從材料的結(jié)構(gòu)單元層次來(lái)說(shuō),它介于宏觀物質(zhì)和微觀原子、分子的中間領(lǐng)域。在納米材料中,界面原子占極大比例,而且原子排列互不相同,界面周?chē)木Ц窠Y(jié)構(gòu)互不相關(guān),從而構(gòu)成與晶態(tài)、非晶態(tài)均不同的一種新的結(jié)構(gòu)狀態(tài)。
在納米材料中,納米晶粒和由此而產(chǎn)生的高濃度晶界是它的兩個(gè)重要特征。納米晶粒中的原子排列已不能處理成無(wú)限長(zhǎng)程有序,通常大晶體的連續(xù)能帶分裂成接近分子軌道的能級(jí),高濃度晶界及晶界原子的特殊結(jié)構(gòu)導(dǎo)致材料的力學(xué)性能、磁性、介電性、超導(dǎo)性、光學(xué)乃至熱力學(xué)性能的改變。納米相材料跟普通的金屬、陶瓷,和其他固體材料都是由同樣的原子組成,只不過(guò)這些原子排列成了納米級(jí)的原子團(tuán),成為組成這些新材料的結(jié)構(gòu)粒子或結(jié)構(gòu)單元。其常規(guī)納米材料中的基本顆粒直徑不到100 nm,包含的原子不到幾萬(wàn)個(gè)。一個(gè)直徑為3 nm的原子團(tuán)包含大約900個(gè)原子,幾乎是英文里一個(gè)句點(diǎn)的百萬(wàn)分之一,這個(gè)比例相當(dāng)于一條300多米長(zhǎng)的帆船跟整個(gè)地球的比例。
納米材料研究是目前材料科學(xué)研究的一個(gè)熱點(diǎn),其相應(yīng)發(fā)展起來(lái)的納米技術(shù)被公認(rèn)為是21世紀(jì)最具有前途的科研領(lǐng)域。二.應(yīng)用領(lǐng)域及原理 1.應(yīng)用領(lǐng)域
(1)納米技術(shù)在陶瓷領(lǐng)域方面的應(yīng)用
陶瓷材料作為材料的三大支柱之一,在日常生活及工業(yè)生產(chǎn)中起著舉足輕重的作用。但是,由于傳統(tǒng)陶瓷材料質(zhì)地較脆,韌性、強(qiáng)度較差,因而使其應(yīng)用受到了較大的限制。隨著納米技術(shù)的廣泛應(yīng)用,納米陶瓷隨之產(chǎn)生,希望以此來(lái)克服陶瓷材料的脆性,使陶瓷具有象金屬一樣的柔韌性和可加工性。英國(guó)材料學(xué)家Cahn指出納米陶瓷是解決陶瓷脆性的戰(zhàn)略途徑。
所謂納米陶瓷,是指顯微結(jié)構(gòu)中的物相具有納米級(jí)尺度的陶瓷材料,也就是說(shuō)晶粒尺寸、晶界寬度、第二相分布、缺陷尺寸等都是在納米量級(jí)的水平上。要制備納米陶瓷,這就需要解決:粉體尺寸形貌和粒徑分布的控制,團(tuán)聚體的控制和分散。塊體形態(tài)、缺陷、粗糙度以及成分的控制。
Gleiter指出,如果多晶陶瓷是由大小為幾個(gè)納米的晶粒組成,則能夠在低溫下變?yōu)檠有缘模軌虬l(fā)生100%的范性形變。并且發(fā)現(xiàn),納米TiO2陶瓷材料在室溫下具有優(yōu)良的韌性,在180℃經(jīng)受彎曲而不產(chǎn)生裂紋。許多專(zhuān)家認(rèn)為,如能解決單相納米陶瓷的燒結(jié)過(guò)程中抑制晶粒長(zhǎng)大的技術(shù)問(wèn)題,從而控制陶瓷晶粒尺寸在50nm以下的納米陶瓷,則它將具有的高硬度、高韌性、低溫超塑性、易加工等傳統(tǒng)陶瓷無(wú)與倫比的優(yōu)點(diǎn)。上海硅酸鹽研究所在納米陶瓷的制備方面起步較早,他們研究發(fā)現(xiàn),納米3Y-TZP陶瓷(100nm左右)在經(jīng)室溫循環(huán)拉伸試驗(yàn)后,在納米3Y-TZP樣品的斷口區(qū)域發(fā)生了局部超塑性形變,形變量高達(dá)380%,并從斷口側(cè)面觀察到了大量通常出現(xiàn)在金屬斷口的滑移線。Tatsuki等人對(duì)制得的Al2O3-SiC納米復(fù)相陶瓷進(jìn)行拉伸蠕變實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)伴隨晶界的滑移,Al2O3晶界處的納米SiC粒子發(fā)生旋轉(zhuǎn)并嵌入Al2O3晶粒之中,從而增強(qiáng)了晶界滑動(dòng)的阻力,也即提高了Al2O3-SiC納米復(fù)相陶瓷的蠕變能力。
雖然納米陶瓷還有許多關(guān)鍵技術(shù)需要解決,但其優(yōu)良的室溫和高溫力學(xué)性能、抗彎強(qiáng)度、斷裂韌性,使其在切削刀具、軸承、汽車(chē)發(fā)動(dòng)機(jī)部件等諸多方面都有廣泛的應(yīng)用,并在許多超高溫、強(qiáng)腐蝕等苛刻的環(huán)境下起著其他材料不可替代的作用,具有廣闊的應(yīng)用前景(2)納米技術(shù)在微電子學(xué)上的應(yīng)用
納米電子學(xué)是納米技術(shù)的重要組成部分,其主要思想是基于納米粒子的量子效應(yīng)來(lái)設(shè)計(jì)并制備納米量子器件,它包括納米有序(無(wú)序)陣列體系、納米微粒與微孔固體組裝體系、納米超結(jié)構(gòu)組裝體系。納米電子學(xué)的最終目標(biāo)是將集成電路進(jìn)一步減小,研制出由單原子或單分子構(gòu)成的在室溫能使用的各種器件。
目前,利用納米電子學(xué)已經(jīng)研制成功各種納米器件。單電子晶體管,紅、綠、藍(lán)三基色可調(diào)諧的納米發(fā)光二極管以及利用納米絲、巨磁阻效應(yīng)制成的超微磁場(chǎng)探測(cè)器已經(jīng)問(wèn)世。并且,具有奇特性能的碳納米管的研制成功,為納米電子學(xué)的發(fā)展起到了關(guān)鍵的作用。
碳納米管是由石墨碳原子層卷曲而成,徑向尺層控制在100nm以下。電子在碳納米管的運(yùn)動(dòng)在徑向上受到限制,表現(xiàn)出典型的量子限制效應(yīng),而在軸向上則不受任何限制。以碳納米管為模子來(lái)制備一維半導(dǎo)體量子材料,并不是憑空設(shè)想,清華大學(xué)的范守善教授利用碳納米管,將氣相反應(yīng)限制在納米管內(nèi)進(jìn)行,從而生長(zhǎng)出半導(dǎo)體納米線。他們將Si-SiO2混合粉體置于石英管中的坩堝底部,加熱并通入N2。SiO2氣體與N2在碳納米管中反應(yīng)生長(zhǎng)出Si3N4納米線,其徑向尺寸為4~40nm。另外,在1997年,他們還制備出了GaN納米線。1998年該科研組與美國(guó)斯坦福大學(xué)合作,在國(guó)際上首次實(shí)現(xiàn)硅襯底上碳納米管陣列的自組織生長(zhǎng),它將大大推進(jìn)碳納米管在場(chǎng)發(fā)射平面顯示方面的應(yīng)用。其獨(dú)特的電學(xué)性能使碳納米管可用于大規(guī)模集成電路,超導(dǎo)線材等領(lǐng)域。
早在1989年,IBM公司的科學(xué)家就已經(jīng)利用隧道掃描顯微鏡上的探針,成功地移動(dòng)了氙原子,并利用它拼成了IBM三個(gè)字母。日本的Hitachi公司成功研制出單個(gè)電子晶體管,它通過(guò)控制單個(gè)電子運(yùn)動(dòng)狀態(tài)完成特定功能,即一個(gè)電子就是一個(gè)具有多功能的器件。另外,日本的NEC研究所已經(jīng)擁有制作100nm以下的精細(xì)量子線結(jié)構(gòu)技術(shù),并在GaAs襯底上,成功制作了具有開(kāi)關(guān)功能的量子點(diǎn)陣列。目前,美國(guó)已研制成功尺寸只有4nm具有開(kāi)關(guān)特性的納米器件,由激光驅(qū)動(dòng),并且開(kāi)、關(guān)速度很快。
美國(guó)威斯康星大學(xué)已制造出可容納單個(gè)電子的量子點(diǎn)。在一個(gè)針尖上可容納這樣的量子點(diǎn)幾十億個(gè)。利用量子點(diǎn)可制成體積小、耗能少的單電子器件,在微電子和光電子領(lǐng)域?qū)@得廣泛應(yīng)用。此外,若能將幾十億個(gè)量子點(diǎn)連結(jié)起來(lái),每個(gè)量子點(diǎn)的功能相當(dāng)于大腦中的神經(jīng)細(xì)胞,再結(jié)合MEMS(微電子機(jī)械系統(tǒng))方法,它將為研制智能型微型電腦帶來(lái)希望。
納米電子學(xué)立足于最新的物理理論和最先進(jìn)的工藝手段,按照全新的理念來(lái)構(gòu)造電子系統(tǒng),并開(kāi)發(fā)物質(zhì)潛在的儲(chǔ)存和處理信息的能力,實(shí)現(xiàn)信息采集和處理能力的革命性突破,納米電子學(xué)將成為對(duì)世紀(jì)信息時(shí)代的核心。
(3)納米技術(shù)在生物工程上的應(yīng)用
眾所周知,分子是保持物質(zhì)化學(xué)性質(zhì)不變的最小單位。生物分子是很好的信息處理材料,每一個(gè)生物大分子本身就是一個(gè)微型處理器,分子在運(yùn)動(dòng)過(guò)程中以可預(yù)測(cè)方式進(jìn)行狀態(tài)變化,其原理類(lèi)似于計(jì)算機(jī)的邏輯開(kāi)關(guān),利用該特性并結(jié)合納米技術(shù),可以此來(lái)設(shè)計(jì)量子計(jì)算機(jī)。美國(guó)南加州大學(xué)的Adelman博士等應(yīng)用基于DNA分子計(jì)算技術(shù)的生物實(shí)驗(yàn)方法,有效地解決了目前計(jì)算機(jī)無(wú)法解決的問(wèn)題—“哈密頓路徑問(wèn)題”,使人們對(duì)生物材料的信息處理功能和生物分子的計(jì)算技術(shù)有了進(jìn)一步的認(rèn)識(shí)。
雖然分子計(jì)算機(jī)目前只是處于理想階段,但科學(xué)家已經(jīng)考慮應(yīng)用幾種生物分子制造計(jì)算機(jī)的組件,其中細(xì)菌視紫紅質(zhì)最具前景。該生物材料具有特異的熱、光、化學(xué)物理特性和很好的穩(wěn)定性,并且,其奇特的光學(xué)循環(huán)特性可用于儲(chǔ)存信息,從而起到代替當(dāng)今計(jì)算機(jī)信息處理和信息存儲(chǔ)的作用。在整個(gè)光循環(huán)過(guò)程中,細(xì)菌視紫紅質(zhì)經(jīng)歷幾種不同的中間體過(guò)程,伴隨相應(yīng)的物質(zhì)結(jié)構(gòu)變化。Birge等研究了細(xì)菌視紫紅質(zhì)分子潛在的并行處理機(jī)制和用作三維存儲(chǔ)器的潛能。通過(guò)調(diào)諧激光束,將信息并行地寫(xiě)入細(xì)菌視紫紅質(zhì)立方體,并從立方體中讀取信息,并且細(xì)菌視紫紅質(zhì)的三維存儲(chǔ)器可提供比二維光學(xué)存儲(chǔ)器大得多的存儲(chǔ)空間。
到目前為止,還沒(méi)有出現(xiàn)商品化的分子計(jì)算機(jī)組件。科學(xué)家們認(rèn)為:要想提高集成度,制造微型計(jì)算機(jī),關(guān)鍵在于尋找具有開(kāi)關(guān)功能的微型器件。美國(guó)錫拉丘茲大學(xué)已經(jīng)利用細(xì)菌視紫紅質(zhì)蛋白質(zhì)制作出了光導(dǎo)“與”門(mén),利用發(fā)光門(mén)制成蛋白質(zhì)存儲(chǔ)器。此外,他們還利用細(xì)菌視紫紅質(zhì)蛋白質(zhì)研制模擬人腦聯(lián)想能力的中心網(wǎng)絡(luò)和聯(lián)想式存儲(chǔ)裝置。
納米計(jì)算機(jī)的問(wèn)世,將會(huì)使當(dāng)今的信息時(shí)代發(fā)生質(zhì)的飛躍。它將突破傳統(tǒng)極限,使單位體積物質(zhì)的儲(chǔ)存和信息處理的能力提高上百萬(wàn)倍,從而實(shí)現(xiàn)電子學(xué)上的又一次革命。2.應(yīng)用原理
納米材料應(yīng)用原理即納米材料的各種特性(1)量子尺寸效應(yīng)
以下兩種情形均稱(chēng)為量子尺寸效應(yīng):
一是納米粒子尺寸小到某一值時(shí),在費(fèi)米能級(jí)附近的電子能級(jí)由準(zhǔn)連續(xù)變?yōu)殡x散的現(xiàn)象;二是納米半導(dǎo)體微粒存在不連續(xù)的最高被占據(jù)分子軌道和最低未被占據(jù)的分子軌道能級(jí),能級(jí)間隔變寬現(xiàn)象。當(dāng)能級(jí)間隔大于熱能、磁能、靜電能、光子能量或超導(dǎo)態(tài)的凝聚能時(shí),就必須要考慮量子尺寸效應(yīng)。量子尺寸效應(yīng)導(dǎo)致納米微粒的磁、光、聲、熱、電以及超導(dǎo)電性與宏觀特性有著顯著的不同。例如,當(dāng)溫度為1K時(shí),Ag納米微粒粒徑< 14nm時(shí),Ag納米微粒變?yōu)榻饘俳^緣體
(2)小尺寸效應(yīng)
當(dāng)超細(xì)微粒的尺寸與光波波長(zhǎng)、德布羅意波長(zhǎng)以及超導(dǎo)態(tài)的相干長(zhǎng)度或透射深度等物理特征尺寸相當(dāng)或更小時(shí),晶體周期性的邊界條件將被破壞;非晶態(tài)納米微粒的顆粒表面層附近原子密度減小,導(dǎo)致聲、光、電、磁、熱力學(xué)等特性呈現(xiàn)新的變化,稱(chēng)為小尺寸效應(yīng)。
例如,光吸收顯著增加并產(chǎn)生吸收峰的等離子共振頻移;磁有序態(tài)向磁無(wú)序態(tài)轉(zhuǎn)變;超導(dǎo)相向正常相的轉(zhuǎn)變;聲子譜發(fā)生改變等。
(3)納米材料的熱學(xué)特性 納米微粒的熔 點(diǎn)、燒結(jié)溫度
和晶化溫度均
比常規(guī)粉體低 得多。這是納 米微粒量子效 應(yīng)造成的。
(4)納米材料的磁學(xué)特性 納米微粒的小尺寸效應(yīng)、量子尺寸效應(yīng)、表面效應(yīng),使其具有常規(guī)粗晶材料不具備的磁特性。主要表現(xiàn)為:超順磁性、矯頑力、居里溫度和磁化率(5)納米材料的光學(xué)特性
◆寬頻帶強(qiáng)吸收
當(dāng)尺寸減小到納米級(jí)時(shí),各種金屬納米微粒幾乎都呈黑色,它們對(duì)可見(jiàn)光的反射率極低。這就是納米材料的強(qiáng)吸收率、低反射率。例如,鉑金納米粒子的反射率為1%。納米氮化硅、碳化硅及三氧化二鋁對(duì)紅外有一個(gè)寬頻帶強(qiáng)吸收譜。◆納米微粒分散物系的光學(xué)性質(zhì)和發(fā)光效應(yīng)
納米微粒分散于介質(zhì)中形成分散物系(溶膠),納米微粒稱(chēng)為膠體(或分散相)。由于在溶膠中膠體的高分散性和不均勻性,使得分散物系具有特殊的光學(xué)特性,例如丁達(dá)爾效應(yīng)。三.制備方法
1.激光誘導(dǎo)化學(xué)氣相沉積法
(LICVD)基本原理——利用反應(yīng)氣體分子對(duì)特定波長(zhǎng)激光束的吸收,引起反應(yīng)氣體分子激光光解、激光熱解、激光光敏化和激光誘導(dǎo)合成,在一定工藝條件下,獲得納米微粒。優(yōu)點(diǎn)——表面清潔、納米微粒大小可精確控制、無(wú)粘結(jié)、粒度分布均勻。2.低溫等離子體增強(qiáng)化學(xué)氣相沉積法(PECVD)
基礎(chǔ)——化學(xué)氣相沉積法原理——由于等離子體是不等溫系統(tǒng),其中“電子氣”具有比中性粒子和正離子大得多的平均能量;電子的能量足以使氣體分子的化學(xué)鍵斷裂,并導(dǎo)致化學(xué)活性高的粒子(離子、活化分子等基團(tuán))的產(chǎn)生。即反應(yīng)氣體的化學(xué)鍵在低溫下就可以被分解,從而實(shí)現(xiàn)高溫材料的低溫合成。
◆低溫等離子體增強(qiáng)化學(xué)氣相沉淀技術(shù)的優(yōu)點(diǎn): ①
運(yùn)行氣壓低。
②
等離子體密度高。
③
無(wú)內(nèi)電極放電,雜質(zhì)少,污染小。④
微波能量轉(zhuǎn)換率高,達(dá)95%。⑤
離子能量低。
⑥
可穩(wěn)態(tài)運(yùn)行,參數(shù)易于控制。⑦
速率高、納米材料純度高。⑧
提高了反應(yīng)物的活性。
⑨
有良好的各向異性刻蝕性能
3.液相法制備納米材料
化學(xué)共沉淀是利用各種組分元素的可溶性鹽類(lèi),把它們按一定的比例配制成液體,然后加入
NH4CO3沉降劑,如
NH
OH
、等,使得各種組分元素共同形成沉淀,4并通過(guò)控制溶液濃度、PH值等來(lái)控制形成沉淀粉體的性能。最后經(jīng)過(guò)過(guò)濾、洗滌,對(duì)沉淀物進(jìn)行加熱分解,得到各種組分元素的氧化物均勻復(fù)合粉體。
四.國(guó)內(nèi)外研究進(jìn)展
1984年德國(guó)薩爾蘭大學(xué)的Gleiter以及美國(guó)阿貢試驗(yàn)室的Siegel相繼成功地制得了純物質(zhì)的納米細(xì)粉。Gleiter在高真空的條件下將粒徑為6nm的Fe粒子原位加壓成形,燒結(jié)得到納米微晶塊體,從而使納米材料進(jìn)入了一個(gè)新的階段。1990年7月在美國(guó)召開(kāi)的第一屆國(guó)際納米科學(xué)技術(shù)會(huì)議,正式宣布納米材料科學(xué)為材料科學(xué)的一個(gè)新分支。
納米技術(shù)作為一種最具有市場(chǎng)應(yīng)用潛力的新興科學(xué)技術(shù),其潛在的重要性毋庸置疑,一些發(fā)達(dá)國(guó)家都投入大量的資金進(jìn)行研究工作。如美國(guó)最早成立了納米研究中心,日本文教科部把納米技術(shù),列為材料科學(xué)的四大重點(diǎn)研究開(kāi)發(fā)項(xiàng)目之一。在德國(guó),以漢堡大學(xué)和美因茨大學(xué)為納米技術(shù)研究中心,政府每年出資6500萬(wàn)美元支持微系統(tǒng)的研究。在國(guó)內(nèi),許多科研院所、高等院校也組織科研力量,開(kāi)展納米技術(shù)的研究工作,并取得了一定的研究成果,主要如下:
定向納米碳管陣列的合成,由中國(guó)科學(xué)院物理研究所解思深研究員等完成。他們利用化學(xué)氣相法高效制備出孔徑約20納米,長(zhǎng)度約100微米的碳納米管。并由此制備出納米管陣列,其面積達(dá)3毫米×3毫米,碳納米管之間間距為100微米。
氮化鎵納米棒的制備,由清華大學(xué)范守善教授等完成。他們首次利用碳納米管制備出直徑3~40納米、長(zhǎng)度達(dá)微米量級(jí)的半導(dǎo)體氮化鎵一維納米棒,并提出碳納米管限制反應(yīng)的概念。并與美國(guó)斯坦福大學(xué)戴宏杰教授合作,在國(guó)際上首次實(shí)現(xiàn)硅襯底上碳納米管陣列的自組織生長(zhǎng)。
準(zhǔn)一維納米絲和納米電纜,由中國(guó)科學(xué)院固體物理研究所張立德研究員等完成。他們利用碳熱還原、溶膠—凝膠軟化學(xué)法并結(jié)合納米液滴外延等新技術(shù),首次合成了碳化鉭納米絲外包絕緣體SiO2納米電纜。
用催化熱解法制成納米金剛石,由中國(guó)科學(xué)技術(shù)大學(xué)的錢(qián)逸泰等完成。他們用催化熱解法使四氯化碳和鈉反應(yīng),以此制備出了金剛石納米粉。
但是,同國(guó)外發(fā)達(dá)國(guó)家的先進(jìn)技術(shù)相比,我們還有很大的差距。德國(guó)科學(xué)技術(shù)部曾經(jīng)對(duì)納米技術(shù)未來(lái)市場(chǎng)潛力作過(guò)預(yù)測(cè):他們認(rèn)為到2000年,納米結(jié)構(gòu)器件市場(chǎng)容量將達(dá)到6375億美元,納米粉體、納米復(fù)合陶瓷以及其它納米復(fù)合材料市場(chǎng)容量將達(dá)到5457億美元,納米加工技術(shù)市場(chǎng)容量將達(dá)到442億美元,納米材料的評(píng)價(jià)技術(shù)市場(chǎng)容量將達(dá)到27.2億美元。并預(yù)測(cè)市場(chǎng)的突破口可能在信息、通訊、環(huán)境和醫(yī)藥等領(lǐng)域。
總之,納米技術(shù)正成為各國(guó)科技界所關(guān)注的焦點(diǎn),正如錢(qián)學(xué)森院士所預(yù)言的那樣:“納米左右和納米以下的結(jié)構(gòu)將是下一階段科技發(fā)展的特點(diǎn),會(huì)是一次技術(shù)革命,從而將是21世紀(jì)的又一次產(chǎn)業(yè)革命。”
第四篇:淺論納米材料的特性及應(yīng)用
淺論納米材料的特性及應(yīng)用
人類(lèi) 論文關(guān)鍵詞:納米尺寸;性能
論文摘要:納米尺寸開(kāi)辟科學(xué)新領(lǐng)域,介紹納米材料的神奇特性及在生活中的應(yīng)用。
對(duì)物質(zhì)世界的研究,曾小到原子、分子,大到宇宙空間。從無(wú)限小和無(wú)限大兩個(gè)物質(zhì)尺寸去認(rèn)識(shí)物質(zhì),使人們了解到世界是物質(zhì)的。物質(zhì)是由原子或分子構(gòu)成的,原子、分子是保持物質(zhì)化學(xué)、物理理特性的最小微粒。這為人類(lèi)認(rèn)識(shí)世界、改造世界推進(jìn)科學(xué)的向前發(fā)展提供了堅(jiān)實(shí)的理論基礎(chǔ),也產(chǎn)生了一個(gè)個(gè)的科學(xué)原理和定理,推動(dòng)了人類(lèi)生產(chǎn)和生活的不斷向前發(fā)展。
隨著科學(xué)研究的進(jìn)一步發(fā)展,人們發(fā)現(xiàn)當(dāng)物質(zhì)達(dá)到納米尺度以后,大約在這個(gè)范圍空間。物質(zhì)的性能就會(huì)發(fā)生突變,出現(xiàn)特殊性能。這種既不同于原來(lái)組成的原子、分子,也不同于宏觀物質(zhì)的特殊性能的物質(zhì)構(gòu)成的材料,即為納米材料。
過(guò)去,人們只注意原子、分子,或者宇宙空間,常常忽略他們的中間領(lǐng)域,而這個(gè)領(lǐng)域?qū)嶋H上大量存在于自然界,它的性能并引用納米概念的是日本科學(xué)家。他們發(fā)現(xiàn):一個(gè)導(dǎo)電,米尺度以后,它就失去原來(lái)的性質(zhì),度,大約是在1效應(yīng),量子隧道效應(yīng)等及由這些效應(yīng)所引起的諸多奇特性能。學(xué)特性,這些特性在光、電、磁、催化等方面具有非常重大應(yīng)用價(jià)值。
近年來(lái),已在醫(yī)藥、1醫(yī)學(xué)方面的應(yīng)用:
目前,國(guó)際醫(yī)學(xué)行業(yè)面臨新的決策,從動(dòng)植物中提取必要的物質(zhì),的想法,隨著健康科學(xué)的發(fā)展,高藥效,發(fā)展藥物定向治療,必須憑借納米技術(shù)。數(shù)層納米粒子包裹的智能藥物進(jìn)入人體,以納米磁性材料作為藥物載體的靶定向藥物,覆蛋白質(zhì)表面攜帶藥物,納米粒子的尺寸小,可以在血管中自由的滾動(dòng),因此可以用檢查和治療身體各部位的病變。利用納米系統(tǒng)檢查和給藥,受人們的歡迎。
2在涂料方面的應(yīng)用;
納米材料由于其表面和結(jié)構(gòu)的特殊性,的涂層技術(shù),再給涂料中添加納米材料,傳統(tǒng)涂層功能改性從而獲得傳統(tǒng)涂層沒(méi)有的功能,耐腐蝕、變色等。在涂料中加入納米材料,可進(jìn)一步提高其防護(hù)能力,實(shí)現(xiàn)防紫外線照射,耐大氣侵害和抗降解等,在衛(wèi)生用品上應(yīng)用可起到殺菌保結(jié)作用。在建材產(chǎn)品如玻璃中加入適宜的納米材料,可達(dá)到減少光的透射和熱估遞效果,產(chǎn)生隔熱,阻燃等效果。由于氧化物納米微粒的顏色不同,黑靜電屏蔽涂料只有單一顏色的單調(diào)性。色的效應(yīng)。在汽車(chē)的裝飾噴涂業(yè)中,將納米使涂層產(chǎn)生豐富而神秘的色彩效果,從而使傳統(tǒng)汽車(chē)面色彩多樣化。
3在化工方面的應(yīng)用;只是以前沒(méi)有認(rèn)識(shí)到這個(gè)尺度的范圍的性能。表現(xiàn)出既不導(dǎo)電,也不導(dǎo)熱。納米這個(gè)范圍空間,就會(huì)產(chǎn)生特殊的表面效應(yīng),體積效應(yīng),量子尺寸生物、環(huán)境保護(hù)和化工等方面得到了應(yīng)用,那就是用納米尺度發(fā)展制藥業(yè)。然后在納米尺度組合,人們對(duì)藥物的要求越來(lái)越高。可主動(dòng)搜索并攻擊癌細(xì)胞或修補(bǔ)損傷組織,注射到人體血管中,避免身體健康部位受損,可獲得納米復(fù)合體系涂層,實(shí)現(xiàn)功能的飛躍,納米材料的顏色不僅限粒徑而變,第一個(gè)真正認(rèn)識(shí)到導(dǎo)熱的銅、材料在尺寸上達(dá)到納米尺擁有一系列的新穎的物理和化 并顯示出它的獨(dú)特魅力。納米生物醫(yī)學(xué)就是最大限度發(fā)揮藥效,這恰恰是我國(guó)中醫(yī)控制藥物釋放減少副作用,提納米粒子可使藥物在人體內(nèi)方便傳輸。用稱(chēng)為“定向?qū)棥薄T摷夹g(shù)是在磁性納米微粒包通過(guò)磁場(chǎng)導(dǎo)航輸送到病變部位,可以大大減小藥物的毒副作用,如;有超硬、耐磨,抗氧化、這樣可以通過(guò)復(fù)合控制涂料的顏色,而具有隨角度變Tio2添加在汽車(chē)、轎車(chē)的金屬閃光面漆中,能 ~100納米 尤其是因而深借助于傳統(tǒng)使得阻燃、克服碳1銀導(dǎo)體做成納~100然后釋放藥物。
具有一般材料難以獲得的優(yōu)異性能。耐熱、化工業(yè)影響到人類(lèi)生活的方方面面,如果在化工業(yè)中采用納米技術(shù),將更顯示出獨(dú)特畦力。在橡膠塑料等化工領(lǐng)域,納米材料都能發(fā)揮重要作用。如在橡膠中加入納米Sio2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優(yōu)于用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強(qiáng)度和韌性,而且致密性和防水性也相應(yīng)提高。最近又開(kāi)發(fā)了食品包裝的TiO2.納米TiO2能夠強(qiáng)烈吸收太陽(yáng)光中的紫外線,產(chǎn)生很強(qiáng)的光化學(xué)活性,可以用光催化降解工業(yè)廢水中的有利污染物,具有除凈度高,無(wú)二次污染,適用性廣泛等優(yōu)點(diǎn),在環(huán)保水處理中有著很好的應(yīng)用前景。
4其他生活方面的應(yīng)用:
納米技術(shù)正在悄悄地滲透到老百姓衣、食、住、行各個(gè)領(lǐng)域。化纖布料制成的衣服雖然艷麗,但因摩擦容易產(chǎn)生靜電,因而在生產(chǎn)時(shí)加入少量金屬納米微粒,就可以擺脫煩人的靜電現(xiàn)象。不久前,關(guān)于保溫被、保溫衣的電視宣傳,提到應(yīng)用了納米技術(shù)。納米材料可使衣物防靜電、變色、貯光,具有很好的保暖效果。冰箱、洗衣機(jī)等一些電器時(shí)間長(zhǎng)了容易產(chǎn)生細(xì)菌,而采用了納米材料,新設(shè)計(jì)的冰箱、洗衣機(jī)既可以抗菌,又可以除味殺菌。紫外線對(duì)人體的害處極大,有的納米微粒卻可以吸收紫外線對(duì)人體有害的部分,市場(chǎng)上的許多化妝品正是因?yàn)榧尤肓思{米微粒而具備了防紫外線的功能。傳統(tǒng)的涂料耐洗刷性差,時(shí)間不長(zhǎng)墻壁就會(huì)變的班駁陸離,納米技術(shù)應(yīng)用之后,涂料的技術(shù)指標(biāo)大大提高,外墻涂料的耐洗刷性提高很多,以前的電視、音響等家電外表一般都是黑色的,被稱(chēng)為黑色家電,這是因?yàn)榧译娡獗聿牧现斜仨毤尤胩己谶M(jìn)行靜電屏蔽。如今可以通過(guò)控制納米微粒的種類(lèi),進(jìn)而可控制涂料的顏色,使黑色家電變成彩色家電。
其實(shí),納米技術(shù)最早只是合成,限于納米微粒,后來(lái)有了其他形貌,大概3-40年。第二階段是復(fù)合,核殼結(jié)構(gòu),薄膜,分形等,都是這個(gè)階段,大概在90年代到2000年。第三階段是功能化,現(xiàn)在的文章也很注重應(yīng)用了,沒(méi)有應(yīng)用前景的是發(fā)不了高檔次的,當(dāng)然,功能化還是有點(diǎn)復(fù)合的味道的,因?yàn)檫@是一個(gè)不可分割的過(guò)程。我么現(xiàn)在所處的時(shí)段就是功能化。
在我的觀點(diǎn)看來(lái),至于納米材料的前景,很大程度上要看這一二十年了,如果沒(méi)有不可代替的應(yīng)用必要,那么其前景將暗淡,會(huì)想超導(dǎo)材料一樣,熱了幾十年,現(xiàn)在限于停滯,國(guó)外基本上不大規(guī)模搞了。
任何一項(xiàng)技術(shù)的進(jìn)展都是十分緩慢的,既然我們生存的一個(gè)宏觀世界,納米世界的物質(zhì)的安全性也要考慮的,所以很多應(yīng)用還只是實(shí)驗(yàn)室階段,這就限制了應(yīng)用,但是這是發(fā)展的必要。
總之,在未來(lái)生活中,納米技術(shù)將帶給我們無(wú)限的舒心與時(shí)尚,使人類(lèi)的生存的條件更加優(yōu)越。
第五篇:納米材料的制備及應(yīng)用要點(diǎn)
本科畢業(yè)論文(設(shè)計(jì))
題目: 納米材料的制備及應(yīng)用
學(xué)院: 物理與電子科學(xué)學(xué)院
班級(jí): XX級(jí)XX班
姓名: XXX
指導(dǎo)教師: XXX 職稱(chēng):
完成日期: 20XX 年 X 月 XX 日
納米材料的制備及應(yīng)用
摘要:近幾年來(lái),由于納米材料有眾多特殊性質(zhì),人們?cè)絹?lái)越關(guān)注納米材料。科技的迅猛發(fā)展使納米材料的制備變得更加成熟。本論文講述納米材料的制備,以及納米技術(shù)在將來(lái)的應(yīng)用。關(guān)鍵詞:納米材料 物理方法
化學(xué)方法應(yīng)用前景
目 錄
引言..................................................................................................................1 1.納米材料的物理制備方法.................................................................................1 1.1物理粉碎法............................................................................................1 1.2球磨法...................................................................................................2 1.3.蒸發(fā)—冷凝法........................................................................................2 1.3.1.激光加熱蒸發(fā)法...........................................................................2 1.3.2.真空蒸發(fā)—冷凝法........................................................................4 1.3.3.電子束照射法..............................................................................4 1.3.4.等離子體法.................................................................................5 1.3.5.高頻感應(yīng)加熱法.........................................................................5 1.4.濺射法..................................................................................................6 2.納米材料的化學(xué)制備方法.................................................................................7 2.1化學(xué)沉淀法............................................................................................8 2.2化學(xué)氣相沉積法...................................................................................8 2.3化學(xué)氣相冷凝法....................................................................................10 2.4溶膠--凝膠法.......................................................................................10 2.5水熱法.................................................................................................11 3.納米材料的其他制備方法...............................................................................12 3.1分子束外延法.......................................................................................12 3.2靜電紡絲法..........................................................................................13 4.納米材料的應(yīng)用前景.....................................................................................14 5.總結(jié).............................................................................................................14 參考文獻(xiàn)..........................................................................................................15 致謝................................................................................................................16
引言
納米材料是指任一維空間尺度處于1—100nm之間的材料。它有著不同尋常的性質(zhì),如小尺寸效應(yīng)可引起物理性質(zhì)的突變,從而具有獨(dú)特的性能;量子尺寸效應(yīng)和表面與界面效應(yīng)使其具有了一般大顆粒物不具備的性質(zhì),如對(duì)紅外線、紫外線有很強(qiáng)的反射作用,應(yīng)用到紡織品中有抗紫外線,隔熱保溫作用。納米材料的這些特性使其在化工、物理、生物、醫(yī)學(xué)方面都有非常重要的價(jià)值[1]。多年以來(lái),通過(guò)科學(xué)家們的潛心研究,使納米材料在其制備及其應(yīng)用中得到了很大的發(fā)展。納米材料將逐漸進(jìn)入人們的日常生活,并將成為未來(lái)新工業(yè)革命的必備材料。
1.納米材料的物理制備方法 1.1物理粉碎法
物理粉碎法就是用機(jī)械粉碎和電火花爆炸等方法得到納米微粒[2]。此方法操作簡(jiǎn)單,成本較低,但得到的納米微粒純度不高,分布也不均勻。
圖1.機(jī)械粉碎法儀器圖
1.2球磨法
球磨法是將材料放入球磨機(jī)內(nèi),在球磨機(jī)的轉(zhuǎn)動(dòng)或振動(dòng)過(guò)程中,鋼球與原料之間產(chǎn)生劇烈的碰撞,再經(jīng)過(guò)攪拌、研磨,形成納米微粒。該方法操作比較簡(jiǎn)單,效率高,能獲得常規(guī)方法不易得到的高熔點(diǎn)合金,如金屬陶瓷納米微粒;球磨法此外還可以將相圖上本來(lái)不互溶的納米元素制成固溶體,但該方法得到的納米微粒分布不均勻,而且很容易引入新的雜質(zhì),有次得到的納米微粒純度不高。
圖2.球磨法示意圖
1.3.蒸發(fā)—冷凝法
蒸發(fā)-冷凝法也稱(chēng)為物理氣相沉積法,即使用激光、電子束照射、真空蒸發(fā)、電弧高頻反應(yīng)等方法使原料生成等離子體,再在介質(zhì)中冷卻凝結(jié)行成納米微粒。這種方法大致又分一下幾種: 1.3.1.激光加熱蒸發(fā)法
光加熱蒸發(fā)法:用激光作為加熱源,氣相反應(yīng)物可在吸收傳遞能量之后快速凝結(jié)成核、長(zhǎng)大、終止[3]。用該方法可以達(dá)到減少雜質(zhì)的目的,實(shí)驗(yàn)過(guò)程容易控制,但這種方法電能消耗比較大,生產(chǎn)效率低,成本高,不宜大規(guī)模生產(chǎn)。
圖3.激光加熱蒸發(fā)法制備納米顆粒實(shí)驗(yàn)裝置圖
圖4.激光加熱法制成的TiO2顆粒
1.3.2.真空蒸發(fā)—冷凝法
真空 蒸發(fā)—冷凝法:在真空室里通入惰性氣體(He、Ar氣),然后對(duì)物質(zhì)進(jìn)行真空加熱,使其蒸發(fā)形成原子霧,原子霧遇冷凝結(jié)形成納米顆粒[4]。這種在高溫下獲得的納米微粒很小(可小于10nm),在制備過(guò)程中無(wú)其它雜質(zhì)污染,反應(yīng)快,成品純度高,材料組織好。但這種方法僅能制備成分單
一、熔點(diǎn)低的物質(zhì)。在制備金屬氧化物、氮化物等高熔點(diǎn)物質(zhì)的納米微粒時(shí)還存在很大局限性。而且此方法對(duì)設(shè)備要求高、成本也比較高,不適合大規(guī)模生產(chǎn)。
圖5.真空蒸發(fā)—冷凝法制備納米顆粒示意圖
1.3.3.電子束照射法
電子束照射法:原材料(一般指金屬氧化物)在高能電子束的照射下獲得能量,金屬—氧鍵斷裂,金屬原子蒸發(fā)后遇冷凝結(jié)成核、長(zhǎng)大,最終形成納米微粒。此方法只可以用來(lái)制備金屬納米粉末。
圖6.電子束照射法制備納米微粒裝置圖
1.3.4.等離子體法
等離子體法:原材料在惰性或反應(yīng)性氛圍中,通過(guò)直流放電來(lái)使氣體電離,從而熔融、蒸發(fā)、冷凝得到納米微粒[5]。用此種方法制得的產(chǎn)品分布均勻、純度高,適合于金屬及金屬氧化物、碳化物、氮化物等高熔點(diǎn)物質(zhì)納米微粒的制備。但此方法離子槍短、功率低。
圖7.等離子體法制備納米微粒實(shí)驗(yàn)裝置圖
1.3.5.高頻感應(yīng)加熱法
高頻感應(yīng)加熱法:用高頻線圈作為熱源,坩堝內(nèi)的原材料在低壓氣體(一般為He、Ne等惰性氣體)中蒸發(fā),原子蒸發(fā)后與惰性氣體碰撞凝結(jié)行成納米微粒[6]。此方法僅限于制備低熔點(diǎn)的物質(zhì),并不適合于沸點(diǎn)高的金屬盒難熔化物質(zhì),且成本加高,一般不采用。
圖8.高頻感應(yīng)加熱法制備納米納米微粒實(shí)驗(yàn)裝置圖
1.4.濺射法
濺射法:用兩塊金屬板分別作為陰極和陽(yáng)極,兩極之間充入Ar氣,壓強(qiáng)在40—250Pa。由于兩極放電使得Ar氣體電離且撞擊陰極材料表面,陰極材料表面的分子或原子蒸發(fā)出來(lái)沉積到基片上,形成納米顆粒[7]。目前,常用的濺射法有離子束濺射法,陰極濺射法,直流磁控濺射法等。此方法有鍍膜層與基材結(jié)合力強(qiáng)、鍍膜層致密、均勻等優(yōu)點(diǎn)。但產(chǎn)品分布不均勻,產(chǎn)量較低。
圖9.濺射法制備納米微粒原理圖
2.納米材料的化學(xué)制備方法
納米材料的化學(xué)制備方即通過(guò)化學(xué)反應(yīng),從原子、離子、分子出發(fā),制備納米微粒。常用的化學(xué)制備法有沉淀法、氣相沉積法、等離子體誘導(dǎo)化學(xué)氣相沉積法、氣相冷凝法、溶膠冷凝法、光化學(xué)合成法、化學(xué)氣相反應(yīng)法、水熱法、熔融法、火焰水解法、輻射合成法等。
2.1化學(xué)沉淀法
化學(xué)沉淀法:在金屬鹽溶液中加入適量的沉淀劑,使其反應(yīng)生成難溶物或水和氧化物,再經(jīng)過(guò)慮、干燥、分解得到納米化合物微粒;化學(xué)沉淀法又有均勻沉淀法、直接沉淀法、醇鹽水解沉淀法、共沉淀法;其中,均勻沉淀法是預(yù)沉淀劑在溶液中緩慢反應(yīng)釋放出沉淀劑,沉淀劑與金屬離子作用得到沉淀;直接沉淀法就是沉淀劑與金屬離子直接反應(yīng)形成沉淀
[8];醇鹽水解沉淀法就是金屬醇鹽遇水分解成氧化物和醇,或水合沉淀物;共沉淀法即在混合金屬鹽溶液中加入沉淀劑,獲得混合沉淀,再進(jìn)行熱分解或得納米微粒;此方法是液相化學(xué)合成納米微粒應(yīng)用最多的方法之一,其中關(guān)鍵是控制粉末成分的均勻,避免形成硬團(tuán)聚。這種方法在冷凍干燥過(guò)程中,冷凍液體不收縮,形成的納米微粒表面積較大,可以很好的消除粉末團(tuán)聚現(xiàn)象[9]。沉淀法制備納米微粒時(shí)成品的影響因素比較多,如過(guò)濾過(guò)程,洗滌液的濃度、酸堿度等都會(huì)影響納米微粒的大小;此種方法操作簡(jiǎn)單,但很容易引入新的雜質(zhì),影響產(chǎn)品的純度。2.2化學(xué)氣相沉積法.化學(xué)氣相沉積法又叫CVD法,就是原材料在氣相中發(fā)生化學(xué)反應(yīng)得到納米材料,所用的加熱源與物理氣相沉積法相同[10]。普通的化學(xué)氣相沉積法得到的納米微粒易團(tuán)聚燒結(jié),而且比較粗,用等離子體增強(qiáng)化學(xué)氣相沉積法就可以很好的避免上述情況的發(fā)生。化學(xué)氣相沉積法得到的納米微粒分布比較均勻,粒度小,純度高,化學(xué)活性高,而且成本低、生產(chǎn)效率高,是目前制備納米材料最常用的方法之一。此外,化學(xué)氣相沉積法由于制備工藝簡(jiǎn)單,設(shè)備投資少,方便操作,適于大規(guī)模生產(chǎn),工業(yè)應(yīng)用前景較好。化學(xué)氣相沉積法可以制備幾乎所有的金屬、氮化物、氧化物、碳化物、復(fù)合氧化物等膜材料。隨著制備納米材料的技術(shù)逐步完善,化學(xué)氣相沉積法將會(huì)由更廣泛的應(yīng)用[11]。
圖10.化學(xué)氣相沉積法制備納米微粒的實(shí)驗(yàn)裝置圖
圖11.化學(xué)氣相沉積法制備納米微粒的原理圖
圖12.化學(xué)氣相沉積法獲得的各種形態(tài)固體示意圖
2.3化學(xué)氣相冷凝法
化學(xué)氣相冷凝法就是在真空室中充入惰性氣體,壓強(qiáng)在10Pa左右,原材料和惰性氣體先在磁控濺射裝置中反應(yīng),在經(jīng)過(guò)冷凝得到納米微粒;此方法最早由Chang W等人在1994年提出的,簡(jiǎn)稱(chēng)CVC法,目前已經(jīng)成功應(yīng)用這種方法獲得了二氧化鈦、二氧化鋯、氮化硅、碳化硅的納米材料[12]。2.4溶膠--凝膠法 溶膠--凝膠法是以易溶于水的金屬化合物為原材料,使其在溶液中與水反應(yīng),溶質(zhì)發(fā)生水解生成納米級(jí)的微粒并形成溶膠,溶膠經(jīng)過(guò)蒸發(fā)、干燥轉(zhuǎn)變?yōu)槟z(該法在低溫下反應(yīng),允許摻雜大量的無(wú)機(jī)物和有機(jī)物),再經(jīng)過(guò)干燥、燒結(jié)等后處理獲得氧化物納米微粒;這種方法常涉及的反應(yīng)有聚合反應(yīng)、水解反應(yīng)[13]。目前,溶膠--凝膠法一般又分為兩種:膠體化學(xué)法和金屬醇鹽水解法。其優(yōu)點(diǎn)是操作簡(jiǎn)單,在低溫環(huán)境下就可以獲得分布均勻、純度較高的納米微粒,而且可以用來(lái)獲得一般方法難以得到納米材料。用溶膠-凝膠法制備的 10
納米材料有多孔狀結(jié)構(gòu),表面積較大,在氣敏、濕敏及催化方面有很大的應(yīng)用,可以使氣敏、濕敏特性和催化率得到較大提高。此外,這種方法是制備涂層以及薄膜非常有效的方法之一,也特別適合制備非晶態(tài)納米材料。但這種方法的原材料成本高,制得的膜致密性差,而且很容易收縮、開(kāi)裂,所以使用范圍不廣。
圖13.溶膠--凝膠法制備納米材料的流程圖
2.5水熱法
水熱法是指在封閉的反應(yīng)容器中,將水溶液作反應(yīng)體系,對(duì)水溶液加熱增大體系壓強(qiáng)來(lái)制備無(wú)機(jī)材料,再經(jīng)過(guò)分離、熱處理得到納米微粒;離子反應(yīng)和水解反應(yīng)在水熱條件下可得到加速、促進(jìn),常溫下反應(yīng)很慢的熱力學(xué)反應(yīng),在水熱條件下就可以快速反應(yīng);在高壓下,大部分反應(yīng)物能部分溶于水中,使得反應(yīng)在液相或氣相中進(jìn)行[14]。
水熱法可以控制微粒的形態(tài)、結(jié)晶度、組成和大小,使用此法獲得的粉體具有較低的表面能,因此粉體一般無(wú)團(tuán)聚或少團(tuán)聚。這一特點(diǎn)大幅度提高了粉體的燒結(jié)性能,所以此法非常適合于陶瓷的生產(chǎn);并且,水熱法的反應(yīng)溫度低,活性高,為大規(guī)模的生產(chǎn)納米材料提供了非常有利的條件;水熱法的低溫 11
條件有利于合成熔點(diǎn)較低的化合物;水熱法合成的高壓和低溫條件,便于制成晶型完好、取向規(guī)則的晶體材料,而且合成產(chǎn)物的純度較高。水熱法缺點(diǎn)是一般只能制備氧化物納米粉體,對(duì)晶核的形成過(guò)程以及晶體生長(zhǎng)過(guò)程中的控制影響因素等許多方面還缺乏深入研究。此外,水熱法制備過(guò)程中有高溫、高壓步驟,對(duì)生產(chǎn)設(shè)備的安全性要求較高。3.納米材料的其他制備方法
納米材料的制備方法有很多種,除了上述方法之外還有分子束外延法、靜電紡絲法等。3.1分子束外延法
分子束外延法就是在晶體基片上生長(zhǎng)高質(zhì)量的晶體薄膜。在真空條件下,加熱裝有各種所需組分的爐子,產(chǎn)生蒸汽,蒸汽通過(guò)小孔形成分子束或原子束,直接噴到單晶基片上,同時(shí)控制分子束,對(duì)襯底掃描,就可以使按晶體排列的分子或原子一層層地生長(zhǎng)在基片上形成薄膜[15]。
圖14.分子束外延法原理圖
分子束外延法生長(zhǎng)溫度低,能減少不希望的熱激活過(guò)程,生長(zhǎng)速度緩慢,外延層厚度可得到精確控制;生長(zhǎng)表面可達(dá)到原子級(jí)光滑度,可制備極薄的薄膜;生長(zhǎng)的薄膜可以保持原來(lái)靶材料的化學(xué)計(jì)量比;把分析測(cè)試設(shè)備與生長(zhǎng)系統(tǒng)結(jié)合在一起,實(shí)現(xiàn)薄膜生長(zhǎng)的原位監(jiān)測(cè)[16]。分子束外延法也有不足的地方,如對(duì)真空要求非常高,分子束外延設(shè)備貴投資大,能耗大。3.2靜電紡絲法
靜電紡絲法是在高壓電場(chǎng)作用下使聚合物溶液或熔體帶上高壓靜電,當(dāng)電場(chǎng)力達(dá)到一定程度時(shí),聚合物液滴在電場(chǎng)力作用下克服表面張力形成噴射流[17]。噴射時(shí),射流中的溶液發(fā)生蒸發(fā)或自身發(fā)生固化形成纖維,最終落在接收裝置上,獲得納米材料。
圖15.所示為靜電紡絲原理圖
靜電紡絲法制備納米材料優(yōu)點(diǎn)很多,如裝置簡(jiǎn)單、成本低、可紡物多、工藝易控制,是制備納米纖維材料的有效方法。納米技術(shù)的發(fā)展使靜電紡絲作為一種簡(jiǎn)便有效的生產(chǎn)納米纖維的新型制備技術(shù),將會(huì)在生物、醫(yī)用、催化、光電、食品工程、化妝品等領(lǐng)域發(fā)揮巨大的作用。4.納米材料的應(yīng)用前景
納米材料有很多優(yōu)異的特點(diǎn),使得納米材料有很多不同于一般材料的奇特性質(zhì)。納米材料的應(yīng)用有著廣闊的應(yīng)用前景。采用納米技術(shù)制造的納米結(jié)構(gòu)微處理器在微電子和計(jì)算機(jī)技術(shù)方面其效率要比普通微處理器的效率高100萬(wàn)倍;納米存儲(chǔ)器的密度比普通存儲(chǔ)器的要高1000倍;而納米技術(shù)與集成技術(shù)結(jié)合又可制成納米傳感器;用納米材料做成的具有巨大表面積的電極,可以大幅度的提高放電效率;用納米材料制成的磁記錄材料可以將磁帶記錄的密度提高數(shù)十倍。在環(huán)境與能源方面,納米材料可提高太陽(yáng)能電池的能量轉(zhuǎn)換效率,還可以用來(lái)消除空氣中的污染物。例如將Ti02催化劑涂在物體上,可以使物體具有自潔功能,任何粘在物體表面上的物質(zhì)(油污、細(xì)菌)在光的照射下,通過(guò)Ti02催化劑催化作用,變成氣體或容易被擦掉的物質(zhì)。納米催化劑還可以徹底消除水或空氣中的有害物質(zhì)。納米材料在減少環(huán)境污染、凈化環(huán)境上有廣闊的應(yīng)用前景。在生物學(xué)工程與醫(yī)學(xué)方面,將磁性納米材料做為藥物載體,在外磁場(chǎng)作用下集中于病患處,有利于提高藥效,也可以減少藥物副作用[18]。用納米材料制成的溶液加上抗原或抗體,可以實(shí)現(xiàn)免疫學(xué)的間接凝聚實(shí)驗(yàn),實(shí)現(xiàn)快速診斷。用納米材料制成的機(jī)器人,用來(lái)人體進(jìn)行全方位的檢查,可消除血栓、心臟動(dòng)脈脂肪沉積物。5.總結(jié)
納米材料作為一種新興材料,具有十分廣闊和誘人的發(fā)展前景。納米材料的制備方法和技術(shù)將隨著科學(xué)技術(shù)的發(fā)展更加成熟,將對(duì)人們的生活和人類(lèi)生產(chǎn)力的發(fā)展產(chǎn)生重大的影響。
隨著納米技術(shù)的發(fā)展,各個(gè)學(xué)科領(lǐng)域都開(kāi)始廣泛應(yīng)用納米材料。這必將會(huì)不斷出現(xiàn)更新更好的制備方法,希望在將來(lái)以下幾個(gè)方面可取得突破。
(1)在結(jié)構(gòu)、組成、排布、尺寸、等方面,制備出更適合各領(lǐng)域發(fā)展需要,具有更多預(yù)期功能的納米材料;
(2)從節(jié)能、節(jié)約材料、提高效率等角度出發(fā),研制出更多的新設(shè)備,以便制備出更多的新型納米材料;
(3)設(shè)計(jì)出新的制備方法,采用新的制備工藝,在原有納米材料的基礎(chǔ)上,提高納米材料的功能。
參考文獻(xiàn)
[1].張立德,牟季美。納米材料和納米結(jié)構(gòu)[M].北京:科學(xué)出版社,2001.146 [2].齊民,楊大智,朱敏.機(jī)械合金化過(guò)程的固態(tài)相變[J].功能材料.1995(26):472-475 [3].郭永,鞏雄,楊宏秀.納米微粒的制備方法及其進(jìn)展[3].化學(xué)通報(bào),1996,3.1 [4].Gleiter H , On the structure of grain boundaries in metals [J].Mater Sci.Eng,1982,52,91 [5].Vissokov G.P, Plasmachemical technology for high-dispersion products[J],J.Master.Sci,1988,23,2415 [6].馬劍華.納米材料的制備方法[J].溫州大學(xué)學(xué)報(bào),2002,6(15).[7].林峰.納米材料的制備方法及應(yīng)用[J].廣東技術(shù)師范學(xué)院學(xué)報(bào),2007,7 [8].劉珍,梁偉,許并社,市野瀨英喜.納米材料制備方法及其研究進(jìn)展[J].2000,9(3).[9].徐華蕊,李鳳生.沉淀法制備納米粒子的研究[J].化工進(jìn)展.1996(5)29-33 [10].IZAKI K, HAKKEI K.Ultrastructure progressing for advanced ceramic [M].Willey.1988.[11].ALKIMUNE Y.High pressure research on nanocrystallin solid materials [J].J Mater Sic, 1990(25):3439-3445.[12].陳月輝,趙光賢.納米材料的特性和制備方法及應(yīng)用[J].橡膠工業(yè),2004,51.[13].劉珍,梁偉,許并社,市野瀨英喜.納米材料制備方法及其研究進(jìn)展[J].2000,9(3).15
[14].馬劍華.納米材料的制備方法[J].溫州大學(xué)學(xué)報(bào),2002,6(15).[15].王兆陽(yáng),胡禮中,孫捷,等.激光分子束外延技術(shù)及其在氧化鋅薄膜制備中的應(yīng)用[J].中國(guó)稀土學(xué)報(bào),2003,12(1):141-143.
[16].王兆陽(yáng),胡禮中,孫捷,等.激光分子束外延技術(shù)及其在氧化鋅薄膜制備中的應(yīng)用[J].中國(guó)稀土學(xué)報(bào),2003,12(1):141-143.
[17].吳大誠(chéng),杜仲良,高緒珊.納米纖維[M].北京:化學(xué)工業(yè)出版社,2003:23-26. [18].劉新云.納米材料的應(yīng)用前景及其研究進(jìn)展[J].安徽化工,2002(5)
致謝
本論文在XXX的悉心指導(dǎo)下完成的,她淵博的專(zhuān)業(yè)知識(shí),嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度使我受益非淺。在此謹(jǐn)向XXX老師致以誠(chéng)摯的謝意和崇高的敬意。感謝我的學(xué)友和朋友對(duì)我的關(guān)心和幫助。
The preparation of nanomaterials and their application prospects
Abstract:Nanomaterials are attracting great intense in recent years,for its special properties.With the rapid develope of science and technology , the preparation of nanomaterials has become more skilled.In this paper we mainly introduce the preparation of nanomaterials,including physical and chemical methods,and prospect of nanotechnology in 21st.Keywords: nanomaterials physical method chemical method application prospect