第一篇:《圓柱的體積》教學設計
《圓柱的體積》教學設計
學情分析:
根據(jù)六年級的教學情況來看,班中絕大部分同學都能跟上現(xiàn)有的進度,通過本節(jié)教學要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學目標:
.通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向?qū)W生滲透轉化思想。
2.通過圓柱體體積公式的推導,培養(yǎng)學生的分析推理能力。
3.理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。
教學重點:
圓柱體體積的計算
教學難點:
圓柱體體積公式的推導
教學用具:
圓柱體學具、教學過程:
一、復習引新
.求下面各圓的面積。
r=1厘米;
d=4分米;
=628米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的底面積s和高h,怎樣計算長方體的體積?
二、探索新知、根據(jù)學過的體積概念,說說什么是圓柱的體積。
2、公式推導。
請同學指出圓柱體的底面積和高。
回顧圓面積公式的推導。
3、回顧了圓的面積公式推導,你有什么啟發(fā)?
生答:把圓柱轉化成長方體計算體積。
4、動手操作。
請2位同學上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學上臺講解,完善語言。
提問:為什么用“近似”這個詞?、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學們進行交流?
出示討論題。
(1)、拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?
(2)、拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?
(3)、拼成的長方體的體積與原來圓柱的體積有什么關系?為什么?
板書:
長方體體積
底面積
高
圓柱體積
底面積
高
8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
V=sh
0、小結。
圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條?
1、教學算一算
審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?最后結果用體積單位)
2、教學“試一試”
小結:求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道呢?知道r、d、,都要先求出底面積再求體積。
三、鞏固練習
后“練一練”里的練習題。
四、堂小結
這節(jié)學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié),我們通過轉化,把圓柱體切拼轉化成長方體,得出了圓柱體的體積計算公式V=Sh。
第二篇:圓柱體積教學設計(通用)
圓柱體積教學設計(通用9篇)
作為一名教職工,時常要開展教學設計的準備工作,教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。怎樣寫教學設計才更能起到其作用呢?以下是小編幫大家整理的圓柱體積教學設計(通用9篇),僅供參考,大家一起來看看吧。
圓柱體積教學設計1一、教學目標
【知識與技能】
掌握圓柱的體積計算公式,能夠正確計算圓柱的體積。
【過程與方法】
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價值觀】
感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣,提高學習數(shù)學的自信心。
二、教學重難點
【教學重點】
圓柱的體積公式。
【教學難點】
圓柱體積公式的推導過程。
三、教學過程
(一)引入新課
提問:長方體和正方體的體積公式是什么?
預設:長方體的體積=長×寬×高,正方體體積=棱長×棱長×棱長,兩者共有的體積公式:長方體
(正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知
1.圓柱體積公式的猜想
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的體積相等嗎?
預設:根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
追問:類比之前學過的體積公式,圓柱的體積可能和哪些因素有關?圓柱的體積公式可能是什么?
預設:圓柱的體積和底面積、高有關,圓柱的體積公式=底面積×高。
2.圓柱體積公式的推導
回憶圓的面積是通過轉化為長方形,從而推導出圓的面積公式。提問:圓柱可以轉化成已知體積公式的哪個圖形呢?
預設:可以把圓柱轉換成長方體。
讓學生根據(jù)提前下發(fā)的能自動等份分割的圓柱體學具,同桌之間相互交流:如何把圓柱轉化為長方體呢?
預設:學生分一分,拼一拼,組合成近似長方體的圖形。此時教師應借助多媒體設備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學生進行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關系?5分鐘后請小組代表進行回答。
預設:長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
3.圓柱體積公式的推出
提問:圓柱的體積公式是什么?
預設:圓柱的體積=底面積×高
用大寫字母V表示圓柱的體積,S表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預設:V=Sh
教師強調(diào)字母V、S是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預設1:可以用長方體體積公式推導出圓柱體體積公式;
預設2:把圓柱轉化成長方體,與探索圓面積的方法類似;
預設3:計算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習
試一試
一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
(四)小結作業(yè)
提問:通過本節(jié)課的學習有什么收獲?
課后作業(yè):找找生活當中的圓柱物體,量一量底面積和高,算一算物體體積。
教學目標
1.理解圓柱體體積公式的推導過程,掌握計算公式
2.會運用公式計算圓柱的體積
教學重點
圓柱體體積的計算
教學難點
理解圓柱體體積公式的推導過程
教學過程
(一)教師提問
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導的?
(二)談話導入
同學們,我們在研究圓面積公式的推導時,是把它轉化成我們學過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉化成我們學過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)
(一)教學圓柱體的體積公式.(演示動畫“圓柱體的體積1”)
1.教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體
2.學生利用學具操作
3.啟發(fā)學生思考、討論:
(1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
(2)通過剛才的實驗你發(fā)現(xiàn)了什么?
①拼成的近似的長方體和圓柱體相比,體積大小沒變,形狀變了
②拼成的近似的長方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化
③近似長方體的高就是圓柱的高,沒有變化
4.學生根據(jù)圓的面積公式推導過程,進行猜想
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
(2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體
(2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體
6.推導圓柱的體積公式
(1)學生分組討論:圓柱體的體積怎樣計算?
(2)學生匯報討論結果,并說明理由.
因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)
(3)用字母表示圓柱的體積公式.(板書:V=Sh)
(二)教學例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習
(1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學例5.
1.出示例5
例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×100
=314(平方厘米)
水桶的容積:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米.
通過本節(jié)課的學習,你有什么收獲?
1.圓柱體體積公式的推導方法.
2.公式的應用.
(一)填表
(二)求下面各圓柱的體積
(三)一個圓柱形水池,半徑是10米,深1.5米.這個水池占地面積是多少?水池的容積是多少立方米?
(一)求下列圖形的表面積和體積(圖中單位:厘米)
(二)兩個底面積相等的圓柱,一個圓柱的高為4.5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?
教學目標:
1、了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)初步的空間觀念和思維能力;進一步認識“轉化”的思考方法。
教學重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積
教學難點:
理解圓柱體積計算公式的推導過程。
教學用具:
圓柱體積演示教具。
教學過程:
以2人小組回顧下列內(nèi)容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)
1、說一說:
(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的體積怎樣計算?如何用字母表示?
長方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說出解題思路,不計算。)
(1)r=1厘米
;(2)d=4分米;
(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學習“圓柱的體積”。(板書課題)
請仔細閱讀課本第8-9頁的內(nèi)容,完成下面問題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們在學習圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉化成一個近似的長方形,通過切、拼的方法,把圓柱轉化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關系
(1)圓柱的底面積變成了長方體的()。
(2)圓柱的高變成了長方體的()。
(3)圓柱轉化成長方體后,體積沒變。因為長方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報交流,教師用教具演示講解2題]
(二)獨立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?
先求底面積,列式計算()
再求體積,列式計算()
綜合算式()
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計)
【要求:完成之后以小組互查,有爭議之處四人大組討論。】
教師根據(jù)學生做題情況挑選一些小組進行匯報、交流,并對小組學習情況進行評價。
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計算)
【要求:完成后小組互查,教師評價】
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內(nèi)共同完成】
教師進行錯例分析。
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內(nèi)討論確定解題思路,再完成】
1、總結:這節(jié)我們利用轉化的方法,把圓柱轉化為長方體來推導其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業(yè):課本練一練6題
圓柱體積教學設計4教學目標:
1、使學生能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
靈活應用圓柱的體積公式解決實際問題。
教學過程:
1、復習圓柱體積的推導過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復習長方體、正方體的體積公式后,讓學生獨立完成練習三第6題求體積部分,并指名板演。
1、練習三第4題。
學生獨立練習,強調(diào)選取有用信息,培養(yǎng)認真審題習慣。
2、練習三第5題。
(1)指導學生變換公式:因為V=Sh,所以h=V÷S。也可以列方程解答。
(2)學生選擇喜愛的方法解答這道題目。
3、練習三第10題。
指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的.底面積。利用這個底面積再求出另一個圓柱的體積。
4、練習三第8題。
(1)學生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
(2)在充分理解題意后學生獨立完成,集體訂正。
4、練習三第9題
(1)學生獨立審題后完成。
評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
5、練習三第11題。
此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。
(3)三、布置作業(yè)
完成練習中未做完的習題
教學反思
第五課時特別關注
練習三第4題,在教學中必須應該特別關注。
關注理由:
1、有多余條件,是培養(yǎng)學生收集有用信息的契機。
這道題中出現(xiàn)兩個圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0.5米。學生該如何合理做出選擇呢,關鍵要通過問題來思考。因為問題是求“花壇中共需要填土多少方”,所以應該選用“填土的高度是0.5米”這條數(shù)學信息。
在課堂中,我還要求學生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學生說“可以問花壇的體積是多少立方米”,還有的同學說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓練,能夠有效培養(yǎng)學生收集、處理信息的能力,同時提升他們綜合分析問題的能力。
2、有容易忽視的條件,是培養(yǎng)學生認真審題的契機。
一般習題中的數(shù)據(jù)是用阿拉伯數(shù)字呈現(xiàn),可這道題的問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學生忽視的數(shù)據(jù)“兩個”。其實,配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學生仍舊會出錯。所以,應抓住此題,培養(yǎng)學生良好審題的習慣。如在做這類習題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉化為數(shù)學問題等。
學生巧解
——巧求削去部分的體積
今天,全班同學做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米。現(xiàn)在,將它削成一個的圓柱體,求削去的部分是多少立方分米?
我因為做得既對又快,最終獲得全班第一名的成績。通過對比,我發(fā)現(xiàn)自己的方法比同學們巧妙。
同學們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。
而我在做這一題時,想起上學期在正方形中畫的圓,圓的面積占正方形面積的157/200的結論。因為直柱體的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
圓柱體積教學設計5教學內(nèi)容:
本內(nèi)容是六年級下冊第8頁至第9頁。
教材分析:
本節(jié)內(nèi)容是在學生了解了圓柱體的特征,掌握了圓柱表面積的計算方法基礎上進行教學的,是幾何知識的綜合運用,為后面學習圓錐的體積打下基礎,教材重視類比,轉化思想的滲透,引導學生經(jīng)歷“類比猜想——驗證說明”的探索過程,掌握圓柱體積的計算方法。
學生分析:
學生已掌握了長方體和正方體體積的計算方法以及圓的面積計算公式的推導過程,在圓柱的體積這節(jié)課化的體現(xiàn)動手實踐,自主探索,合作交流,為突破重、難點。本節(jié)課在教法和學法上從以下幾方面著手:先利用教具通過直觀教學讓學生觀察,比較,動手操作,經(jīng)歷知識產(chǎn)生的過程,發(fā)展學生思維能力;讓學生通過“類比猜想——驗證說明”的探索過程,主動學習,掌握知識形成技能,合作探究學習成為課堂的主要學習方式。
學習目標:
1、使學生理解和掌握圓柱體積的計算方法,在推導圓柱體積計算公式的過程中培養(yǎng)學生初步的空間觀念和動手操作的技能。
2、使學生能夠通過觀察,大膽猜想和驗證獲得新知識在教學活動過程中發(fā)展學生的推理能力,滲透轉化思想。
3、引導學生積極參與數(shù)學學習活動,培養(yǎng)學生的數(shù)學意識和合作意識。
教學過程:
出示教學情境:一個杯子能裝多少水呢?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出相關數(shù)據(jù),就能求出水的體積;倒入量筒里直接得到水的體積。
(設計意圖:讓學生根據(jù)自己已有的知識經(jīng)驗,把圓柱形杯子里的水倒入長方體或正方體容器,使形狀轉化成自己熟悉的長方體或正方體,只要求出長方體或正方體的體積就知道水的體積。)
出示第二情境:圓柱形的木柱子的體積是多少?用這種方法還行嗎?怎么辦?
(設計意圖:創(chuàng)設問題情境,引起學生認知沖突,激起學生求知欲望,使學生帶著積極的思維參與到學習中去,從而產(chǎn)生認知的飛躍。)
探究新知:怎樣計算圓柱的體積?(板書課題:計算圓柱的體積)
大膽猜想:你覺得圓柱體積的大小和什么有關?圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
(設計意圖:在新知識的探索中,合理的猜測能為探索問題,解決問題的思維方向起到導航和推進作用。)
驗證:能否將圓柱轉化為學過的立體圖形?
讓學生利用學具動手操作來推導圓柱體積公式(小組合作探究:給學生提供充分的時間和空間),引導學生把圓柱體底面平均分成多個小扇形,沿著高切開,拼成一個近似的長方體。
思考:圓柱體轉化成長方體為什么是近似的長方體?怎樣才能使轉化的立體圖形更接近長方體?
(設計意圖:讓學生明確圓柱體的底面平均分成的扇形越多拼成的立體圖形就越接近于長方體,滲透“極限”的思想。)
用課件展示切拼過程,讓學生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。
學生討論交流:
1、把圓柱拼成長方體后,什么變了,什么沒變?
2、拼成的長方體與圓柱之間有什么聯(lián)系?
3、通過觀察得到什么結論?
得到:圓柱的體積=底面積×高
V=Sh=πr2h
(設計意圖:在數(shù)學活動中通過觀察比較培養(yǎng)學生抽象概括能力,及邏輯思維能力。)
練習設計:
1、計算下面各圓柱的體積。
(1)S=60cm2 h=4cm
(2)r=1cm h=5cm
(3)d=6cm h=10cm2、算一算:已知一根柱子的底面半徑為0.4米,高為5米,你能算出它的體積嗎?
(設計意圖:使學生達到舉一反三的效果,從而訓練學生的技能,靈活掌握本課重點。)
3、試一試:
(1)一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個桶的容積是多少升?
(2)一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
(設計意圖:運用圓柱的體積計算公式解決生活實際問題,切實體驗到數(shù)學源于生活,身邊處處是數(shù)學。)
4、拓展練習:
(1)填表:
填表后觀察:你發(fā)現(xiàn)了什么?先獨立思考,再小組交流,最后匯報。
(設計意圖:在教學時應找出知識間存在著的密切聯(lián)系,幫助學生建立一個較為完整的知識系統(tǒng),為以后“比例”的教學作了孕伏)
(2)一個柱形容器的底面直徑是10厘米,把一塊鐵塊放入這個容器后,水面上升2厘米,這塊鐵塊的體積是多少?
(設計意圖:體會測量不規(guī)則物體體積的方法,認識到數(shù)學的價值體驗,使學生的思維處于積極的狀態(tài),培養(yǎng)學生思維靈活性,提高學生創(chuàng)造性解決問題的能力。)
課堂小結:談談這節(jié)課你有哪些收獲?
(設計意圖:采用提問式小結,讓學生暢談本節(jié)課的收獲,包括知識,能力,方法,情感等,通過對本節(jié)課所學知識的總結與回顧,培養(yǎng)學生的歸納概括能力,使學生學到的知識系統(tǒng)化,完整化。)
教學反思:
本節(jié)課采用新的教學理念,創(chuàng)設情境導入滲透轉化思想,讓學生在興趣盎然中徑歷自主探究,獨立思考、合作交流從而獲得新知。
情境導入滲透轉化思想激發(fā)學生的學習欲望,課的開始讓學生想方法測量出圓柱形水杯中水的體積,學生想出把水倒入長方體容器中轉化成長方體的體積來計算出水的體積,初步引導學生把圓柱體的體積轉化為長方體的體積。教會學生數(shù)學方法,注重讓學生在操作中探究,動手操作能展示學生個體的實踐活動,在動手過程中易于激發(fā)興趣,積累知識,發(fā)展思維,利于每一位學生自主,獨立,創(chuàng)造性的學習知識,發(fā)展他們的能力,課中讓學生經(jīng)歷知識產(chǎn)生的過程,理解和掌握數(shù)學基礎知識,讓學生在體驗和探索過程中不斷積累知識,逐步發(fā)展其空間觀念,促進學生的思維發(fā)展。
圓柱體積教學設計6教學目標
圓柱的體積(1)
圓柱的體積(教材第25頁例5)。
探索并掌握圓柱的體積計算公式,會運用公式計算圓柱的體積,體會轉化的思想方法。
教學重難點
1.掌握圓柱的體積公式,并能運用其解決簡單實際問題。
2.理解圓柱體積公式的推導過程。
教學工具
推導圓柱體積公式的圓柱教具一套。
教學過程
復習導入
1、口頭回答。
(1)什么叫體積?怎樣求長方體的體積?
(2)怎樣求圓的面積?圓的面積公式是什么?
(3)圓的面積公式是怎樣推導的?在學生回憶的基礎上,概括出“轉化圖形——建立聯(lián)系——推導公式”的方法。
2、引入新課。
我們在推導圓的面積公式時,是把它轉化成近似的長方形,找到這個長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導出了圓的面積公式。今天,我們能不能也用這個思路研究圓柱體積的計算問題呢?
教師板書:圓柱的體積(1)。
新課講授
1、教學圓柱體積公式的推導。
(1)教師演示。
把圓柱的底面分成16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
(2)學生利用學具操作。
(3)啟發(fā)學生思考、討論:
①圓柱切開后可以拼成一個什么立體圖形?
學生:近似的長方體。
②通過剛才的實驗你發(fā)現(xiàn)了什么?
教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?
學生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。
(4)學生根據(jù)圓的面積公式推導過程,進行猜想:
①如果把圓柱的底面平均分成32份,拼成的形狀是怎樣的?
②如果把圓柱的底面平均分成64份,拼成的形狀是怎樣的?
③如果把圓柱的底面平均分成128份,拼成的形狀是怎樣的?
(5)啟發(fā)學生說出:通過以上的觀察,發(fā)現(xiàn)了什么?
①平均分的份數(shù)越多,拼起來的形狀越接近長方體。
②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體形狀就越接近長方體。
(6)推導圓柱的體積公式。
①學生分組討論:圓柱的體積怎樣計算?
②學生匯報討論結果,并說明理由。
教師:因為長方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。
2、教學補充例題。
(1)出示補充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?
(2)指名學生分別回答下面的問題:
①這道題已知什么?求什么?
②能不能根據(jù)公式直接計算?
③計算之前要注意什么?
學生:計算時既要分析已知條件和問題,還要注意先統(tǒng)一計量單位。
(3)出示下面幾種解答方案,讓學生判斷哪個是正確的。
①50×2.1=105(cm3)答:它的體積是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的體積是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的體積是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的體積是0.0105m3。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的第①、③種解答要說說錯在什么地方。
(4)引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?
教師板書:V=πr2h。
課堂作業(yè)
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
課堂小結
通過這節(jié)課的學習,你有什么收獲?你有什么感受?
課后作業(yè)
完成練習冊中本課時的練習。
第4課時圓柱的體積(1)
課后小結
1.“圓柱的體積”是學生在掌握了圓柱的基本特征以及長方體、正方體體積計算方法等基礎上學習的。它是今后學習圓錐體積計算的基礎。
2.采用小組合作學習,從而引發(fā)自主探究,最后獲取知識的新方式來代替教師講授的老模式,能取得事半功倍的效果。
3.推導公式時間過長,可能導致練習時間少,練習量少,要注意把控。
課后習題
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1.6750(cm3)
2.7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
圓柱體積教學設計7教學目標:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、進一步提高學生解決問題的能力。
教學重、難點:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導過程。
教學準備:
圓柱切割組合模具、小黑板。
教學過程:
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
1、計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?
(啟發(fā)學生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗你發(fā)現(xiàn)了什么?小組討論:實驗前后,什么變了?什么沒變?討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學生匯報討論結果。
長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書:V=Sh5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應用練習。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結:
通過這節(jié)課你學會了哪些知識,有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
圓柱體積教學設計8一、教學目標
(一)知識與技能
用已學的圓柱體積知識解決生活中的實際問題,并滲透轉化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉化、測量和計算過程,讓學生在動手操作中初步建立“轉化”的數(shù)學思想,體驗“等積變形”的轉化過程。
(三)情感態(tài)度和價值觀
通過實踐,讓學生在合作中建立協(xié)作精神,并增強學生“用數(shù)學”的意識。
二、教學重難點
教學重點:利用所學知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學難點:轉化前后的溝通。
三、教學準備
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學過程
(一)復習舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題)
【設計意圖】通過復習圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學習新知做好知識上的準備。
(二)探索實踐,體驗轉化過程
1、創(chuàng)設情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學問題嗎?(隨機板書)
預設1:瓶子還有多少水?(剩下多少水?)
預設2:喝了多少水?(也就是瓶子的空氣部分。)
預設3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
(1)預設1:瓶子有多少水?(怎么解決?)
學生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結:知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
(2)預設2:喝了多少水?
學生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機引導:能否將空氣部分變成一個規(guī)則的立體圖形呢?
學生能說出方法更好,不能說出則引導:我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導學生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結:這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?
圓柱體積教學設計9探究目標:
1、組織學生開展測量、計算、估測等數(shù)學實踐活動,使學生進一步掌握圓柱體積計算公式,并能運用公式正確地計算圓柱的體積。
2、在探索空間與圖形的過程中,培養(yǎng)學生初步的空間觀念及實踐能力,同時結合具體的情境培養(yǎng)其估測意識。
3、使學生學會與他人合作,并能比較清楚地表達和交流解決問題的過程和結果。
4、讓學生體驗解決策略的多樣性,不斷激發(fā)其對數(shù)學的好奇心和求知欲,使其積極地參與數(shù)學學習活動。
教學重難點:
學生會應用圓柱體積公式解決實際問題。
探究過程:
提問:一個圓柱的底面積是80平方厘米,高是20厘米,求它的體積。
提問:如果已知的是底面半徑和高,該怎么求呢?
1、出示長方體魚缸。
要計算這個長方體魚缸能裝多少水,就是求什么?
怎樣求這個長方體的容積呢?
2、出示圓柱形魚缸。
⑴估測。這個圓柱形魚缸的容積大約是多少?
⑵操作、匯報。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學生分小組進行操作計算,各小組派代表演示操作過程,并展示計算過程。
學生可能的回答有:
生1:這個圓柱的底面周長是94.5厘米,它的高是12厘米,計算過程如下:
①94.5÷3.14÷2≈15.0(厘米)
②3.14×152×12=8478(立方厘米)
生2:我們小組測量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計算過程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)
⑷評價。
組織學生間進行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學生進一步掌握圓柱體積的計算方法。
⑸反思。引導學生將實際計算結果與自己的估測結果進行對比。自己矯正偏差。
⑹延伸。如果每立方分米水重1千克,這個魚缸大約能裝水多少千克?
3、自學例題。
組織學生自學課本例5。同桌的兩名同學結合例5的解答過程提出相關的數(shù)學問題,進行互問互答。
做教科書第80頁“做一做”中的第2題、練習二十一的第5題。
學生獨立完成,指名板演,集體評講。
學生綜合運用所學的知識,進行計算、繪圖、裁剪、粘貼等多項操作活動。
在一張長30厘米,寬20厘米的長方形紙上進行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?
第三篇:圓柱體積教學設計
一、復習導入
1、同學們想一想,我們已經(jīng)學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?他們的體積體積的通用公式是什么?用字母怎么表示?
2、回憶一下圓面積的計算公式是如何推導出來的?
3、課件出示一個圓柱體
我們把圓轉化成了近似的長方形,同學們猜想一下圓柱可以轉化成什么圖形呢?
二、探索體驗
1、學生猜想可以把圓柱轉化成什么圖形?
2、課件演示:把圓柱體轉化成長方體(1)是怎樣拼成的?
(2)觀察是不是標準的長方體?
(3)演示32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3、借鑒圓的面積公式的推導過程試著推導圓柱的體積公式。
4、交流展示
(1)小組討論,交流匯報。(2)生匯報,師結合講解板書。圓柱的體積=底面積x高
(3)用字母公式怎樣表示呢?v、s、h各表示什么?
5、知道哪些條件可以求出圓柱的體積?
6、計算下面圓柱的體積:
(1)底面積24平方厘米,高12厘米(2)底面半徑2厘米,高5厘米
三、課題檢測
1、判斷
(1)圓柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。(2)圓柱的底面積擴大3倍,體積也擴大3倍。(3)圓柱體的底面直徑和高可以相等。
(4)兩個圓柱體的底面積相等,體積也一定相等。
(5)一個長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。
2、聯(lián)系生活實際解決實際問題。
(1)一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
(2)一個塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓,大棚內(nèi)的空間大約有多大?
四、全課總結 這節(jié)課你有什么收獲?
第四篇:圓柱體積教學設計
《圓柱的體積》教學設計
南和縣賈宋鎮(zhèn)中心學校教師 李立強
一、課前系統(tǒng)部分
(一)、課標分析
《圓柱的體積》是冀教版六年級數(shù)學下冊的內(nèi)容,在課程標準中屬于第二階段(四-六年級)中第二個版塊圖形與幾何中的教學內(nèi)容,對《圓柱的體積》教學內(nèi)容的要求是:結合具體情境,探索并掌握圓柱的體積的計算方法,并能解決簡單的實際問題。
(二)、教材分析
《圓柱的體積》是冀教版六年級數(shù)學下冊的內(nèi)容,在學生初步認識了圓柱體的基礎上,進一步研究圓柱體的特征,讓學生比較深入地研究立體幾何圖形,是學生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學習,可以培養(yǎng)學生形成初步的空間觀念,為下一步學習“圓錐的體積”打下基礎。
(三)、學生分析
六年級的學生已經(jīng)有了較豐富的生活經(jīng)驗,這些感性經(jīng)驗是他們進一步學習的基礎,本節(jié)課的學習過程正是讓學生的感性經(jīng)驗上升到理性經(jīng)驗的過程,符合學生的年齡特征和認知規(guī)律,在這一過程中,能使學生體會到認識事物和歸納事物特征的方法,學會運用數(shù)學的思維方式去認識世界。
(四)、教學目標
知識與能力:通過推導圓柱體積公式的過程,向?qū)W生滲透轉化思想,建立空間觀念,培養(yǎng)學生判斷、推理的能力和遷移能力。
過程與方法:結合具體情境和實踐活動,理解圓柱體積的含義。探索并掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
情感態(tài)度與價值觀:感悟數(shù)學知識的內(nèi)在聯(lián)系,增強學生應用數(shù)學的意識,激發(fā)學生的學習興趣。
(五)、教學重難點:
1、教學重點:掌握圓柱體積的計算公式。
2、教學難點:圓柱體積計算公式的推導。
(六)、教學策略
介紹進行課堂教學所要采取的方法與技巧。實踐探索、小組合作交流、演繹推理。
(七)、教學用具:電腦課件、圓柱體積演示器、正圓柱體。
二、課堂系統(tǒng)部分——教學過程
(一)、創(chuàng)設情境,引起猜想:
1、激發(fā)興趣:圓柱體轉化成近似長方體。
課件展示:一個長方體的鋼錠通過鍛造形成一個與長方體高相等的圓柱體模具。)師:通過觀察,同學們發(fā)現(xiàn)這兩個物體都有什么是相同的?
生:體積、高。
(設計意圖說明:引導學生對所學知識的遷移,初步感知圓柱的體積計算與長方體的體積計算有關。)
師:揭示課題:圓柱的體積。
(二)、推導圓柱體積計算公式
師:怎樣用我們已有的知識來計算圓柱的體積? 生:長方體的體積可以通過底面積乘高得到,我想圓柱的體積是不是也可以通過底面積乘高得到呢?
師課件展示:沿著圓柱底面扇形把圓柱切開,得到大小相等的16塊,拼成了一個近似長方體的演示過程。
我們把這相等的16塊分成32塊,64塊,或更多,那么拼成的立體圖形就
學生回答:就越接近于長方體了。
師課件展示:點擊后出現(xiàn):將圓柱細分,拼成一個更接近于長方體的演示過程。)
師:通過觀察,你知道了什么?
生可能回答:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
師課件展示:點擊后出現(xiàn):長方體的底面積等于圓柱的底面積,再點擊出現(xiàn):圓柱的體積=底面積×215;高,V=Sh。
(三)、練一練:
1、師課件出示:一根圓柱形木料,底面積為75平方厘米,長90厘米。它的體積是多少?
生:完成后小組內(nèi)交流。
2、師課件出示:判斷題
一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
師:出示下面幾種解答方案,讓學生判斷哪些是正確的。①50×2.1=105(立方厘米)
② 2.1米=210厘米,50×210=10500(立方厘米)③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)④ 50平方厘米=0.005平方米,0.005× 2.1=0.0105(立方米)
生:小組討論,學生匯報并說出理由。
師:點擊出現(xiàn):“√”。
師小結:計算時既要分析條件和問題,還要注意要先統(tǒng)一計量單位。
(四)、兩個圓柱體積計算公式的比較。
師課件展示:點擊出現(xiàn)圓柱,再點擊出現(xiàn)半徑r、高h 如果已知圓柱底面半徑r和高h,這樣的圓柱的體積應該怎樣計算呢? 師課件展示:點擊出現(xiàn)V=πrh。師課件展示:點擊出現(xiàn)V=Sh。
師:說說這兩個體積計算公式之間有什么聯(lián)系呢? 生可能回答:這兩個體積計算公式中πr就是底面積S(設計意圖說明:比較兩個圓柱體積計算公式,明確兩個體積公式之間的關系。)
小結:題目給了圓的半徑,我們先算出圓柱的底面積,再算它的體積,如果題目給的是圓的直徑呢?
生可能回答:我們?nèi)匀幌人愠鰣A柱的底面積,再算它的體積。
(五)、拓展訓練 練習一:填表
師課件展示,生小組交流完成。練習二:計算圓柱的體積 師課件展示,生小組交流完成。
練習三:師課件展示:根據(jù)圓柱的體積公式計算 一個圓柱的體積是80cm3,底面積是16cm3。它的高是多少cm?
生小組交流完成。
(六)、小結
通過今天的學習,我們懂得,可以把圓柱轉化為一個近似的長方體來計算它的體積。知道了圓柱的體積可以用V=Sh或者V=πrh來計算。
(七)、板書設計 圓柱的體積
圓柱的體積=底面積×高=Sh=πrh
三、課后系統(tǒng)部分——教學后記
圓柱的體積是幾何知識的綜合運用,它是在學生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導過程的基礎上進行教學的。由于圓柱是一種含有曲面的幾何體,這給體積的認識和計算增加了難度。為了降低學習難度,讓學生更好地理解和掌握圓柱體積的計算方法,為后面學習圓錐體積打下堅實的基礎,因此在本節(jié)課的教學設計上十分注重從已知知識和方法入手,讓學生經(jīng)歷“轉化圖形、建立聯(lián)系、推導公式”的探究過程,通過一系列的數(shù)學活動,培養(yǎng)學生探究數(shù)學知識的能力和方法,同時在學習活動中體驗學習的樂趣。
第五篇:《圓柱的體積》教學設計
《圓柱的體積》教學設計
《圓柱的體積》教學設計1
教學圓錐的體積是在掌握了圓錐的認識和圓柱的體積的基礎上教學的。教學時讓學生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
我讓學生觀察,先猜測圓錐的體積和什么有關,學生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學生的學習興趣,使學生明白學習目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的.體積公式。接著我趁熱打鐵,讓學生想一想等積等高的時候,圓柱和圓錐有什么樣的關系?等積等底的時候,圓柱和圓錐又會有什么樣的關系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
圓錐的體積這節(jié)課的教學具有下面的特點,一是在教學新課時,沒有像傳統(tǒng)教學那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學生的積極性,激發(fā)學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學習體驗
在教學之后感覺到遺憾的是,由于教具有限,參與實驗的學生不多,如果每個小組準備一套學具,讓他們以小組合作學習的方式使每個學生都能真切的參與到探究中去,這樣每個學生都能懷著喜悅的心情進行學習,最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習不僅使學生學會了知識,更重要的是培養(yǎng)了學生的能力。
教材中圓錐體積的相對練習較少,但在考試里面實際解決問題中卻常常需要學生能夠靈活應用,所以特別增加了一課時練習。教學中的一組填空題,對于幫助學生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習,學生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學的最后我與孩子們一起通過大量的練習,引導總結出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學的重點和難點,也是考試中學生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學中需要精講和精煉,讓學生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學直覺方為最高層次!
《圓柱的體積》教學設計2
教學目標
1.使學生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應用分式解答一些實際問題。
2.在充分展示體積公式推導過程的基礎上,培養(yǎng)學生推理歸納能力和自學能力。
教學重點: 圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教學難點:圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教 法:啟發(fā)點撥,歸納總結,直觀演示
學 法:自學歸納法,小組交流法
課前準備:課件
教學過程:
一、定向?qū)W(5分)
(一)導學
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學過哪些體積的計算公式?(指名回答)
根據(jù)學生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據(jù)學生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。
3.動腦筋想一想,圓柱的體積,能不能轉化成你學過的形體,推導出計算圓柱體積的公式?
4、導入
我們已經(jīng)認識了圓柱體,學會了圓柱體側面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)
(二)定向
出示學習目標:
1、理解和掌握圓柱的體積計算公式。
2、會用公式計算圓柱的體積,并能運用公式解答一些實際問題。
二、合作交流(15分)
1.閱讀書25頁。
2、看書回答:
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體的體積、底面積和高分別與圓柱體的體積、底面積、高有什么關系?
(3)怎樣計算切拼成的長方體體積?為什么 ?用字母怎樣表示?
3、小組展評交流結果。
(1)展評題(1)。圓柱體是怎樣變成長方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的.立體圖形越接近長方體。)
(2)展評題2。
切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。
(3)展評題3
圓柱體積=底面積×高
v=sh
4、公式檢測
學生獨立完成書上做一做1、2題。
三、自主學習(5)
1、出示例6
下面這個杯子能不能裝下這袋奶
直徑8厘米 高10厘米 這袋奶498毫升
2、嘗試列式計算.
3、學生展示自學結果。
4、小結
小結:要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,先求出底面積)和高。注意統(tǒng)一單位名稱。
四、質(zhì)疑探究(2)
已知圓柱的底面周長和高又怎樣求圓柱的體積?
五、
小結檢測
(
13
分)
(一)小結
讓學生說出圓柱體積的推導過程,體積公式。
(二)檢測
1、把圓柱切開,可拼成一個( ),圓柱的體積等于近似長方體的( ),圓柱的底面積等于( ),圓柱的高等于( ),所以圓柱的體積=( )。
2.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
3.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
4 判斷正誤,對的畫“√”,錯誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大。( )
(2)圓柱體的高越長,它的體積越大。( )
(3)圓柱體的體積與長方體的體積相等。( )
(4)圓柱體的底面直徑和高可以相等。( )
5、一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。
板書設計:
圓柱的體積
圓柱體積=底面積×高
v=sh
75× 90=6750(立方厘米) 杯子的底面積:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的體積是6750立方米。答:這個杯子能裝下這袋奶。
《圓柱的體積》教學設計3
教學目標
1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,使學生理解圓柱的體積公式的推導過程能夠運用公式正確地計算圓柱的體積。
2、過程與方法:讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究法。
3、情感態(tài)度與價值觀:通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。
教學重點:
掌握和運用圓柱體積計算公式進行正確計算。
教學難點:
理解圓柱體積計算公式的推導過程,體會“轉化”方法的價值。
教學過程:
一、情景導入:
1、教師:(出示課件)多么溫馨的場面,今天是亮亮和爺爺?shù)纳眨腋5囊患胰藝陲堊狼跋碛弥谰萍央龋隳苡^察到今天的飯菜比平時多了什么嗎?
學生:
1.比平日多了兩個蛋糕。
2.兩個蛋糕一個大一個小。
3.蛋糕都是圓柱形的。
2、教師:同學們觀察的很仔細,那你能根據(jù)剛學過的知識說一說爺爺?shù)案廨^大意味著什么嗎?
學生:蛋糕大,意味著圓柱的體積大。
3、教師:那你還知道什么是圓柱的體積嗎?
學生:圓柱的體積就是圓柱體占空間的大小。
4、教師:兩個蛋糕的體積相差較多,我們?nèi)菀妆容^出那個體積大,如果體積相差較小我們怎么比較呢?
學生:拿出準備的圓柱體進行比較,討論,各小組分別說明比較的方法并展示。
教師:板書:圓柱的體積
二、課上探究
1、教師:同學們回憶一下我們還學過那些立體圖形?
學生:還學過正方體和長方體。
教師:它們的體積怎樣計算?(多媒體課件出示長方體)有什么共同點?
學生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點都是底面積乘高。
2、猜測圓柱的體積與什么有關
師:拿出圓柱體,讓學生猜想圓柱體積與什么有關。
生1.圓柱的體積與圓柱的高有關。
生2.圓柱的體積與圓柱的底面積有關。
生3.圓柱的體積與圓柱的底面周長有關。
生4.圓柱的體積與圓柱的底面半徑有關。
3、推導圓柱體積公式
①師:同學們觀察圓柱的底面是一個圓,學習圓面積時,我們是把圓轉化成哪種圖形來求面積的?
生:把圓轉化成近似長方形來求面積的。
②師:我們一起來回憶把圓轉化成近似長方形的過程,(課件)
師:你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長方形。
③師:圓柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉化成我們以前學過的哪種立體圖形呢?
生:把圓柱轉化成近似的長方體。
④師用圓柱體演示轉換過程,讓學生說怎樣轉換的。
生:把圓柱平均分成16份拼成一個近似的長方體。
⑤師:為了讓大家看的更清楚,我們再演示一下這個轉化過程。
課件再次演示把圓柱等分16等份,拼成近似的長方體。
再出示32等份的圓柱體拼成的近似的長方體,讓學生觀察,發(fā)現(xiàn)了什么?
生:分成的'份數(shù)越多,拼成的圖形越接近長方體。
⑥師:課件出示圓柱體和拼成的長方體,讓學生觀察,拼好的長方體與原來的圓柱比較,發(fā)現(xiàn)了什么?
學生分組討論,匯報:
生:長方體的高和圓柱的高相等。
生:長方體的底面積和圓柱的底面積相等。
⑦師:你是怎么想的?
生:剛才我們復習了把圓轉化成長方形,所以圓柱的底面積和長方體的底面積相等。
⑧師:再次用圓柱拼成近似長方體的過程,讓學生仔細觀察圓轉化成長方形后,面積相等。
生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑
師:課件演示長方體的體積=底面積×高
⑨師:那么圓柱的體積等于什么呢?
生:圓柱的體積=底面積×高
⑩下面我們再一起回憶一下轉化的過程,(課件)
讓學生獨立填答案,匯報:
三、我們知道了圓柱的體積公式,下面我們就來解決一些實際問題。
四、學生談收獲。
《圓柱的體積》教學設計4
[教學目的]
1、運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,并理解其推導過程。
2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
3、引導學生逐步學會轉化的數(shù)學思想和數(shù)學方法,培養(yǎng)學生解決實際問題的能力。
4、借助遠程教育的課件資源演示,培養(yǎng)學生抽象、概括的思維能力。
[教學重難點]
圓柱體體積計算公式的推導過程
[設計理念及策略]
《數(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。”即要求我們在教學中,要讓學生通過自主的知識建構活動,學生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學生的數(shù)學素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點,這節(jié)課的教學將通過對圓柱體積知識的探究,重點培養(yǎng)學生探究數(shù)學知識的能力和方法。為了把“一切為了學生的發(fā)展”這一新的教學理念融入到了課堂教學之中。在課堂教學中將以學生的活動為主,讓學生通過親身體驗、實際操作來找出數(shù)學知識之間的內(nèi)在聯(lián)系。在學生學習過程中,充分運用了遠程教育資源中動畫、聲音、視頻文件,并進行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠程資源為學生創(chuàng)設良好的學習情境。
2、以合作探究為主要的學習方式,充分發(fā)揮學生的自主性,體現(xiàn)學生的主體地位。
3、練習多樣化,層次化。
4、引導學生把知識轉化成相應的技能,從而提高靈活運用的能力,培養(yǎng)學生的綜合素質(zhì)。
[教學準備]
多媒體課件、圓柱體體積演示器
[教學過程]
一、回憶舊知,實現(xiàn)遷移。
1、學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。
2、計算圓的面積。
A.半徑5厘米
B.直徑6分米
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉化成我們已經(jīng)學過的圖形來求出它的體積。(板書課題:圓柱的體積)
1、交流猜測談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經(jīng)學過的立體圖形來求體積嗎?怎樣轉化呢?
2、生討論,交流。
三、驗證。
教師演示:
(1)屏幕上呈現(xiàn)一個圓柱體變?yōu)橐粋€長方體(圓柱與長方體等底等高)的動畫。提問:變化過程中,圓柱的什么變了(截面)?什么沒有變(高、體積)?
(2)將圓柱的`底面、長方體的底面閃爍后移出來。提問:你學過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學生取出圓柱體學具拼成近似長方體。
四、探索圓柱與所拼成的近似長方體之間的關系。
1、學生動手進行實驗。請每個小組拿出學具,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。
2、學生利用學具獨立操作(教師巡視、指導操作有困難的學生),思考并討論。
3、通過剛才的實驗你發(fā)現(xiàn)了什么?
①拼成的近似長方體的體積與原來的圓柱體積有什么關系? ②拼成的近似長方體的底面積與原來圓柱的底面積有何關系? ③拼成的近似長方體的高與原來的圓柱的高有什么關系?
4、學生匯報交流。
五、分析關系,總結公式引導學生發(fā)現(xiàn)并說出:
圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。 總結公式。
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
六、拓展訓練。
一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?
七、課堂總結。
[附:板書設計]圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
[教學反思]
1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應用這幾個環(huán)節(jié)來完成的。學生在最佳的情景中通過實踐、探索、發(fā)現(xiàn),得到了“活”的知識,學到有價值的數(shù)學。
2、操作驗證是本節(jié)課的關鍵,為體現(xiàn)活動教學中學生“主動探索”的特點,我從問題入手,組織學生圍繞觀察猜想后展開驗證性的操作活動。學生以活動小組為單位,思維活躍,積極探索,學習能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點,提高課堂效果;注重習題多樣化、層次化,拓展學生思維。
《圓柱的體積》教學設計5
一、情景引入
1、教學開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準備投入水中并讓學生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設計意圖:在這個環(huán)節(jié)設計觀察活動,意圖是讓學生通過觀察自主得出圓柱體積的定義,進一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)
二、自主探究
1、比較大小、探究圓柱的體積與哪些要素有關。
(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結果填入實驗報告1中。(課件出示)
(4)、學生通過動手操作匯報結論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的'大小與它的底面積和高有關。
(設計意圖:本環(huán)節(jié)教學讓學生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導學生找出決定圓柱體積的兩個因素,為學習新知識作鋪墊,同時也發(fā)展了學生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標。
(1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。
(3)、讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設?
(4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)、讓學生依據(jù)假設結論分組測量圓柱c和圓柱d的有關數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)
(設計意圖 : 通過設疑使學生認識到學習圓柱體積公式的必要性,激發(fā)學生的探究興趣。接著通過設計猜想的過程,充分運用學生已有的知識經(jīng)驗,讓學生回憶了學習長方體體積時的實踐方法和將圓形轉化成長方形的過程,學生在如此豐富的知識經(jīng)驗基礎上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強。)
4、確定方法,探究實驗,驗證體積公式。
(1)、首先要求學生利用實驗工具,自主商討確定研究方法。
(2)、學生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
(3)、學生按照自己所設想的方案動手實驗,并記錄有關數(shù)據(jù),填入實驗報告2中。(課件出示)
(4)、實驗后讓學生對數(shù)據(jù)進行分析:用實驗的方法得出的數(shù)據(jù)與實驗前假想計算的數(shù)據(jù)進行比較,你發(fā)現(xiàn)了什么?
(5)、學生匯報:實驗的結果與猜想的結果基本相同。
(6)、教師用課件演示將圓柱體轉化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)
(7)、小結:
要想求出一個圓柱的體積,需要知道什么條件?
(8)、學生自學第8頁例4上面的一段話:用字母表示公式。
學生反饋自學情況:
v=sh ( 設計意圖 這部分教學采用以小組合作探究的學習方式進行數(shù)學活動,充分調(diào)動學生各種感官,完成從操作→觀察、比較→歸納推理的認知過程,讓學生通過自己動手、動腦得到結論。通過讓學生自己設計實驗方案和自主實驗探究的活動,培養(yǎng)了學生的創(chuàng)新精神和實踐能力。)
《圓柱的體積》教學設計6
教學內(nèi)容:
人教版六年級下冊第19~20頁圓柱體積公式的推導和練習三的第1~3題。
教學目標:
1、通過觀察、操作、討論等教學活動過程,理解圓柱體積計算公式的推導過程,并會正確地計算圓柱的體積。
2、在圖形的變換中,培養(yǎng)遷移能力,邏輯思維能力,并進一步發(fā)展其空間觀念。
3、探索和解決問題,體驗轉化及極限的思想方法。
4、學會由未知向已知轉化的學習方法。
教學重點:掌握和運用圓柱體積計算公式。
教學難點:掌握圓柱體積公式的推導過程。
教學方法:嘗試指導法
學法指導:猜想→討論→操作→概括→嘗試→辨析→總結
教學用具:圓柱的體積公式演示課件。
學習用具:準備推導圓柱體積計算公式所用的學具。
教學過程:
一、激疑引入
同學們,你們看,茶葉罐是什么形狀的?如何求它的體積?你有辦法嗎?……今天,就讓我們一起來研究圓柱體積的計算方法(板書課題:圓柱的體積)。
二、探究新知
1、猜想
現(xiàn)在該怎樣來計算圓柱的體積呢?不妨大膽猜想一下好嗎?
2、表揚鼓勵,實踐遷移
(1)有同學能把圓柱轉化成我們已學過的立體圖形,來計算它的體積,真是既聰明又能干!
讓學生互相討論,思考應如何轉化,然后組織全班匯報。(把圓柱的底面分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉化成近似的長方體了。)
(2)操作:學生操作學具,切割拼合。
(3)感知:將圓柱體模具(已切好)當場演示。
①讓一位學生把切割好的一半拿上又叉開;
②另一位學生將切割好的另一半拼合上去;
③觀察得到一個什么形體?同時你發(fā)現(xiàn)了什么?逐步引導學生觀察、對比、分析。
(4)課件演示,讓學生明白:分成的扇形越多,拼成的立體圖形就越接近于長方體。
(5)討論:圓柱與所拼成的近似長方體之間的有什么聯(lián)系?
(6)匯報:你發(fā)現(xiàn)了什么?【圓柱→近似長方體:①體積相等;②底面積相等;③高相等;④表面積不相等。】
(7)概括總結
①讓學生試著總結公式;
②老師在學生總結的基礎上用課件出示
長方體的體積=底面積×高
↓ ↓ ↓
圓柱體的體積=底面積×高
用字母表示:v=sh
3、運用新知,嘗試解答
[做一做]一根圓柱形木料,底面積為75cm2,長90cm。它的體積是多少?
(1)嘗試:讓學生理解題意,自己嘗試解答。
(2)展示:根據(jù)v=sh可得:75×90=6750(cm3)
(3)講評并強調(diào):計算體積時結果應用體積單位。
(4)拓展:如果已知圓柱底面的半徑r和高h,該怎么來計算圓柱的體積呢?如果已知的`是底面的直徑d和高h呢?
讓學生獨立思考,寫出計算公式,再相互交流。
得到:v=πr2h
[完成教材第20頁例6]一個圓柱形水杯,從里面量底面直徑是8厘米,高是10厘米。已知一袋純牛奶有498mL。問這個杯子能不能裝下這袋牛奶?
1、教師引導學生:要回答這個問題,先要計算出杯子的容積。
2、學生獨立計算杯子的容積,然后與牛奶的容積作比較,就完成了任務。
三、鞏固練習
1、完成下表。
底面積/ m2 | 高/m | 圓柱的體積/ m3 |
7 | 3 | |
5.6 | 4 |
2、一個壓路機的前輪是圓柱形,輪寬2.5米,半徑1米。它的體積是多少立方米?
四、全課小結
同學們,今天我們學習了什么知識?你還有什么不懂的問題?
五、布置作業(yè)(練習三第2、3題)
板書設計
圓柱的體積
圓柱轉化近似長方體
長方體的體積=底面積×高
↓ ↓ ↓
圓柱的體積=底面積×高
V柱=sh
V柱=πr2h
《圓柱的體積》教學設計7
【教學目標】
1、探索圓柱體積的計算方法,利用數(shù)學思想,體驗數(shù)學研究的方法。
2、讓學生掌握圓柱體積的計算方法,運用體積公式解決簡單的實際問題。
3、通過把圓柱體轉化成近似的長方體,提高學生解決問題的能力,感受獲得成功的喜悅。
【教學重點】掌握和運用圓柱體積的計算公式。
【教學難點】圓柱體積公式的推導過程。
【教學方法】直觀教學法,先用教具讓學生觀察比較,再讓學生動手操作。在實踐操作過程中理解掌握圓柱體積的計算方法。
【教學過程】
一、情景導入,復習舊知。
1、什么是圓柱的體積?
①出示情境圖。修一面墻,用哪一種磚,所要的塊數(shù)較少?為什么?
②什么叫做物體的體積?
③長方體的正方體的體積計算公式是什么:從公式中可以看出,要計算長方體和正方體的體積必須得到哪些明確的數(shù)據(jù)?
④推測:圓柱的體積可能與它的什么有關?
2、導入新課。
這節(jié)課我們就一起來探索圓柱體積的計算方法。板書課題:“圓柱的體積”
二、探索新知
1、比較大小,探究圓柱的體積與哪些因素有關。(讓學生先試著說說)
(1)圖1:比較等高不等底的三個圓柱的體積。(學生通過觀察發(fā)現(xiàn)等高時底面積越大圓柱的體積也就越大)
(2)圖2:比較等底不等高的五個圓柱的體積。(學生通過觀察發(fā)現(xiàn)等底時高越大圓柱的體積也就越大。)
(3)圓柱的體積計算公式可能是什么樣的?V=Sh 2、大膽猜想,求證體積公式。
(1)引導學生回憶長方體、正方體的`體積計算方法。
(2)設疑:圓柱的體積又該怎么樣計算呢?根據(jù)以前學過的知識你可以做出怎樣的假設?
(3)學生小組討論交流。
(4)各小組參加全班交流匯報。(把圓柱底面分成許多相等的小扇形,把圓柱切開,就可以拼成一個近似的長方體,長方體的體積是底面積乘高,圓柱的體積也可能就是底面積乘高來計算的。)
3、演示轉化過程,推導公式。
(1)老師操作轉化過程。先分一個四或八等分的再分手上的這個十六等分的。
(2)學生帶問題操作轉化過程。
a:拼成的長方體的底面積等于圓柱的什么?
b:拼成的長方體的高又是圓柱的什么?(長方體的底面積等于圓柱體的底面積,高等于圓柱體的高。)
師生共同完成推導過程。
長方體的體積=底面積×高 圓柱的體積=底面積×高 v = s h 圓柱的體積計算公式就是:v=sh
(4)如果知道圓柱的底面半徑r和高h,圓柱的體積公式又可以怎樣來寫呢?v=πr2h
(5)教材第25頁“做一做”第1、2題。(第2題先讓學生說說解題步驟,再齊練)
4、教學例6。
(1)出示例6。讀題,說說從題中獲得的信息。
(2)引導學生思考:解決這個問題就是要計算什么?
老師:求杯子的容積就是求這個杯子可容納物體的體積,計算方法跟圓柱體積的計算方法相同。
(3)學生獨立解決問題。
(4)組織交流反饋。
交流時,引導學生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
三、鞏固應用
1、完成教材第26頁“做一做”第一題。
(1)要判斷這杯水夠不夠喝,需要知道什么?你打算分哪幾步計算?嘗試完成。
(2)要求這個問題,需要先求什么?再求什么?獨立完成。
2、完成教材第28頁練習五第2題。
(1)嘗試完成。
(2)說說解題思路。
3、完成教材第28頁練習五第3題。
(1)嘗試完成。
(2)說說解題思路。
四、課堂小節(jié)
今天這節(jié)課,我們一起探究了圓柱體積的計算方法。在探究的過程中,我們經(jīng)歷了猜測、實驗、證明的思維過程。圓柱體積的計算方法和長方體、正方體相同,都可以用“底面積×高”來求。
五、課堂作業(yè)
教材練習五第4、5題。
板書設計:
圓柱的體積 長方體的體積=底面積×高 圓柱的體積 =底面積×高 V= s h 圓柱的體積計算公式是v=sh=πr2h
《圓柱的體積》教學設計8
【學習目標】
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
【學習過程】
一、板書課題
師:同學們,今天我們來學習“圓柱的體積”(板書課題)。
二、出示目標
本節(jié)課我們的目標是:(出示)
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
了達到目標,下面請大家認真地看書。
三、出示自學指導
認真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導過程和例6解題過程,想:
1、圓柱的體積公式是如何推導出來的?
2、圓柱的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認真看書自學,比誰自學的最認真,自學效果最好。下面自學競賽開始。
四、先學
(一)看書
學生認真看書,教師巡視,督促人人都在認真地看書。
(二)檢測(找兩名學生板演,其余生寫在練習本上)
第20頁“做一做”和第21頁第5題。
要求:1、認真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學認真檢查。
五、后教
(一)更正
師:寫完的同學請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學請舉手。(由差-中-好)
(二)討論
1、看第1題:認為算式列對的請舉手?
【圓柱的體積=底面積×高】
2、看第2題:認為算式列對的舉手?你是怎么思考的?
3、看計算過程和結果,認為對的舉手?
4、評正確率、板書,并讓學生同桌對改。
今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習題,敢不敢來試一試?(出示)
六、補充練習:
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積。
3、把一個圓柱的側面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.
下面,我們就來運用今天所學的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。
七、當堂訓練(課本練習三,第21頁)
作業(yè):第3、4、7、8題寫作業(yè)本上
練習:第1題寫書上,第2、6、9、10題寫練習本上
八、板書設計
課題三:圓柱的體積
圓柱的體積=底面積×高
課后反思:
本節(jié)課的教學內(nèi)容是九年義務教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發(fā)現(xiàn)并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學生的科學精神和方法。
新課程改革明確提出要“強調(diào)讓學生通過實踐增強探究和創(chuàng)新意識,學習科學研究的.方法,培養(yǎng)科學態(tài)度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
三、促進了學生的思維發(fā)展。
傳統(tǒng)的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設了豐富的教學情景,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。
本節(jié)課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
《圓柱的體積》教學設計9
教學內(nèi)容:
青教版九年義務教育六年制小學數(shù)學六年級下冊第23—28頁。
教材簡析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標出了它們的底面直徑和高。引導學生提出問題,引入對圓柱、圓錐體積計算的探索和學習。“合作探索”中第一個紅點部分是學習圓柱的體積。
教學目標:
1、結合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實際問題。
2、經(jīng)歷探索圓柱計算公式的過程,進一步發(fā)展空間觀念。
3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學思想方法。
教學重點和難點:
圓柱、圓錐體積的計算方法,以及體積公式的探索推導過程。
教具準備:
多媒體課件、圓柱體積學具、沙子等。
第一課時
教學過程:
一、創(chuàng)設情境,激趣引入。
談話:同學們,天氣漸漸熱了,在夏季同學們最喜歡的冷飲是什么?(生回答)
課件出示:兩個圓柱體冰淇淋。
談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?
(生猜測)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設計意圖:
從生活中常見的例子導入新課,從中培養(yǎng)學生在生活中發(fā)現(xiàn)數(shù)學問題、提出問題的意識。學生的猜測為后面的實驗驗證做好了鋪墊,激發(fā)學生探究新知的欲望。
二、回憶舊知,實現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?
(學生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。)
設計意圖:
通過回顧圓的面積的推導方法,巧妙地運用舊知識進行遷移。
三、利用素材,探索新知。
㈠交流猜測
談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經(jīng)學過的立體圖形來求體積嗎?
生:我們學過長方體的體積,可不可以將圓柱轉化成長方體呢?
師談話:你的想法很好,怎樣轉化呢?
生討論,交流。
生匯報,可能會有以下幾種想法:
1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的'體積了。
談話:請同學討論和評價一下,哪一種方法更合理呢?引導學生按照第二種方法進行驗證。
㈡實驗驗證
學生動手進行實驗。
談話:請每個小組拿出學具,按照剛才第3小組的方法把它轉化為近似的長方體,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。
學生合作操作,集體研究、討論、記錄。
設計意圖本環(huán)節(jié)讓學生親自動手 操作,再次感受“化圓為方”的思想。動手操作,是學生發(fā)現(xiàn)規(guī)律和獲取數(shù)學思想的重要途徑。
四、分析關系,總結公式
1、全班交流
談話:哪個小組愿意展示一下你們小組的研究結果?
引導學生發(fā)現(xiàn):
轉化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關系
引導說出:圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3、總結公式。
談話:同學們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
(課件分別演示將圓柱等分成16份、32份、64份的割拼過程,學生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
(課件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。你現(xiàn)在能總結出圓柱體積的計算公式嗎?說一說你是怎樣想的。
根據(jù)學生的回答教師板書:
長方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh
設計意圖教師給予適當?shù)难菔荆瑴贤▓A面積計算公式的推導方法與圓柱體積計算公式推導方法的共同點——轉化法,便于學生順利推導出圓柱體積的計算公式。
五、利用公式,解決問題。
自主練習第1題、第2題、第3題
設計意圖鞏固練習及時讓學生利用結論解決問題,感受自己研究的重要價值,激發(fā)學習數(shù)學的興趣。
六、課堂總結
《圓柱的體積》教學設計10
一、教學對象及學習內(nèi)容特點分析:
圓柱的體積是小學立體幾何圖形中的重要內(nèi)容之一,是已學的長方體知識和將學的圓椎體知識的橋梁,其公式是長方體、正方體體積公式V=Sh的延續(xù)。
二、教學目的:
學生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。
學生能應用圓柱體積公式進行圓柱體積的計算。
學生能利用知識之間相互“轉化”的思想探索解決新的問題。
三、教學基本指導思想、教學策略和方法:整個過程,充分利用計算機的優(yōu)點,以小組學習的形式,發(fā)揮學生的主體作用,教師是學生學習過程的組織者和輔導者。長方體的體積公式和平面圖形的面積公式已學過,因此引導學生用轉化的思想去學習,并創(chuàng)設情景,讓學生自己發(fā)現(xiàn)問題,利用電腦、課本、實物提供的資源協(xié)商解決問題,使全體學生都成為學習的主人。
四、教學運用的主要手段、技術、材料:電腦網(wǎng)絡、實物投影、圓柱體。
五、教學過程的設想和點評
教師的教學行為學生的學習行為點評
第一階段:創(chuàng)設情景,設疑引趣。
教師故事引入:圓柱形狀的“轉筆刀”和“漿糊筆”迎著朝陽高高興興上學了,走著走著,它們就為哪個體積大而爭論起來,“轉筆刀”很自信地說:“看我這么胖,肯定是我的體積大!”“漿糊筆”很不服氣地說:“我比你高多了,一定是我的體積大!”就這樣你一言我一語,爭論了很久還沒個結果。
提問:小組討論尋找解決這兩個圓柱體積大小的方法。
1、學生小組討論解決的方法。
2、小結歸納:解決圓柱的體積的方法:尋找一種方法,導出圓柱的體積公式,然后應用公式求圓柱的體積。
通過情景的創(chuàng)設,激發(fā)學生的學習熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學生從被動學習變?yōu)橹鲃訉W習,學生對這節(jié)課的學習也從宏觀上得到了解。學生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當?shù)墓膭钚缘脑u價,以激發(fā)學生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學生探索資源:
(1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導出過程。
(2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。
2、學生反饋自學內(nèi)容,師生共同導出圓柱的體積公式V=Sh1、學生打開電腦“自能學習”中的“尋方法”,有選擇地看學過的平面圖形的面積公式和立體圖形體積公式的導出過程,從中找到推導圓柱體積公式的方法
2、學生通過觀察圓柱公式的推導過程。
3、小組討論填寫實驗報告。
4、師生導出圓柱的體積公式后,學生自學課本例題,并完成例4內(nèi)容。通過利用資源、自能學習,讓全體學生都能動腦、動口、動手參與到學習中去,使學生學會學習、學會協(xié)作,所學知識的理解更為深刻、透徹。在自學的過程中教師通過監(jiān)控密切觀察著學生的學習情況,發(fā)現(xiàn)問題及時解決。
圓柱體積公式的推導過程,學生會有不同的方法,如用課本的方法或用類比的方法,教師應給予恰當?shù)脑u價。
第三階段:拓展公式,自能訓練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結:無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學生可根據(jù)已學的“圓的面積”公式導出。
(當已知圓柱底面的半徑時V=∏r2h、當已知直徑時V=∏(d÷2)2h、當已知周長時,先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
(1) 一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。
(2) 一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
(3) 一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實際,當知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚愛動腦筋的同學
2、通過練習,學生對基本知識有一定的理解,教師也了解了學生對知識的掌握情況。
第四階段:反饋學習、應用提高。
1、提出練習要求:先做“鞏固”練習,有余力的再做“提高”練習。
2、小結練習情況,及時表揚對而快的同學及小組
3、回應開頭,解決“漿糊筆”和“轉筆刀”爭論的問題。學生在電腦上完成。
1、賽車游戲:看誰跑得快。
(1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
(2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
(3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷( )立方米。
(4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習。考你智慧:看誰攀得高。
(1)一個圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
(2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。
在計算過程中,學生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現(xiàn)互幫、互學共同提高。
六、歸納總結、自我評價。
1、提出要求,學生談收獲。
2、總結本節(jié)情況。 談收獲,并作出自我評價。通過談收獲,體現(xiàn)學習的自主性,體驗獲得成功的樂趣。
七、對教學過程的設想和點評:
新課程標準注重小學生對周圍世界與生俱來的探究興趣和需要,在小學階段,學生的知識積累與思維能力較為有限,強調(diào)用符合小學生年齡特點的方式學習,提倡課程貼近小學生的生活,這節(jié)課從學生身邊學習用品“卷筆刀”和“漿糊筆”的入手,通過擬人的方式,由它們上學過程中引起的.爭論導出學習的內(nèi)容,激發(fā)學生學習的積極性。這樣在教學進程中安排好相關的情景組織學生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學生既學會知識與技能,又培養(yǎng)智能、情感態(tài)度與價值觀,促進學生科學素養(yǎng)的形成。
新課標還積極倡導讓學生親身經(jīng)歷以探究為主的學習活動,培養(yǎng)他們的好奇心和探究欲,使他們學會探究解決問題的策略,為他們終身的學習和生活打好基礎。這是一節(jié)在網(wǎng)絡環(huán)境下開展的探究型數(shù)學課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學生小組討論尋找比較圓柱大小的方法,引導學生通過自主、合作探究這種學習方式進行實踐活動,觀察由圓柱轉變成已學過長方體的過程,在觀察中相互啟發(fā),共同提高,形成共識后并加以記錄。再將大家的記錄結果對比、討論、從而得出結論:圓柱的體積=轉變成的長方體的體積,從而導出圓柱的體積公式V=SH。在這一過程中,教師以學生的發(fā)展為本,關注每一位的發(fā)展,珍視每位學生的探究體驗及獨特見解,在學生探究結果的表述過程中,對同一個問題,不同的人可以得出不同的結論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學生主動參與探究實踐活動,更讓學生在探究中學會合作、懂得思考、大膽發(fā)表自己的獨特見解,更學會傾聽、尊重他人的意見,從而實現(xiàn)互幫、互學共同提高,并在探究中發(fā)現(xiàn)、學習,激發(fā)學生學習的興趣,培養(yǎng)了實踐的能力。
網(wǎng)絡環(huán)境下的教學方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學生知識面的同時,更培養(yǎng)了學生搜集信息、處理信息并進行合理解釋的能力,大大地激發(fā)了學生自主學習的積極性,學生的創(chuàng)新意識日漸增強,真正實現(xiàn)了利用信息技術為教學內(nèi)容服務。
《圓柱的體積》教學設計11
學 科:數(shù)學
教學內(nèi)容:最新人教版六年級數(shù)學下冊第三章《圓柱的體積》
教材分析:
〈〈圓柱的體積〉〉是數(shù)學課程標準中“空間與圖形”領域內(nèi)容的一部分。〈〈圓柱的體積〉〉一課,是在學生已經(jīng)學過了圓面積公式的推導和長方體、正方體的體積公式的基礎上進行學習的,而這節(jié)課的順利學習將為以后圓錐體積的學習鋪平道路。學生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗,聯(lián)想到把圓柱切拼成長方體并不難,但是學生還是喜歡用自己的方法解決問題,所以我給學生創(chuàng)設盡情展示自我的空間,通過自主的學習、合作探究、動手操作,讓學生感知立體圖形間的一些關系,從而解決生活當中常見的問題。由此、我制定以下三維教學目標:
教學目標
知識目標:
(1)通過學生體驗圓柱體體積公式的推導過程,掌握圓柱的體積公式并能應用公式解決實際問題。
(2)通過操作讓學生知道知識間的相互轉化。
能力目標:
倡導自主學習、小組合作、動手操作的學習方式,培養(yǎng)學生動手操作的能力,合作交流的意識。從而建立空間觀念培養(yǎng)學生的邏輯推理能力。
情感目標:
讓學生感受數(shù)學與生活的'聯(lián)系,體驗探索數(shù)學奧秘的樂趣,培養(yǎng)學生學習數(shù)學的積極情感。
教學重點:掌握和運用圓柱體積計算公式。
教學難點:推導圓柱體積計算公式的過程。
教具、學具準備:
采用的教具為PPT課件和學具。(圓柱體切割組合學具,各小組自備所需演示的用具)。 教學過程:
一、情景引入
1、出示圓柱形水杯。
(1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?
(2)你能用以前學過的方法計算出這些水的體積嗎?
(3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。
(4)說一說長方體體積的計算公式。
2、出示橡皮泥捏成的圓柱體。
出示問題:大家想一想用什么辦法來求出這個圓柱體橡皮泥的體積呢?
(有的學生會想到:老師將它捏成長方體就可以了;還有的學生會想到捏成正方體也可以的!)
3、創(chuàng)設問題情景。
(課件顯示)如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?
剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)
(設計意圖:問題是思維的動力。通過創(chuàng)設問題情景,可以引導學生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成任務驅(qū)動的探究氛圍。)
二、新課教學
設疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
(一)學生動手操作探究
1、回顧舊知,幫助遷移
(1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系? 啟發(fā)學生回憶得出:圓柱的上下兩個底面是圓形;側面展開是長方形:所以……
(2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉化成已學過的圖形,來推導出圓面積公式的。
(通過想象,進一步發(fā)展學生的空間觀念,由“形”到“體”;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊)
2、小組合作,探究推導圓柱的體積計算公式。
(1)啟發(fā)猜想:可見,大部分圖形公式的推導都可以把所學的轉化為學過的。那么你覺得圓柱的體積和什么有關系?你能猜一猜圓柱的體積可以怎樣計算呢? (這是學生會有圓的面積想到把圓柱轉化為長方體)
老師激勵同學們:大家同意他的猜想嗎?但我們還是要小心地驗證猜想的科學性。都說實踐出真知,接下來同學們以小組為單位拿出學具,動手嘗試著進行轉化,并說一說轉化的過程。
(2)學生以小組為單位操作體驗。
老師引導學生探究:
① 說說你們小組是如何轉化的。這是一個標準的長方體嗎?為什么?
② 如果分割得份數(shù)越多,你有什么發(fā)現(xiàn)?(電腦演示轉化過程)
③ 這是同學們剛才的轉化過程。那書上是怎么說的?下面就請同學們打開書,自由讀,用直線標記,找出關鍵句。全班齊讀。
(3)現(xiàn)在再請一位同學到前面來演示轉化過程。其他同學邊觀察邊思考: ①切割后拼成了一個近似于什么的形體?
②圓柱的體積與拼成后的長方體的體積有什么關系?
③這個長方體的底面積等于圓柱的什么?
④長方體的高與圓柱體的高有什么關系?
(二)教師課件演示
1、課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成16份、32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。依次解決問題。 ①把圓柱拼成長方體后,形狀變了,體積不變。
(板書:長方體的體積=圓柱的體積)
②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。
(配合回答,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)
③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)討論并得出結果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?
《圓柱的體積》教學設計12
教學內(nèi)容:
課本第7頁圓柱體積
教學目標:
理解圓柱體積公式的推導過程,掌握圓柱體積計算公式,并能正確地計算圓柱的體積,提高知識的遷移和轉化的能力。
教學重點:
圓柱體積計算
教學難點:
圓柱體積的公式推導
教學關鍵:
實物演示幫助
教具準備:
圓柱體積演示模型
教學過程:
一、復習鋪墊。
1、圓柱的側面積怎么求?(圓柱的側面積=底面周長×高。)
2、長方體的體積怎樣計算?
學生可能會答出“長方體的體積=長×寬×高”,教師繼續(xù)引導學生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長方體的體積=底面積×高
3、拿出一個圓柱形物體,指名學生指出圓拄的底面、高、側面、表面各是什么?圓柱有幾個底面?有多少條高?
請大家想一想,在學習圓的面積時,我們是怎樣把因變成已學過的圖形再計算面積的?
怎樣計算圓柱的體積呢?大家仔細想想看,能不能把圓柱轉化成我們已經(jīng)學過的圖形來求出它的體積?
二、學習探索。
這節(jié)課我們就來研究如何將圓柱轉化成我們已經(jīng)學過的圖形來求出它的體積。
板書課題:圓柱的體積
出示目標:1、推導2、計算
1、圓柱體積計算公式的推導。
教師出示一個圓柱,提問:這是不是一個圓柱?用手捂住圓柱的側面,只把其中的一個底面出示給學生看提問:“大家看,這是不是一圓?”“這是一個圓,那么要求這個圓的面積,剛才我們已經(jīng)復習了,可以用什么方法求出它的面積?”
學生很容易想到可以將圓轉化成長方形來求出圓的面積,于是教師可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引導學生觀察:沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊。教師將這分成16塊的底面出示給學生看,問:現(xiàn)在把底面切成了16份,應該怎樣把它拼成一個長方形?
大家再看看整個圓柱,它又被拼成了什么形狀?(有點接近長方體:)
指出:由于我們分得不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的.立體圖形就越接近于長方體了。
把圓柱拼成近似的長方體后,體積發(fā)生變化沒有?圓柱的體積可以怎樣求?
小結:可以通過求切拼后的長方體的體積來求圓柱的體積。
板書:“長方體的體積=底面積×高”。
請大家觀察教具,拼成的近似長方體的底面積與原來圓柱的哪一部分有關系?近似長方體的高與原來圓柱的哪一部分有關系?
明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
板書:圓柱的體積=底面積×高
如果用V表示圓柱的體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積公式:V=Sh
2、自覺書本第7、8頁。
3、教學例3。
出示例3。
(1)教師指名學生分別回答下面的問題:
①這道題已知什么?求什么?
②能不能根據(jù)公式直接計算?
③計算之前要注意什么?
(2)用投影片或小黑板出示下面幾種解答方案,讓學生判斷哪個是正確的?
①V=sh=40×1.8=72
答:它的體積是72立方厘米。
②1.8米=180厘米
V=sh=40×1800=7
答:它的體積是72000立方厘米。
③40平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的體積是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的體積是0.0072立方米。
(3)自覺書本第8頁例3。提出質(zhì)疑。
(4)做第9頁“試一試”。
三、課堂小結。
通過這節(jié)課的學習,你有什么收獲?你是怎樣聯(lián)系學過的知識進行學習的。
四、鞏固練習。練一練1~4題。
五、《作業(yè)本》第4頁。
《圓柱的體積》教學設計13
【教學過程】
一、揭示課題,確定目標
談話:前面我們認識了圓柱,學習了圓柱的底面積、側面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)
啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)
引導:
(1)什么是圓柱的體積?
(2)圓柱的體積和什么有關?
(3)圓柱的體積公式是怎樣推導出來的?
(4)圓柱的體積是怎樣求出來的?
(5)學習圓柱的體積公式有什么用?
談話:對!剛才這幾位同學跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個問題:(出示探究問題)
1、圓柱的體積和什么有關?
2、這個公式是怎樣推導出來的?
3、學習了圓柱的體積能解決什么實際問題?
【設計意圖】直接揭示課題,啟發(fā)學生自己提出教學的要求,這樣既創(chuàng)設了問題情境,激發(fā)學生學習的興趣,又使學生明確這堂課的教學目標。
二、溫故知新,自學課本
1、提出問題
談話:現(xiàn)在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計 算的?
引導:我們已經(jīng)學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高
正方體的體積=棱長×棱長×棱長
統(tǒng)一為:長方體或正方體的體積=底面積×高
談話:長方體和正方體和今天學習的圓柱有什么顯著的區(qū)別?
引導:長方體的面都是平面圖形,圓柱的側面是一個曲面。
談話:因為圓柱的側面是一個曲面,計算圓柱的體積就比較困難了。能不能直接 用體積單位去量呢?
引導:它的側面是一個曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導:圓柱體的體積既和底面積有關,又和高有關。
3、自學課本
談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)
引導:我們用圖形轉化的方法,求圓柱的體積。
談話:這個辦法很好。那么把圓柱轉化成什么圖形呢?
引導:長方體。
談話:以前我們學習圓的面積時也是運用轉化的策略,把圓轉化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。
(用多媒體演示圓形的轉化過程,邊出示、邊交流)
【設計意圖】在不能用體積單位直接量的情況下,啟發(fā)學生運用轉化的數(shù)學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。
三、合作交流 發(fā)展能力
談話:同學們觀察一下,拼成的是什么圖形?
引導:近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導:長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導:無數(shù)份,可以永遠分下去。
談話:對。這就是說,分的份數(shù)是無限的'。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。
四、師生合作 歸納結論
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報:把圓柱體轉化為近似的長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉化后的長方體的體積就可以了。
匯報:
(1)轉化后的近似長方體的底面積與原來的圓柱體的底面積相等。
(2)轉化后的近似長方體的高與原來的圓柱體的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積 =底面積×高
(教師要求學生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
長方體的體積=底面積×高
圓柱的體積 =底面積×高
交流:我們也可以用字母表示圓柱的體積計算公式:v = s h (板書)
引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。
現(xiàn)在請同學們把圓柱體積公式的推導過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。
通過分一分、拼一拼我們把圓柱轉化成了近似的長方體。
通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。
【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓柱體積的公式。
《圓柱的體積》教學設計14
教學內(nèi)容:教材第25、26頁例4、“試一試”、“練一練”和練習七的1、2題
教學目標:
1、進一步深入地引導學生去了解圓柱,讓學生掌握圓柱的體積計算公式,并能解決實際問題。
2、培養(yǎng)學生自學能力,動手能力,觀察分析和歸納知識的能力,讓學生理解“轉化”的方法。
教學重點:理解和掌握圓柱體積的計算公式。
教學難點:圓柱體積計算公式的推導。
教學準備:圓柱體模具。
教學過程:
預習作業(yè)檢測
學習計算圓的面積時,是怎樣得出圓面積的計算公式的?
求下面各圓的面積
R=1厘米求Sd=4分米求Sc=6.28米求S
長方體與正方體的體積都可以用什么公式來表示?
圓柱底面積/平方米高/米體積/立方米
0.61.2
0.253
合作探究
你們是怎么知道圓柱的'體積=底面積×高的呢?生答預習得知。
課本上是怎么把圓柱體和長方體聯(lián)系在一起的呢?
生答,同時師相機用課件展示圓柱體和長方體相互轉化的畫面。
用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結論:
○1等份越多,拼成的物體越接近于長方體。
○2長方體與圓柱體等底等高。
○3長方體體積=圓柱體體積
○4圓柱的體積=底面積×高(V=sh)。
根據(jù)剛才的結論完成下面的題目:
○1一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,
它的體積是多少?生獨立完成后,師有選擇的找?guī)孜粚W生
的作業(yè)進行投影展示,全班交流評價。
○2一個圓柱形狀的零件,底面半徑5厘米,高8厘米,這
個圓柱的體積是多少立方厘米?
引導學生讀題,思考。指名說出自己想的過程。生獨立解
答,展示、交流、評價。
當堂達標檢測
1、“練一練”第1題。
2、練習七第2題。
3、“練一練”第2題。
教學反思:
《圓柱的體積》教學設計15
教學目標
1、知識與技能:理解教材中形體轉化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關簡單的實際問題。拓展教材內(nèi)容,初步了解直柱體的相關知識。
2、過程與方法:利用教材空間,為學生搭建思維平臺。讓學生經(jīng)歷觀察、想象、思考、交流等教學活動過程,理解圓柱體積計算公式的推導過程,提高學生思維能力,同時體驗轉化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉變?yōu)閷W生思維能力的培養(yǎng)、提高的過程,并進一步發(fā)展其空間觀念,領悟?qū)W習數(shù)學的方法,激發(fā)學生學習興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
教學重點:
理解圓柱體積計算公式的推導過程,運用圓柱體積計算公式準確解決實際問題。
教學難點:
正確理解圓柱體積計算公式的推導過程。
教學過程
一、情境導入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學習,關于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
【學情分析:在學習圓柱的認識和表面積的基礎上,學生能夠順利回憶已學的知識,而且質(zhì)疑提出即將學習的知識,明確學習目標,為本節(jié)課的學習找到思維與認知源泉。】
2、師:聯(lián)系已經(jīng)掌握的有關立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生1:圓柱體的體積計算沒有學過,無法計算。
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學情分析:學生在五年級學習長方體、正方體有關知識的基礎上,很容易想到運用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學生展示自我的機會,培養(yǎng)思維中的自信心。】教師在學生中找出小助手,幫助測量有關數(shù)據(jù),全體同學計算水的體積,并作記載。
師:運用轉化思想,聯(lián)系已學知識,解決新生問題,同學們真了不起!
【設計意圖:學生的學習活動要建立在已有的知識和認知基礎上,通過水的變形把圓柱的體積轉化為長方體的體積來計算,使學生初步感知數(shù)學轉化思想在解決問題中的價值,同時提高學生解決問題能力和思維能力。】
4、師:如果要求壓路機前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
【設計意圖:學生的學習應該是出于自身需要的,是主動的、有效的,已有的知識已經(jīng)不能解決新生問題時,學生產(chǎn)生強烈的求知欲望,為主動參與知識的形成過程,探究圓柱的體積計算公式奠定積極的情感基礎。】
二、新舊過度:
教師引導學生觀察圓柱形實物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉一周,就形成一個圓柱體。
(教師演示:大小不同的長方形旋轉形成圓柱體。)
生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關?(圓柱的底面積和高)
【設計意圖:其一,讓學生初步感知幾何圖形點———線———面———體的演變過程;其二,訓練學生的空間思維能力,進而提升學生的數(shù)學思維含量;其三,為進一步探究圓柱的體積計算公式明確探究方向。】
2、師:圓柱的底面大小就是圓柱底面圓形的面積,叫做圓柱的底面積。誰還記得圓面積計算公式的推導過程?
學生口述,同時課件演示圓形轉化為近似長方形的過程。
【設計意圖:回憶圓轉化為近似長方形的過程,使學生重溫化曲為直、化圓為方的數(shù)學思想,而且溝通新舊知識間的聯(lián)系,同時為下一步對圓柱的轉化(等份切割)順利進行提供思維方法的幫助。】
3、教師小結:我們能把一個圓采用化曲為直,化圓為方的方法轉化成近似的長方形,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形呢?
三、自主探究
1、學生手拿圓柱實物,仔細觀察,獨立思考。
2、組織學生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強調(diào):在討論過程中,教師參與其中,傾聽學生想法,調(diào)整匯報次序,同時提醒學生觀察手中圓柱實物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
(師:為什么是近似的長方體?———滲透數(shù)學極限思想)
【設計意圖:這個轉化的過程是本節(jié)課的難點,在前面知識鋪墊的基礎上,發(fā)揮學生集體智慧的結晶,為學生提供廣闊的思維和交流平臺,真正使學生的思維與學習相輔相成,從而達到提高學生空間思維能力之目的。】
4、課件演示:
師:仔細觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
師:如果再平均分成更多的份數(shù),結果會怎樣呢?(平均分成的份數(shù)越多,轉化成的形體就越接近長方體——極限思想)【問題討論:課件中把圓柱平均分割后,其中的一塊又平均分成兩份,其中的一份移接到另一端,拼成一個更接近的長方體,而教材上的意圖并沒有這樣的過程,我認為教材的方法是很可取的,符合極限思想,并且可以給予學生充分的思考和想象空間,因為只要均分的份數(shù)無限多時,拼成的圖形就是一個長方體。然而實際教學中只是把圓柱平均分成16份或32份,那么在實際教學中如何更準確的詮釋實際與理論之間的這種矛盾,從而更好的服務于學生思維、服務于課堂教學呢?】
5、直觀演示,尋找聯(lián)系師:為了強化剛才的轉化過程,我們再借助實物教具演示一遍(教具一半為紅色,一半為綠色)。仔細觀察演示過程,你能發(fā)現(xiàn)什么?
生:長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積=底面積×高
V = S h 【學情分析:在小組討論、課件演示的基礎上,再有雙色教具(一個紅色教具,一個綠色教具,偶然發(fā)現(xiàn)雙色混合更容易輔助學生找出聯(lián)系)的實物演示,使得尋找圓柱體與長方體之間的聯(lián)系變得異常容易,并且自然而然得到圓柱體體積計算公式,同時使學生感受獲取知識的成功之喜悅、艱辛之感慨。】
四、實踐應用:
1、從公式中可以看出,只要知道哪些條件就能計算圓柱的體積?口算:一個圓柱的底面積是90平方分米,高20分米,它的體積時多少?
強調(diào)單位:90×20=1800(立方分米)
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)
找學生實際測量,保留整厘米數(shù),進行計算。將計算結果與用排水法求出的體積做一對比,可能存在誤差。師:為什么會產(chǎn)生誤差呢?
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學結論都必須經(jīng)過反復的實驗、計算,才能得到正確的結論,我們在學習上就要有這種不怕吃苦、勇于探索的精神。
3、出示一個圓柱形玻璃杯,出示一袋液態(tài)奶(225ml),問:通過計算你能知道這個杯子能裝下這袋奶嗎?除水杯的厚度忽略不計外,你還需要知道哪些條件?
(教師直接給出玻璃杯的底面直徑和高)
【設計意圖:層次性練習設計,第一層:基本練習,使學生更好的掌握本課重點,夯實基礎知識;第二層,變式練習,進一步加深學生對圓柱體積公式的理解和掌握,學會靈活運用公式,在提高學生動手操作能力的同時,培養(yǎng)學生的邏輯思維能力;第三層,密切聯(lián)系生活,運用公式解決引入環(huán)節(jié)中的問題,使學生的思維處于積極的狀態(tài),達到培養(yǎng)學生思維的靈活性和創(chuàng)造性解決問題能力的目的。】
五、看書質(zhì)疑:看書P19—20,師:哪些知識是我們沒有講到的?(V=∏r2 h)結合本節(jié)課的探究過程,你有什么疑問嗎?
若學生有困難就教師提出問題:長方體和圓柱體有什么相同的地方,為什么他們的體積都能用V=Sh來計算?
學生獨立思考后,教師解釋:我們現(xiàn)在所學的圓柱體是直圓柱,他與長方體都屬于直柱體,只要是直柱體,體積都可以用V=Sh來計算。如三棱鏡的體積=底面三角形的`面積×高
【設計意圖:課本是最好的教學輔助工具,是學生學習最好的伙伴,讓學生再次重溫本節(jié)課的學習歷程,養(yǎng)成一種良好的學習習慣和學習品質(zhì)。】
【問題討論:我個人認為,在每一節(jié)課每個知識點的教學過程中,都盡量站在“數(shù)學”的高度來教學,于是對教材內(nèi)容進行了拓展。長方體與圓柱體的體積公式V=Sh正好說明直柱體體積=底面積×高,但因為長方體(平面圍成)與圓柱體(曲面圍成)之間的聯(lián)系較難找出,無疑增加了學生的思維負擔,但從數(shù)學學習的角度來說,它卻為今后“幾何”學習奠定基礎,這一環(huán)節(jié)處理是否有利于六年級學生思維發(fā)展?】
六、全課小結:
師:通過本節(jié)課的學習,你有什么收獲?
【設計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用體溫師小結,使學生暢談收獲,發(fā)現(xiàn)不足,既能訓練學生語言表達能力,又能培養(yǎng)學生的歸納概括能力,同時通過對本節(jié)所學知識的總結與回顧,還能使學生學到的知識系統(tǒng)化、完整化。】
啟發(fā)與思考
啟發(fā)
一、充實教材,為提高學生思維能力搭建平臺
課堂教學中讓學生在教師的啟發(fā)指導下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學生成為學習的主體。在教材中已經(jīng)提供了圖形轉化的過程,那么在沒有學具讓學生進行動手操作、親自感悟的情況下,怎樣讓學生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習圓柱體積計算公式的必要性,合作探究圓柱體的轉化方法和過程。所有這些環(huán)節(jié)的設計,都在潛移默化中引導學生主動思考,主動參與,在思考與參與中提高了學生的思維能力。
二、借助教材,為提高學生思維能力尋找支點
數(shù)學知識具有一定的結構,知識間存在密切的聯(lián)系,教學時要找出知識間的內(nèi)在聯(lián)系,幫助學生建立一個較完整的知識系統(tǒng)。教材中設計了引問“圓可以轉化成長方形計算面積,圓柱可以轉化成長方形計算體積嗎?”但我認為“面體過渡”在幾何領域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導過程。在復習當中,學生的綜合運用能力得到提高,更重要的是為下一步學生的思維活動確立支點,進而提高學生的思維能力。
三、理解教材,為提高學生思維能力提供保證數(shù)學思想的教學才是數(shù)學課堂教學中最本質(zhì)的教學。從教材的編排,還有各知識點的呈現(xiàn)中可以看出,有一條不變的主線貫穿始終,那就是轉化思想中的化曲為直、化圓為方。那么,只要教師真正理解教材的這一編寫意圖,學生所收獲到的就不僅是圓柱體積的計算方法,而是真正感悟到數(shù)學轉化思想,學生必將運用這種思想影響今后的學習,為其思維能力得以持續(xù)發(fā)展提供保證。思考
思考
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學前,始終沒有找到學生使用的操作學具,而自己也嘗試用土豆、橡皮泥等制作學具,都因為難度太大(粘接處)而告失敗,在無奈之余,設計了“獨立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點。就學生理解、接受方面來說效果不錯。但沒有讓學生親自操作,總感覺影響學生思維發(fā)展。類似教學如:圓錐高的認識。
二、研究中的失誤會不會造成學生認知的“失誤”?
課堂中為求真實,進行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結果的對比,使學生思維與課堂結構都體現(xiàn)完整性。但由于種種誤差,計算結果很可能不會相等,這就可能會讓學生對結論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學生經(jīng)歷一個“失誤”的過程呢?類似教學如:圓周率的計算。