第一篇:“隨機抽樣”教學設計及反思
“隨機抽樣”教學設計及反思
浙江省杭州市余杭高級中學 吳寅靜
①統計和概率的基礎知識是一個未來公民的必備常識,它是中小學數學課程的重要內容.
在高中階段,統計的學習從《必修3》第二章開始,本節課是開篇.好的開端等于成功的一半,因此本課很重要.筆者有幸承擔本次課題會研究課的教學任務,在接受專家、同行的點評和指導中,對高中階段的統計教學有了更深的認識.
下面分教學準備、教學設計和教后反思與大家共享我的心得.
教學準備
接到任務后,筆者首先查閱了一些統計論著.可惜,統計專業知識介紹的書籍多,統計教學的論著少之又少.這也從一個側面反映了我國對中學統計教學研究的不足.
一、教什么
起始課究竟上什么內容?筆者征詢了同事們的意見,絕大多數人認為,由于義教階段學生對全面調查、抽樣調查、樣本、樣本容量等概念都已很熟悉,沒必要再糾纏.因此,第一堂課除了簡單介紹本章學習內容以及隨機抽樣的必要性和重要性外,應將“2.1.1簡單隨機抽樣”作為重點,這樣整堂課就比較充實,不至于沒有內容可講.也有人認為,《教師教學用書》建議“2.1隨機抽樣”約為5課時,因此第一課時應只介紹隨機抽樣而不必涉及抽樣方法.
筆者在聽取了這些建議,經過再三思考后,決定把本課的教學內容定位于章引言和“隨機抽樣”的開篇,但不涉及具體抽樣方法.理由如下:
1.章引言是整章內容的概括和介紹,既有先行組織者的作用,同時也能以此引出本課需要學習的內容.作為起始課,章引言的作用不可忽略.
2.雖然學生在小學、初中都學過統計,但對為什么要隨機抽樣,怎么進行隨機抽樣等的認識還不足.
3.作為統計的起始課,更重要的是讓學生通過一些具體的實例感受隨機抽樣的必要性和重要性,而不是介紹一些具體的抽樣方法.
二、怎么教
上述內容定位對教師提出的最大挑戰就是如何尋找合適的素材,這個素材既要貼近學生的生活,又能讓學生比較容易地參與到抽樣活動中,在活動中體會隨機抽樣.幾經選擇后,筆者從教材中近視率的背景圖中得到啟發,設置了一系列關于調查學生近視率的問題串,以此開展整堂課的教學.整個教學過程分解為以下幾個部分: 1.通過章頭圖提供的信息讓學生感受數據,提出質疑即:這些數據是怎么來的?
2.讓學生調查班級的近視率,感受普查的作用.
3.通過調查年級和全市高一學生的近視率,感受抽樣調查的必要性,感受如何才能使樣本具有代表性.
4.在小組討論和師生交流中體會統計結果的不確定性.
5.在小結中結合章頭圖進行總結回顧,引出本章的知識框架.
教學設計
一、內容和內容解析
1.內容
本課主要內容是讓學生了解:認識客觀現象的第一步就是通過觀察或試驗取得觀測資料,然后分析這些資料來認識此現象.獲取有代表性的觀測資料并正確地加以分析是正確認識未知現象的基礎,也是統計所研究的基本問題.
2.內容解析
本課是高中統計的第一節課,統計是研究如何合理收集、整理、分析數據的學科,它可以為人們制定決策提供依據.學生在義教階段已學了收集、整理、描述和分析數據等處理數據的基本方法.高中的統計學習將逐步讓學生體會確定性思維與統計思維的差異,了解統計結果的隨機性特征,知道統計推斷可能出錯.統計有兩種:一種是把所有個體的信息都收集起來,然后進行描述,這種統計方法稱為描述性統計,例如人口普查.但在很多情況下我們無法采用描述性統計對所有個體進行調查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統計.例如有的產品數量非常大,或者質量檢查具有破壞性.
抽樣調查是收集數據的一種重要途徑,是一種重要的、科學的非全面調查方法.它根據調查的目的和任務要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進行調查、觀察,用樣本數據來推斷總體.其中蘊涵了重要的統計思想——樣本估計總體.而樣本代表性的好壞直接影響統計結論的準確性,所以抽樣過程中,考慮的最主要原則是保證樣本能很好地代表總體.而隨機抽樣的出發點是使每個個體都有相同的機會被抽中,這是基于對樣本數據代表性的考慮.
本節課重點:能從現實生活或其他學科中提出具有一定價值的統計問題,理解隨機抽樣的必要性與重要性.
二、目標和目標解析
1.目標
(1)通過具體案例的分析,逐步學會從現實生活中提出具有一定價值的統計問題;
(2)結合實際問題情境,理解隨機抽樣的必要性和重要性,深刻理解樣本的代表性.
2.目標解析
章引言列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學習統計的意義.通過具體實例,引導學生嘗試從實際問題中發現并提出統計問題.以培養學生從現實生活或其他學科中發現問題、提出問題的能力、意識和習慣.
對某個問題的調查最簡單的方法就是普查,但是這種方法的局限性很大.出于費用和時間的考慮,有時一個精心設計的抽樣方案,其實施效果甚至可以勝過普查.教學中要通過一定實例讓學生體會隨機抽樣的必要性和重要性.為了使由樣本到總體的推斷有效,樣本必須是總體的代表.在對實例的分析過程中,探討獲取有代表性的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統計推斷結論可靠性之間的關系.
三、教學問題診斷分析
學生在初中已有對統計活動的認識,并學習了統計圖表、收集數據的方法,但對設計合理的抽樣方法,以使樣本具有好的代表性的意識還不強.在已有學習中,學習內容多以確定性數學為主;學生對全面調查,即普查有所了解,它在經驗上更接近確定性數學;這里,我們要通過具體問題,讓學生體會統計的重要思想——用樣本估計總體以及統計結果的不確定性.因此,學生已有知識經驗與本節要達成的教學目標之間有較大差距.主要的困難有:對樣本估計總體的思想、對統計結果的“不確定性”產生懷疑,對統計的科學性有所質疑;對抽樣應該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學中要通過具體實例的研究給學生釋疑.
教學中,可以鼓勵學生從自己的生活中提出與典型案例類似的統計問題,如每天完成家庭作業所需的時間,每天的體育鍛煉時間,學生的近視率,一批燈泡的壽命等.在學生提出這些問題后,要引導學生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本等,這樣可以培養學生提出統計問題的能力.
因此,本課的教學難點是:理解怎樣的抽樣才是隨機抽樣,如何抽樣才能更好地代表總體.
四、教學支持條件分析
準備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設備輔助教學.
五、教學過程設計
(一)感悟數據、引入課題
問題1:請同學們看章頭圖中的有關沙漠化和缺水量的數據,你有什么感受?
師生活動:讓學生充分思考和探討,并逐步引導學生產生質疑:這些數據是怎么來的?
設計意圖:通過一些數據讓學生充分感受我們生活在一個數字化時代,要學會與數據打交道,養成對數據產生的背景進行思考的習慣.
問題2:我們班級有很多同學都是戴眼鏡的,你知道我們班的近視率嗎?你是怎么知道的?
設計意圖:通過與學生比較貼近的案例,讓他們體會統計與日常生活的關系.
(二)操作實踐、展開課題
問題3:如果我想了解我校所有高一學生的近視率,你打算怎么做呢?
師生活動:以四人小組為單位進行討論,每個小組派一個代表匯報方案.
設計意圖:從這個問題中引出抽樣調查和樣本的概念,使學生對于如何產生樣本進行一定的思考,同時也使學生認識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的.
問題4:你認為下列預測結果出錯的原因是什么?
在1936年美國總統選舉前,一份頗有名氣的雜志(Literary Digest)的工作人員做了一次民意測驗.調查蘭頓(A.Landon)(當時任堪薩斯州州長)和羅斯福(F.D.Roosevelt)(當時的總統)中誰將當選下一屆總統.為了了解公眾意向,調查者通過電話簿和車量登記簿上的名單給一大批人發了調查表(注意在1936年電話和汽車只有少數富人擁有).通過分析收回的調查表,顯示蘭頓非常受歡迎,于是雜志預測蘭頓將在選舉中獲勝.實際選舉結果正好相反,最后羅斯福在選舉中獲勝,其數據如下:
設計意圖:通過案例讓學生進一步體會到:在抽樣調查中,樣本的選擇是至關重要的,樣本能否代表總體,直接影響著統計結果的可靠性.
問題5:如果要調查下面這幾個問題,你認為應該作全面調查還是抽樣調查?大家對普查和抽樣調查是怎么看的?普查一定好嗎?請舉例.
(1)了解全班同學每周的體育鍛煉時間;
(2)調查市場上某個品牌牛奶的含鈣量;
(3)了解一批日光燈的使用壽命.
設計意圖:通過普查和抽樣調查的比較,使學生感受抽樣調查的必要性和重要性.
問題6:如果我們想了解晉中市高一學生的近視率,你認為該怎么做呢?
師生活動:以2人小組為單位進行討論,說出比較可行的抽樣方案.
問題7:是否可以用晉中市高一年級學生的近視率來估計山西省高中生的近視率?為什么?
師生活動:教師繼續讓學生進行小組討論,引導學生從樣本容量以及樣本抽取需要考慮的要素,如:學生的層次(高
一、高
二、高三),學生生活的環境(城市、縣鎮、農村)等.教師對學生的回答進行歸納、整理,與學生一起討論出比較可行的抽樣方案.
設計意圖:通過進一步的追問,加深學生對樣本代表性的理解.讓學生進一步認識到:在多背景下的抽樣會產生偏差,以及樣本的隨機性與樣本大小在產生有代表性的樣本中的作用,同時對后面的內容進行簡單介紹.
(三)總結拓展、提升思想
問題8:請你用簡要的語言說說自己在本節課的收獲.
師生活動:引導學生從怎樣學會提出統計問題?抽樣調查與普查的優缺點?樣本的代表性與統計推斷結論之間的關系等方面進行總結和回顧.教師結合章頭圖對這一章的框架進行簡單的介紹,引導學生建構知識體系.
設計意圖:總結回顧,鞏固課堂知識、初步概括統計思想.
六、目標檢測設計
1.某課外興趣小組為了解所在地區老年人的健康狀況,分別作了四種不同的抽樣調查.你認為抽樣比較合理的是()
A.在公園調查了1000名老年人的健康狀況
B.在醫院調查了1000名老年人的健康狀況
C.調查了10名老年鄰居的健康狀
D.利用派出所的戶籍網隨機調查了該地區10%的老年人的健康狀況.
設計意圖:促進學生理解抽樣的必要性和樣本的代表性.
2.為了了解全校240名學生的身高情況,從中抽取40名學生進行測量,下列說法正確的是
A.總體是240 B.個體是每一個學生
C.樣本是40名學生 D.樣本容量是40
設計意圖:回顧復習相關概念.
3.為了了解全校學生的平均身高,王一調查了自己座位旁邊的五位同學,把這五位同學的身高的平均值作為全校學生平均身高的估計值.
(1)王一的調查是抽樣調查嗎?
(2)如果是抽樣調查,指出調查的總體、個體、樣本和樣本容量;
(3)這個調查結果能較好的反映總體的情況嗎?如果不能,請說明理由.
設計意圖:回顧抽樣調查的幾個基本概念,強化抽樣調查中樣本的代表性.
教學反思
上完課后,許多聽課的教師都對這堂課提出了自己不同的看法,同時也促使筆者進一步思考,究竟該如何來上好這一堂課.
一、如何利用章引言
在人教A版教材中每一章的開頭都有章頭圖和章引言,統計也不例外.對于一線教師來說,章引言的作用以及如何用好章引言都是值得探討的問題.
1.章引言的作用
統計的章頭圖、章引言包括日常生活中的一些數據,如缺水量、沙漠化以及相關的一些圖表等,還有對本章內容的文字介紹.這些信息的作用在哪里,如何在起始課中把這些信息傳遞給學生成為筆者首要考慮的問題.在與教研員和同行的探討中,我們認為統計的章引言有以下幾點作用:
(1)沙漠化的圖片以及文字說明可以讓學生體會到有些數據無法普查,只能通過抽樣調查來得到,這還滲透著環保意識.
(2)十大城市缺水量的圖表及相關文字既回顧了初中的統計圖表,同時也為學習“用樣本估計總體”埋下伏筆.
(3)章頭圖中三個章節的標題以及整個文字介紹對整章起著統領作用.
2.章引言的教學思考
鑒于上述三點作用,對于章引言的教學我們采取了以下做法:
(1)充分利用章頭圖、章引言中的數據和圖片如沙漠化、我國缺水量排名等,在讓學生增強環保意識的同時能更為理性地關注數據的來源及其真實性,學會質疑、通過質疑引入本節課的課題,同時也讓學生體會到學習這一知識的必要性.
(2)由于章引言中有些概念學生尚未學習,不適宜在課堂一開始就介紹,將其放在課堂小結之后,教師引導學生進行知識框架的構建,可能效果更好.
3.章引言教學效果的分析
自我感受是章引言的作用沒有很好的體現,原因在于:
(1)沒有考慮學生已有的認知基礎.筆者本以為在上課一開始給出沙漠化等數據后,學生會對數據的來源產生質疑,但是幾乎全班同學都肯定地認為這個數據是通過抽樣調查得到的.
(2)由于上課的節奏沒有把握好,沒能利用章引言幫助學生構建好知識框架,我自己在課堂上也沒有進行很好地解讀.
二、如何體現螺旋上升
上完這一節課后,部分聽課教師認為這節課似乎是把初中的統計課重上了一遍.新課程實施后,學生從小學一年級就開始學習統計,到初中什么是統計,如何進行數據的收集、整理與描述已有較多的體驗,什么是普查、抽樣調查、樣本、樣本容量等概念也都已經比較清晰.而“2.1隨機抽樣”的教學內容也就是這一些,聽課教師有此感受實屬正常.
筆者在上這一堂課的時候也存在著這個困惑.對于高中的統計內容,從隨機抽樣到用樣本估計總體、兩個變量的相關關系以及選修IA中的統計案例,知識上的螺旋上升比較明顯,但是從小學、初中、高中統計學習的螺旋上升框架卻并不明晰.比如“隨機抽樣”中概念、內容基本上都是學生初中已學過的,甚至教材上“一個著名案例”在有些初中教材中也曾出現過.針對這個情況,筆者確定將教學重心落在讓學生體會隨機抽樣的必要性和重要性上,通過課堂的實踐操作讓學生進一步體會為什么要抽樣,如何進行抽樣,并在對抽樣的比較中體會樣本的隨機性和統計結果的不確定性.這些在初中的統計教學中沒有得到強化,同時也成為本節課值得提升的內容.
課堂實踐后,從聽課教師的反應來看,這個螺旋上升還沒有得到很好的體現,究其原因:
1.教學設計中各個教學環節的設計意圖不夠明晰.
2.教學過程中強調了學生的參與,教師有效的歸納、總結、提升相對缺乏.
3.沒有將理念性的信息通過有效的載體顯現,教學中的問題鏈未達到需要達到的教學層次.
三、如何滲透統計思想
讓學生不斷體會統計思想是一個重要的教學任務.隨機抽樣中滲透統計思想是基本任務也是主要任務.筆者在本堂課的教學中也深切體會到了教學的困難.
1.思想是教不會的,它是學生在參與對具體的問題的實踐和分析中逐步體會得到,如何尋找恰當、適時的問題或案例讓學生進行有效的體會、研究、實踐是一個重要問題.筆者在本堂課中通過讓學生調查班級、年級、全市、全省中學生的近視率這一條主線進行隨機抽樣的教學,在讓學生小組討論、全班交流的過程中滲透統計思想.從課堂效果來看,這個教學載體并不是最佳的,但是筆者至今也尚未找到更好的教學載體.
2.概念教學應更多地采用歸納式教學,這對教師提出了極大的挑戰.教師絕大多數是在“演繹”的教學中學習長大,我們在中學時所接受的學習方式會影響自己的教學方式.筆者也不例外,從小被演繹慣了,即使有意識地要讓學生自己進行實踐體會并逐步歸納,但是在教學中還是時不時地“滑向”演繹.
3.課堂的教學時間是有限的,如何在有限的時間內既讓學生充分體驗、感受統計思想,又能很好完成各項教學任務,提高教學效率,這將是筆者今后的努力方向,雖然做到這一點會很難.
最后感謝課題組專家、成員以及所有的聽課教師提出的建議和意見,同時也希望這一堂課能起到拋磚引玉的作用,讓更多的教師關注統計,關注統計教學,使這個現代公民必備的常識能在課堂上打下良好基礎,并能促使學生學以致用.
第二篇:“隨機抽樣”教學設計
一、內容和內容解析
1.內容
本節課主要內容是讓學生了解在客觀世界中要認識客觀現象的第一步就是通過觀察或試驗取得觀測資料,然后通過分析這些資料來認識此現象.如何取得有代表性的觀測資料并能夠正確的加以分析,是正確的認識未知現象的基礎,也是統計所研究的基本問題.2.內容解析
本節課是高中階段學習統計學的第一節課,統計是研究如何合理收集、整理、分析數據的學科,它可以為人們制定決策提供依據.學生在九年義務階段已經學習了收集、整理、描述和分析數據等處理數據的基本方法.在高中學習統計的過程中還將逐步讓學生體會確定性思維與統計思維的差異,注意到統計結果的隨機性特征,統計推斷是有可能錯的,這是由統計本身的性質所決定的.統計有兩種.一種是把所有個體的信息都收集起來,然后進行描述,這種統計方法稱為描述性統計,例如我國進行的人口普查.但是在很多情況下我們無法采用描述性統計對所有的個體進行調查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統計.例如有的產品數量非常的大或者有的產品的質量檢查是破壞性的.統計和概率的基礎知識已經成為一個未來公民的必備常識.抽樣調查是我們收集數據的一種重要途徑,是一種重要的、科學的非全面調查方法.它根據調查的目的和任務要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進行調查、觀察,用所得到的調查標志的數據來推斷總體.其中蘊涵了重要的統計思想樣本估計總體.而樣本代表性的好壞直接影響統計結論的準確性,所以抽樣過程中,考慮的最主要原則為:保證樣本能夠很好地代表總體.而隨機抽樣的出發點是使每個個體都有相同的機會被抽中,這是基于對樣本數據代表性的考慮.本節課重點:能從現實生活或其他學科中提出具有一定價值的統計問題,理解隨機抽樣的必要性與重要性.二、目標和目標解析
1.目標
(1)通過對具體的案例分析,逐步學會從現實生活中提出具有一定價值的統計問題,(2)結合具體的實際問題情境,理解隨機抽樣的必要性和重要性;
(3)以問題鏈的形式深刻理解樣本的代表性.2.目標解析
本章章頭圖列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學習統計的意義.同時通過具體的實例,使學生能夠嘗試從實際問題中發現統計問題,提出統計問題.讓學生養成從現實生活或其他學科中發現問題、提出問題的習慣,培養學生發現問題與提出問題的能力與意識.對某個問題的調查最簡單的方法就是普查,但是這種方法的局限性很大,出于費用和時間的考慮,有時一個精心設計的抽樣方案,其實施效果甚至可以勝過普查,在這個過程中讓學生逐步體會到隨機抽樣的必要性和重要性.抽樣調查,就是通過從總體中抽取一部分個體進行調查,借以獲得對整體的了解.為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現方便樣本.由此在對實例的分析過程中探討獲取能夠代表總體的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統計推斷結論可靠性之間的關系.三、教學問題診斷分析
學生在九年義務教育階段已有對統計活動的認識,并學習了統計圖表、收集數據的方法,但對于如何抽樣更能使樣本代表總體的意識還不強;在以前的學習中,學生的學習內容以確定性數學學習為主;學生對全面調查,即普查有所了解,它在經驗上更接近確定性數學,而隨機抽樣學習則要求學生通過對具體問題的解決,能體會到統計中的重要思想樣本估計總體以及統計結果的不確定性.學生已有知識經驗與本節要達成的教學目標之間還有很大的差距.主要的困難有:對樣本估計總體的思想、對統計結果的不確定性產生懷疑,對統計的科學性有所質疑;對抽樣應該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學中要通過具體實例的研究給學生釋疑.在教學過程中,可以鼓勵學生從自己的生活中提出與典型案例類似的統計問題,如每天完成家庭作業所需的時間,每天的體育鍛煉時間,學生的近視率,一批電燈泡的壽命是否符合要求等等.在學生提出這些問題后,要引導學生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本,通過這樣一個教學過程,更能激起學生的學習興趣,能學有所用,拉近知識與實踐的距離,培養學生從現實生活或其他學科中提出具有一定價值的統計問題的能力.在這個過程中提升學生對統計抽樣概念的理解,初步培養學生運用統計思想表述、思考和理解現實世界中的問題能力,這樣教學效果可能會更佳.根據這一分析,確定本課時的教學難點是:如何使學生真正理解樣本的抽取是隨機的,隨機抽取的樣本將能夠代表總體.四、教學支持條件分析
準備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設備輔助教學.五、教學過程設計
(一)感悟數據、引入課題
問題1:請同學們看章頭圖中的有關沙漠化和缺水量的數據,你有什么感受?
師生活動:讓學生充分思考和探討,并逐步引導學生產生質疑:這些數據是怎么來的?
設計意圖:通過一些數據讓學生充分感受我們生活在一個數字化時代,要學會與數據打交道,養成對數據產生的背景進行思考的習慣.問題2:我發現我們班級有很多的同學都是戴眼鏡的,誰能告訴我我們班的近視率?
普查:為了一定的目的而對考察對象進行的全面調查稱為普查.總體:所要考察對象的全體稱為總體(population)
個體:組成總體的每一個考察對象稱為個體(individual)
普查是我們進行調查得到全部信息的一種方式,比如我國10年一次的人口普查等.設計意圖:通過與學生比較貼近的案例入手,讓學生體會到統計是從日常生活中產生的.(二)操作實踐、展開課題
問題3:如果我想了解榆次二中所有高一學生的近視率,你打算怎么做呢?
抽樣調查:從總體中抽取部分個體進行調查,這種調查稱為抽樣調查(sampling investigation).樣本:從總體中抽取的一部分個體叫做總體的一個樣本(sample).師生活動:以四人小組為單位進行討論,每個小組派一個代表匯報方案.設計意圖:從這個問題中引出抽樣調查和樣本的概念,使學生對于如何產生樣本進行一定的思考,同時也使學生認識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的.列舉:一個著名的案例
在1936年美國總統選舉前,一份頗有名氣的雜志(Literary Digest)的工作人員做了一次民意測驗.調查蘭頓(A.Landon)(當時任堪薩斯州州長)和羅斯福(F.D.Roosevelt)(當時的總統)中誰將當選下一屆總統.為了了解公眾意向,調查者通過電話簿和車量登記簿上的名單給一大批人發了調查表(注意在1936年電話和汽車只有少數富人擁有).通過分析收回的調查表,顯示蘭頓非常受歡迎,于是雜志預測蘭頓將在選舉中獲勝.實際選舉結果正好相反,最后羅斯福在選舉中獲勝,其數據如下:
候選人
預測結果% 選舉結果%
Roosevelt 43 62
Landon 57 38 問題4:你認為預測結果出錯的原因是什么? 設計意圖:通過案例讓學生進一步體會到:在抽樣調查中,樣本的選擇是至關重要的,樣本能否代表總體,直接影響著統計結果的可靠性.問題5:如果要調查下面這幾個問題,你認為應該作全面調查還是抽樣調查?你們對于普查和抽樣調查是怎么看的?普查一定好嗎?請舉例.(1)了解全班同學每周的體育鍛煉時間;
(2)調查市場上某個品牌牛奶的含鈣量;
(3)了解一批日光燈的使用壽命.普查
抽樣調查
需要大量的人力、物力和財力
節省人力、物力和財力
不能用于帶有破壞性的檢查
可以用于帶有破壞性的檢查
在操作正確的情況下,能得到準確結果
結果與實際情況之間有誤差
設計意圖:通過普查和抽樣調查的比較,使學生感受抽樣調查的必要性和重要性.問題6:如果我們想了解晉中市高一學生的近視率,你認為該怎么做呢?
師生活動:以2人小組為單位進行討論,說出比較可行的抽樣方案.問題7:我們是否可以用晉中市高一年級學生的近視率來估計山西省高中生的近視率?為什么?
師生活動:教師繼續讓學生進行小組討論,引導學生從樣本容量以及樣本抽取需要考慮的要素,如:學生的層次(高
一、高
二、高三),學生生活的環境(城市、縣鎮、農村)等.教師對學生的回答進行歸納、整理,與學生一起討論出比較可行的抽樣方案.設計意圖:通過進一步的追問,加深學生對樣本代表性的理解.讓學生進一步的認識到:在多背景下的抽樣會產生偏差,以及樣本的隨機性與樣本大小在產生有代表性的樣本中的作用,同時對后面的內容進行簡單介紹.(三)總結拓展、提升思想
問題8:請你用1-2句話說說自己在本節課的收獲.師生活動:引導學生從怎樣學會提出統計問題?抽樣調查與普查的優缺點?樣本的代表性與統計推斷結論之間的關系等方面進行總結和回顧.設計意圖:總結回顧,鞏固課堂知識、初步概括統計思想.六、目標檢測設計
1.某課外興趣小組為了解所在地區老年人的健康狀況,分別作了四種不同的抽樣調查.你認為抽樣比較合理的是()
A.在公園調查了1000名老年人的健康狀況
B.在醫院調查了1000名老年人的健康狀況
C.調查了10名老年鄰居的健康狀
D.利用派出所的戶籍網隨機調查了該地區10%的老年人的健康狀況.設計意圖:促進學生理解抽樣的必要性和樣本的代表性.2.為了了解全校240名學生的身高情況,從中抽取40名學生進行測量,下列說法正確的是
A.總體是240 B.個體是每一個學生
C.樣本是40名學生 D.樣本容量是40
設計意圖:回顧復習相關概念.3.為了了解全校學生的平均身高,王一調查了自己座位旁邊的五位同學,把這五位同學的身高的平均值作為全校學生平均身高的估計值.(1)王一的調查是抽樣調查嗎?
(2)如果是抽樣調查,指出調查的總體、個體、樣本和樣本容量;
(3)這個調查結果能較好的反映總體的情況嗎?如果不能,請說明理由.設計意圖:回顧抽樣調查的幾個基本概念,強化抽樣調查中樣本的代表性.
第三篇:必修三隨機抽樣教學設計
簡單隨機抽樣教學設計
高一數學組
魏建梅
一 教材分析
教材是以探究一批小包裝餅干的衛生是否達標為問題導向,逐步引入簡單隨機抽樣概念.并通過實例介紹了兩種簡單隨機抽樣方法:抽簽法和隨機數法.值得注意的是為了使學生獲得簡單隨機抽樣的經驗,教學中要注意增加學生實踐的機會.例如,用抽簽法決定班里參加某項活動的代表人選,用隨機數法從全年級同學中抽取樣本計算平均身高等等. 二 教學目標
1.能從現實生活或其他學科中推出具有一定價值的統計問題,提高學生分析問題的能力. 2.理解隨機抽樣的必要性和重要性,提高學生學習數學的興趣. 3.學會用抽簽法和隨機數法抽取樣本,培養學生的應用能力.
三 教學重點
1.從現實生活或其他學科中具有一定價值的統計問題
2.理解隨機抽樣的必要性和重要性,以及樣本代表性的概率描述。3.學會簡單的隨機抽樣的方法
教學難點:對統計的理解和對抽簽法和隨機數法的步驟實施
四 課堂設計
1利用實際問題引出統計的概念:
提出問題統計是什么?舉例子:在生活中會遇到很多類似:你的數學成績好不好?這個產品受不受歡迎等問題。我們在一個大數據時代,很多問題都可以用數據回答。所以我們把這些問題變為可以用數據作答的:你的數學平均成績為多少?這個產品的銷售量是多少?等統計問題,再通過調查統計的方法得出這些數據,分析數據得出結論,這就是統計。提出統計問題的概念,舉出3個例子:
1.2014年全區中考學生數學平均成績和語文平均成績各是多少? 2.某電視劇平均收視率是多少?
3.某品牌計算器的合格率是多少?
3.介紹普查法和抽樣調查法: 4.引出簡單隨機抽樣的模型:
用小面小包裝餅干的衛生是否達標問題引出簡單隨機抽樣的模型,給出隨機抽樣的定義,注意:說明普查法在此問題中是不合適的,注意樣本的抽?。〝嚢瑁?。
問題:若你作為一名食品衛生工作人員,要對某食品店里的一批小包裝餅干進行衛生達標檢驗,準備怎么做?
顯然,只能從中抽取一定數量的餅干作為檢驗樣本(為什么?)應當如何選出樣本? 將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸?。ūWC每袋餅干被抽中的機會相等),得到一個簡單隨機樣本,相應的抽樣方法就是簡單隨機抽樣。
5.簡單隨機抽樣的概念:
一般的,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n<=N),如果每次抽取時總體的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
6.介紹兩種隨機抽樣方法:(1)抽簽法的定義及其步驟:
把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,得到容量為n的樣本。步驟:
1.將總體的所有N個個體從0到(N-1)編號;
2.準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均
勻后,每次抽取一個號簽,不放回地連續抽取n次;
3.將取出的n個號簽上的號碼對應的n個個體作為樣本。
(2)隨機數法的定義及其步驟,并給出例題講解:
隨機數法:
利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。步驟:
1.將總體的所有N個個體從0到(N-1)編號;
2.在0到(N-1)的自然數中產生n個不同的隨機數作為選出的號碼; 3.將取出的n個簽上的號碼對應的個體作為樣本
五 教學反思
講完后,老師和同學提出很多意見,比如整堂課的和學生的互動不夠,學生自主思考的空間不足,對兩個隨機抽樣方法的講解不夠細致,以后講課注意這些問題。
第四篇:必修三隨機抽樣教學設計
必修三統計教學設計
一 教材分析
教材是以探究一批小包裝餅干的衛生是否達標為問題導向,逐步引入簡單隨機抽樣概念.并通過實例介紹了兩種簡單隨機抽樣方法:抽簽法和隨機數法.值得注意的是為了使學生獲得簡單隨機抽樣的經驗,教學中要注意增加學生實踐的機會.例如,用抽簽法決定班里參加某項活動的代表人選,用隨機數法從全年級同學中抽取樣本計算平均身高等等.
二 教學目標
1.能從現實生活或其他學科中推出具有一定價值的統計問題,提高學生分析問題的能力.
2.理解隨機抽樣的必要性和重要性,提高學生學習數學的興趣. 3.學會用抽簽法和隨機數法抽取樣本,培養學生的應用能力. 三 教學重點
1.從現實生活或其他學科中具有一定價值的統計問題
2.理解隨機抽樣的必要性和重要性,以及樣本代表性的概率描述。3.學會簡單的隨機抽樣的方法 教學難點:
對樣本代表性的概率描述的理解
對統計的理解和對抽簽法和隨機數法的步驟實施 四 課堂設計
1利用實際問題引出統計的概念:
提出問題統計是什么?舉例子:在生活中會遇到很多類似:你的數學成績好不好?這個產品受不受歡迎等問題。我們在一個大數據時代,很多問題都可以用數據回答。所以我們把這些問題變為可以用數據作答的:你的數學平均成績為多少?這個產品的銷售量是多少?等統計問題,再通過調查統計的方法得出這些數據,分析數據得出結論,這就是統計。提出統計問題的概念,舉出3個例子:
1.2014年全區中考學生數學平均成績和語文平均成績各是多少? 2.某電視劇平均收視率是多少?
3.某品牌計算器的合格率是多少? 利用例子統計問題所包含了:
總體:包含所研究的全部個體的集合(2014年全區中考的學生全體)變量:說明現象某種特征的概念(數學和語文平均成績)引導學生把生活中的問題轉化為統計問題,隨后由具體事例: 3.介紹普查法和抽樣調查法:
問:要調查全班同學的數學平均成績要怎樣做?引出普查法。問:進一步,要調查全國中學生數學平均成績要怎樣做?
引導學生,介紹抽樣調查法,介紹樣本的概念:樣本——從總體中抽取的一部分元素的集合;樣本抽取原則——樣本能夠很好的代表總體。
舉出湯的例子:想知道一鍋湯的咸淡,就要用勺子舀出一勺嘗嘗味道,這一勺就是樣本,而要把湯攪拌均勻這一勺才被能代表總體。
講解抽樣調查法的有點及重要性:大多數的調查普查法是無法做到的,抽樣調查省時省力而且比較準確。
問:怎樣理解“一個好的抽樣調查勝過一次蹩腳的普查”?
4.引出簡單隨機抽樣的模型:
用小面小包裝餅干的衛生是否達標問題引出簡單隨機抽樣的模型,給出隨機抽樣的定義,注意:說明普查法在此問題中是不合適的,注意樣本的抽取(攪拌)。
問題:
若你作為一名食品衛生工作人員,要對某食品店里的一批小包裝餅干進行衛生達標檢驗,準備怎么做?
顯然,只能從中抽取一定數量的餅干作為檢驗樣本(為什么?)應當如何選出樣本? 將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸?。ūWC每袋餅干被抽中的機會相等),得到一個簡單隨機樣本,相應的抽樣方法就是簡單隨機抽樣。
5.簡單隨機抽樣的概念:
一般的,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n<=N),如果每次抽取時總體的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
6.介紹兩種隨機抽樣方法:(1)抽簽法的定義及其步驟:
把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,得到容量為n的樣本。步驟:
1.將總體的所有N個個體從0到(N-1)編號;
2.準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均
勻后,每次抽取一個號簽,不放回地連續抽取n次;
3.將取出的n個號簽上的號碼對應的n個個體作為樣本。
問:思考抽簽法的優點缺點是什么?
優點:保證每個個體選人樣本機會均等
缺點:(1總體個數較多,制作號簽成本增加,使得抽簽法成本高(耗時、耗力)
(2號簽很多,“攪拌均勻”比較困難,結果很難保證每個個體入選樣本的可能性相等,從而使產生壞樣本(即代表性差的樣本)的可能性增加
(2)隨機數法的定義及其步驟,并給出例題講解:
隨機數法:
利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。步驟:
1.將總體的所有N個個體從0到(N-1)編號;
2.在0到(N-1)的自然數中產生n個不同的隨機數作為選出的號碼; 3.將取出的n個簽上的號碼對應的個體作為樣本
五 教學反思
講完后,老師和同學提出很多意見,比如整堂課的和學生的互動不夠,學生自主思考的空間不足,對兩個隨機抽樣方法的講解不夠細致,以后講課注意這些問題。
第五篇:4.2簡單的隨機抽樣教學設計
備課組:二校部初一 主備人:劉福山 參備人:王繼海、薛海瑩 編號:
4.2簡單的隨機抽樣 教學設計
【教學目標】
1.通過實例理解簡單隨機抽樣的含義;
2.能用簡單隨機抽樣的方法從總體中抽取樣本,并對總體進行合理的估計; 3.在小組合作學習中培養團結合作精神,激發良好的數學學習情感。
【教學重難點】
學習重點:隨機抽樣方法的選取
學習難點:隨機抽樣方法的選取,對總體進行合理的估計。
【教學過程】
【課前預習案】
一、導入環節
(一)導入新課,板書課題
導入語:同學們,從這節課開始我們來學習4.2 《簡單的隨機抽樣》(師板書)。隨著我們的學習你將會更加深入的調查方式的合理性和普遍性。本節課我們要達到三個目標,請看大屏幕。
(二)出示學習目標
(屏幕顯示)過渡語:請同學們默讀本節課的學習目標(約1分鐘)。本節課主要是學習如何進行隨機抽樣方式的選取。
二、先學環節
(一)出示自學指導
過渡語:首先請迅速默讀學案“自主學習”的自學指導后開始學習。
學生看書、勾畫、填空,教師觀察課堂,保證課堂安靜有序,學生坐姿端正。自學指導:請同學們自學課本P87—89的內容,同時思考下列問題,用時8分鐘。1.普查與抽樣調查的優缺點 2.隨機抽樣:
_________________________________________________ __________________________________________________ 3.隨機抽樣通常用的方法:(舉例說明)
___________________________________________
4.你還有什么疑惑,請寫下來
(二)自學檢測反饋
過渡語:同學們學習非常認真、投入,下面咱們來檢測一下自己的學習成果,請同學們迅速完成學案“自學檢測”部分內容!頁
七年級數學教案 第 備課組:二校部初一 主備人:劉福山 參備人:王繼海、薛?,?編號:
要求:用6分鐘的時間在學案上完成自學檢測題目,本環節學生獨立完成,組長檢查后記錄得分,改錯。
課本90頁練習第1題
習題4.2第1題
2.學生練習,教師巡視,了解學生學情。
【課內探究案】
(一)自學質疑
1.組內交流自主學習中的疑惑,用3分鐘完成。
過渡語:請同學小組交流課本例1,同時思考你的解題方法。哪個小組展示自己的方法多。你還有疑問嗎。
2.合作探究課本例1(組長負責收集解題方法,發言人員要求語言簡練、準確,其他小組認真傾聽、補充和分享時間在3分鐘之內。)
過渡語:請同學們仿照例1的要求完成下題。哪個小組上臺展示你們的方法。3.規范解題步驟,總結輔助性的做法,體會數學轉化思想。
某養殖專業戶要出售300只羊,現在市場上羊的價格為每千克元,為了估計這300只羊能賣多少錢,試問:(1)對于上述問題,你認為是采用普查方法好,還是抽樣調查好?(2)該專業戶從中隨機抽取了5只羊,稱得它們的體重如下(單位:千克):26,31,32,36,37。
①在這個問題中,總體、個體和樣本各是什么
②通過上述數據,請你估計一下這300只羊能賣多少錢? 4.鞏固練習
1.下列調查中選取的樣本具有代表性的有()
A 為了解某地區居民防火意識,對該地區的初中生進行調查
B 為了解某校1200名學生的視力情況,隨機抽取了該校120名學生進行調查 C為了解某商場的平均日營業額,選在周末進行考察
D 為了解全校學生課外小組的活動情況,對該校的男生進行調查
2.利用部分估計整體的時候,為了得到一個比較可靠的估計值,我們通常()A 取多個樣本進行重復試驗 B 進行普查
C 精選一個特別的樣本進行調查
5.課堂小結
【達標測試題】
1.下列調查中,抽取的樣本合適嗎?為什么?
(1)為了解全班同學學習數學中存在的困難和問題,數學老師調查該班數學興趣小組的十名同學。(2)為了調查全校學生購買文學名著的情況,用簡單隨機抽樣法在全校所有班級中,抽取8個班級,頁
七年級數學教案 第 備課組:二校部初一 主備人:劉福山 參備人:王繼海、薛?,?編號:
調查這8個班級所有學生購買名著情況。
(3)學期結束,學校想調查學生對八年級教材的意見,從八年級一班抽取30名學生進行調查。(4)果農王大哥為了估計果園中50株蘋果樹的總產量,收獲前他將這些果樹進行編號,然后再對編號為5的整數倍的果樹進行采摘,求得它們的產量。
2.生物工作者為了估計一片山林中雀鳥的數量,設置了如下方案:
先捕捉100只雀鳥,給他們做上標志后放回山林,一段時間后,再從中隨機捕捉500只,其中標記的雀鳥有5只,請你幫助工作人員估計這片山林中雀鳥的數量一共有多少只。
七年級數學教案 第 頁