第一篇:幾何證明選講專題
幾何證明選講
幾何證明選講專題
一、基礎知識填空:
1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段_________.推論1: 經過三角形一邊的中點與另一邊平行的直線必______________.推論2: 經過梯形一腰的中點,且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段___________.3.相似三角形的性質定理:相似三角形對應高的比、對應中線的比、對應角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于_______________; 相似三角形面積的比、外接圓的面積比都等于____________________;
4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項;兩直角邊分別是它們在斜邊上_______與_________的比例中項.5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數等于_______________的度數.推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.o推論2:半圓(或直徑)所對的圓周角是____;90的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內接四邊形的性質定理與判定定理:
圓的內接四邊形的對角______;圓內接四邊形的外角等于它的內角的_____.如果一個四邊形的對角互補,那么這個四邊形的四個頂點______;如果四邊形的一個外角等于它的內角的對角,那么這個四邊形的四個頂點_________.7.切線的性質定理:圓的切線垂直于經過切點的__________.推論:經過圓心且垂直于切線的直線必經過_______;經過切點且垂直于切線的直線必經過______.切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內兩條相交弦,_____________________的積相等.割線定理:從圓外一點引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點引圓的切線和割線,切線長是__________的比例中項.切線長定理:從圓外一點引圓的兩條切線,它們的切線長____;
圓心和這點的連線平分_____的夾角.二、經典試題:
1.(梅州一模文)如圖所示,在四邊形ABCD中,EFFG+=. EF//BC,FG//AD,則D BCAD
C
2.(廣州一模文、理)在平行四邊形ABCD中,點E在邊AB上,且AE:EB=1:2,DE與AC交于
點F,若△AEF的面積為6cm2,則△ABC的面積為
B cm2.
3.(廣州一模文、理)如圖所示,圓O上
一點C在直徑AB上的射影為D,CD=4,BD=8,則圓O的半徑等于.
4.(深圳二模文)如圖所示,從圓O外一點P 作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=__ 第1頁
5.(廣東文、理)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=_______.6.(廣東文、理)如圖所示,圓O的直徑
AB=6,C圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點 D、E,則∠DAC=,線段AE的長為
三、基礎訓練: 1.(韶關一模理)
如圖所示,PC切⊙O于
點C,割線
PAB經過圓心O,弦CD⊥AB于 點E,PC=4,PB=8,則CD=________.2.(深圳調研文)如圖所示,從圓O外一點A 引圓的切線AD和割線ABC,已知AD=
AC=6,圓O的半徑為3,則圓心O到AC的距 離為________.3.(東莞調研文、理)如圖所示,圓O上一
點C
在直徑AB上的射影為D,CD=4,則圓O的半徑等于.
4.(韶關調研理)如圖所示,圓O是
△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=AB=BC=3.則BD的長______,AC的長_______.5.(韶關二模理)如圖,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長線于N,MN=3,NQ=15,則 PN=______.
6.(廣州二模文、理)如圖所示, 圓的內接
△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段.N7.(湛江一模文)如圖,四邊形ABCD內接
于⊙O,BC是直徑,MN切⊙O于A,∠MAB=25則∠D=___.8.(湛江一模理)如圖,在△ABC中,D 是AC的中點,E是BD的中點,AE交BC
BF=于F,則
FC
第2頁
9.(惠州一模理)如圖:EB、EC是⊙O的兩
條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=460,∠DCF=320,則∠A的度數是.10.(汕頭一模理)如圖,AB是圓O的直徑,直線CE和圓O相切于點C,AD⊥CE于D,若AD=1,∠ABC=300,則圓O的面積是______.11.(佛山一模理)如圖,AB、CD是圓O的兩條弦,C
且AB是線段CD的中垂線,已知AB=6,CD=25,則線段AC的長度為.
12.已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點,EF交BD于G,交AC于H.若 AD=5,BC=7,則GH=________.13.如圖,圓O上一點C在直徑AB上的射影為D.C
AD=2,AC= 25,則AB=____
14.如圖,PA是圓的切線,A為切點,PBC是圓的 割線,且PB=
B
1PABC,則的值是________.2PB
15.如圖,⊙O的割線PAB交⊙O于A、B兩點,割線
PCD經過圓心O,PE是⊙O的切線。已知PA=6,AB=7,PO=12,則PE=____O的半徑是_______.3答 案
二、經典試題:
1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基礎訓練:
243
.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4?.25
11..12.1.13.10,4.14..15.4, 8.1.第3頁
第二篇:幾何證明選講
幾何證明選講
2007年:
15.(幾何證明選講選做題)如圖4所示,圓O的直徑AB?6,C為圓周上一點,BC?3,過C作圓的切線l,過A作l的 垂線AD,垂足為D,則?DAC?
A
2008年:
15.(幾何證明選講選做題)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于B點,PB=1,則圓O的半徑R=
圖
4l
2009年:
15.(幾何證明選講選做題)如下圖,點A、B、C是圓O上的點,且AB=4,?ACB?30,則圓O的面積等于
o
2010年:
14.(幾何證明選講選做題)如上圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a,點E,F分別為線段AB,AD的中點,則EF=2
2011年:
15.(幾何證明選講選做題)如圖,在梯形ABCD中,AB//CAD,B?4,C?D2,分別為E,F,上的點,且ADBC,?
3EF,EFAB
則梯形ABFE與梯形EFCD的面積比為
A
2012年:
15.(幾何證明選講選做題)如圖3,直線PB與圓O相切與點B,D是弦AC上的點,?PBA??DBA,若AD?m,AC?n,則AB
圖3
2013年:
15.(幾何證明選講選做題)如圖3,在矩形ABCD
中,AB?BC?3,BE?AC,垂足為E,則ED?
圖3
第三篇:幾何證明選講專題)
幾何證明選講專題1.了解平行線截割定理,會證直角三角形射影定理.2.會證圓周角定理、圓的切線的判定定理及性質定理.3.會證相交弦定理、圓內接四邊形的性質定理與判定定理、切割線定理.一、基礎知識填空:
1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段 推論1: 經過三角形一邊的中點與另一邊平行的直線必______________.推論2: 經過梯形一腰的中點,且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段___________.3.相似三角形的性質定理:相似三角形對應高的比、對應中線的比、對應角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于_________________; 相似三角形面積的比、外接圓的面積比都等于____________________;
4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項;兩直角邊分別是它們在斜邊上_______與_________的比例中項.5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數等于_______________的度數.推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.推論2:半圓(或直徑)所對的圓周角是____;90o的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內接四邊形的性質定理與判定定理:
圓的內接四邊形的對角______;圓內接四邊形的外角等于它的內角的_____.如果一個四邊形的對角互補,那么這個四邊形的四個頂點______;如果四邊形的一個外角等于它的內角的對角,那么這個四邊形的四個頂點_________.7.切線的性質定理:圓的切線垂直于經過切點的__________.推論:經過圓心且垂直于切線的直線必經過_______;經過切點且垂直于切線的直線必經過______.切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內兩條相交弦,_____________________的積相等.割線定理:從圓外一點引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點引圓的切線和割線,切線長是__________的比例中項.切線長定理:從圓外一點引圓的兩條切線,它們的切線長____;圓心和這點的連線平分_____的夾角.二、經典試題:
1.(梅州一模文)如圖所示,在四邊形ABCD中,EF//BC,FG//AD,則
EFBC+FG
AD
= D
2.(廣州一模文、理)在平行四邊形ABCD中,點E在邊AB上,且AE:EB=1:2,DE與AC交于
點F,若△AEF的面積為6cm2,則△ABC的面積為
2. B
第1頁
3.(廣州一模文、理)如圖所示,圓O上
一點C在直徑AB上的射影為D,CD=4,BD=8,則圓O的半徑等于.
4.(深圳二模文)如圖所示,從圓O外一點P 作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=__
5.(廣東文、理)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=_______.6.(廣東文、理)
如圖所示,圓O的直徑
AB=6,C圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線
AD,AD分別與直線l、圓交于點 D、E,則∠DAC=,線段AE的長為
三、基礎訓練:
1.(韶關一模理)如圖所示,PC切⊙O于
點C,割線PAB經過圓心O,弦CD⊥AB于
點E,PC=4,PB=8,則CD=________.2.(深圳調研文)如圖所示,從圓O外一點A
引圓的切線AD和割線ABC,已知AD=,AC=6,圓O的半徑為3,則圓心O到AC的距 離為________.3.(東莞調研文、理)如圖所示,圓O上一
點C在直徑AB上的射影為D,CD=4,則圓O的半徑等于.
4.(韶關調研理)如圖所示,圓O是
△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=AB=BC=3.則BD的長______,AC的長_______.
5.(韶關二模理)如圖,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長線于N,MN=3,NQ=15,則 PN=______.
6.(廣州二模文、理)如圖所示, 圓的內接
△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段
N 7.(湛江一模文)如圖,四邊形ABCD內接
于⊙O,BC是直徑,MN切⊙O于A,∠MAB=250,則∠D=___.8.(湛江一模理)如圖,在△ABC中,D 是AC的中點,E是BD的中點,AE交BC
D
于F,則
BFFC=.9.(惠州一模理)如圖:EB、EC是⊙O的兩 條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=460,∠DCF=320,則∠A的度數是.C
10.(汕頭一模理)如圖,AB是圓O的直徑,直線CE和圓O相切于點C,AD⊥CE于D,若AD=1,∠ABC=300,則圓O的面積是______.11.(佛山一模理)如圖,AB、CD是圓O的兩條弦,且AB是線段CD的中垂線,已知AB=6,CD=2,則線段AC的長度為. C
12.已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點,EF交BD于G,交AC于H.若
AD=5,BC=7,則GH=________.BC
13.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC= 2,則AB=______,CD=_____.14.如圖,PA是圓的切線,A為切點,PBC是圓的第2頁
割線,且PB=12BC,則PA
PB的值是________.15.如圖,⊙O的割線PAB交⊙O于A、B兩點,割線
PCD經過圓心O,PE是⊙O的切線。已知PA=6,AB=7,PO=12,則PE=____⊙O
3的半徑是_______.答 案
二、經典試題:
1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基礎訓練:
1.245.3.5.4.4,2.5.3.6.21
5.7.115o.8.12.9.99O.10.4?.11.30.12.1.13.10,4.14.3.15.4, 8.1.如圖4所示,圓O的直徑AB=6,C為圓周上一點,BC=3過C作 圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC =()A.15?B.30?C.45?D.60?
2.在Rt?ABC中,CD、CE分別是斜邊AB上的高和中線,是該圖中共有x個三角形與?ABC相似,則x?()A.0B.1C.2 D.33.一個圓的兩弦相交,一條弦被分為12cm和18cm兩段,另一弦被分為3:8,則另一弦的長為()A.11cmB.33cmC.66cmD.99cm
4.如圖,在?ABC和?DBE中,ABDB?BCBE?ACDE?53,若?ABC與
?DBE的周長之差為10cm,則?ABC的周長為()A.20cmB.254cmC.50
cm D.25cm
E 第4題圖 5.O的割線PAB交O于A,B兩點,割線PCD經過圓心,已知
PA?6,PO?12,AB?2
2,則O的半徑為()
A.4B
.6C.612.如圖,用與底面成30?角的平面截圓柱得一橢圓截線, D.8
6.如圖,AB是半圓O的直徑,點C在半圓上,CD?AB于點D, 且AD?3DB,設?COD??,則tan2?
=()
A.13
B.1C.4?D.3
7.在?ABC中,D,E分別為AB,AC上的點,且DE//BC,?ADE的面積是2cm2,梯形
DBCE的面積為6
cm,則DE:BC的值為()
A.B.1:2C.1:3D.1:
48.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.A.2B.3C.4D.5 9.如圖甲,四邊形ABCD是等腰梯形,AB//CD.由4個這樣的 等腰梯形可以拼出圖乙所示的平行四邊形, 則四邊形ABCD中?A度數為()
第9題圖
A.30?B.45?C.60?D.75?
10.如圖,為測量金屬材料的硬度,用一定壓力
把一個高強度鋼珠壓向該種材料的表面,在材料表面 留下一個凹坑,現測得凹坑直徑為10mm,若所 用鋼珠的直徑為26 mm,則凹坑深度為()
A.1mmB.2 mmC.3mmD.4 mm
第10題圖
11.如圖,設P,Q為?ABC內的兩點,且AP?2AB?1
5AC,AQ=
23AB+1
AC,則
?ABP的面積與?ABQ的面積之比為()
1A.5B.45C.11
4D.3
第11題圖
第3頁
則該橢圓的離心率為()A.1
B
2.3C.2
D.非上述結論 第12題圖
13.一平面截球面產生的截面形狀是_______;它截圓柱面所產生的截面形狀是
________
14.如圖,在△ABC中,AB=AC,∠C=720,⊙O過A、B兩點且與BC相切于點B,與AC
O ?
D
交于點D,連結BD,若BC=5?1,則AC=B
C
第 15.如圖,14 題圖
AB為O的直徑,弦AC、BD交于點P,若AB?3,CD?1,則sin?APD=16.如圖為一物體的軸截面圖,則圖中R的值是
第15題圖
第16題圖
17.如圖:EB,EC是O的兩條切線,B,C是切點,A,D是
O上兩點,如果?E?46?,?
DCF?32?,試求?A的度數.18.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O
上一點,AE?AC,DE交AB于點F,且AB?2BP?4,求PF的長度.E
A FB O
C
D
P
第18題圖
第17題圖 19.已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.
求證:(1)△ABC≌△DCB(2)DE·DC=AE·BD.
20.如圖,△ABC中,AB=AC,AD是中線,P為AD上一點,CF∥AB,BP延長線交AC、CF于E、F,求證: PB2=PE?PF.
E
C
第19題圖
第20題圖
21.如圖,A是以BC為直徑的O上一點,AD?BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,G 是AD的中點,連結CG并延長與BE相交于 點F,延長AF與CB的延長線相交于點P.C
(1)求證:BF?EF;(2)求證:PA是O(3)若FG?BF,且O的半徑長為求BD第21題圖
第4頁
22.如圖1,點C將線段AB分成兩.
部分,如果ACAB?BC
AC,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯想到“黃金分割
線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為SS11,S2,如果S?S2
S,那么稱直線l為該圖形的黃1
金分割線.(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發現:過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.(4)如圖4,點E是ABCD的邊AB的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是ABCD的黃金分割線.請你畫一條ABCD的黃金分割線,使它不經過ABCD各邊黃金分割點.第22題圖
第四篇:幾何證明選講習題
幾何證明選講
已知正方形ABCD,E、F分別為BC、AB邊上的點,且BE=BF,BH⊥CF于H,連結DH.求證:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求證:AF⊥CF.已知正方形ABCD,E為對角線AC上一點,AE=3CE,F為AB邊中點,求證:DE⊥EF.F
B
如圖1,在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,?BAC??AGF?90,它們的斜邊長為2,若△ABC固定不動,△AFG繞點
?
A旋轉,AF,AG與邊BC的交點分別為D,E(點D不與點B重合,點E不與點C重合),設BE?m,CD?n.
(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對進行證明;(2)求m與n的函數關系式,直接寫出自變量n的取值范圍;
(3)以△ABC的斜邊BC所在直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標系(如圖2).在邊BC上找一點D,使BD?CE,求出D點的坐標,并通過計算
驗證BD?CE?DE.
(4)在旋轉過程中,(3)中的等量關系BD?CE?DE是否始終成立,若成立,請證明;若不成立,請說明理由.
A
C G
2F 圖
1圖2
如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF. 解答下列問題:
(1)如果AB=AC,∠BAC=90o.
①當點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關系為,數量關系為.
F
E
A
E
C
B
圖乙
FEC
B圖甲
圖丙
②當點D在線段BC的延長線上時,如圖丙,①中的結論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90o,點D在線段BC上運動.
試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?畫出相應圖形,并說明理由.(畫圖不寫作法)
(3)若AC
=BC=3,在(2)的條件下,設正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.
已知:如圖①所示,在△ABC和△ADE中,AB?AC,AD?AE,?BAC??DAE,且點B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點.(1)求證:①BE?CD;②△AMN是等腰三角形.
(2)在圖①的基礎上,將△ADE繞點A按順時針方向旋轉180,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結論是否仍然成立;
△PBD∽△AMN.(3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:
C
B
D
B
E
圖② A
?
如圖,已知:Rt△ABC中,?C?90?,AC?BC?2,將一塊三角尺的直角頂點與斜邊
A 圖①
AB的中點M重合,當三角尺繞著點M旋轉時,兩直角邊始終保持分別與邊BC,AC交于D,E兩點(D,E不與B,A重合).(1)求證:MD?ME;
(2)求四邊形MDCE的面積;
(3)若只將原題目中的“AC?BC?2”改為“BC?a,AC?b(a?b)”其它都不變,請你探究:MD和ME還相等嗎?如果相等,請證明;如果不相等,請求出MD:ME的值.B
D
M
C
E
A
第五篇:幾何證明選講練習題
選修4-1幾何證明選講綜合練習題
1.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC ,DE交AB于點F,且AB?2BP?4,(1)求PF的長度.(2)若圓F且與圓O內切,直線PT與圓F切于點T,求線段PT的長度。解:(1)連結OC,OD,OE,由同弧對應的圓周角與圓心角之間的關系 結合題中條件弧長AE等于弧長AC可得?CDE??AOC, 又?CDE??P??PFD,?AOC??P??OCP, 從而?PFD??OCP,故?PFD∽?PCO,E A F B 證明:(Ⅰ)?AB為切線,AE為割線, ?AB2?AD?AE又 ?AB?AC?(2)由(1)有?
AD?AE?AC2--------------5分
?ADC~?ACE
ADAC
?又??EAC??DAC?ACAE
?ADC??ACE 又??ADC??EGF ??EGF??ACE ?GF//AC
PFPD?,…………4? PCPO
PC?PD1
2??3.…………6? 由割線定理知PC?PD?PA?PB?12,故PF?
E PO
4(2)若圓F與圓O內切,設圓F的半徑為r,因為OF?2?r?1即r?
1A
所以OB是圓F的直徑,且過P點圓F的切線為PT
2F B
5.如圖,⊙O1與⊙O2相交于A、B兩點,過點A作⊙O1的切線交⊙O2于點C,過點B作兩圓的割線,分別交⊙O1、⊙O2于點D、E,DE與AC相交于點P,(I)求證:AD∥EC;
(Ⅱ)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長。22.解:(Ⅰ)連接AB,?AC是⊙O1的切線,??BAC??D,又??BAC??E,??D??E?AD//EC……………4分(Ⅱ)?PA是⊙O1的切線,PD是⊙O1的割線,?PA2?PB?PD,則PT
?PB?PO?2?4?8,即PT?…………10?
2.三角形ABC內接于圓O,P在BC的延長線上,PA切圓O于A,D為AB的中點,PD交AC于E,AE?3EC,求
PA
.PC
?62?PB?(PB?9)?PB?3又⊙O2中由相交弦定理,得PA?PC?BP?PE ?PE?4?AD是⊙O2的切線,DE是⊙O2的割線,?AD2?DB?DE?9?16,?AD?12.………………10分
6.如圖,已知⊙O和⊙M相交于A,B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為弧BD中點,連結AG分別交⊙O,BD于點E,F,連結CE,PA2PA2PB?PCPB
解析:由PA?PC?PB,?()?,??
PCPCPC2PC2
過C作CH//AB,交PD于H,因為BD?AD,PBBDADAEPA
????3,故?3 所以有
PCCHCHECPC
GFEF2
?(Ⅰ)求證:AG?EF?CE?GD;(Ⅱ)求證:。AGCE2
證明:(I)連結AB,AC,∵AD為?M的直徑,∴?ABD?90,3.(本小題滿分12分)選修4-1:幾何證明選講如圖,已知點C在圓O直徑BE的延長線上,CA切圓O于A點,DC是?ACB的平分線并交AE于點F,交AB于D點,求?ADF的大小。
解:如圖,連接AO,因為AC是圓O的切線,則?OAC?900,因DC是?ACB的平分線,又OA?OB,設?ACD??ECD??1,?ABO??BAO??2,在?ABC中,∴AC為?O的直徑,∴?CEF??AGD?90?.…………2分 ∵?DFG??CFE,∴?ECF??GDF,∵G為弧BD中點,∴?DAG??GDF.…………4分 ∵?ECB??BAG,∴?DAG??ECF,∴?CEF∽?AGD.…………5分
∴
CEAG
?,∴AG?EF?CE?GD.…………6分 EFGD
(II)由(I)知?DAG??GDF,?G??G,2?2?2?1?900?1800??1??2?450,而在?ADC中,?ADF??1??2?90,故?ADF?45° …………10分
∴?DFG∽?AGD,∴DG2?AG?GF.………8分
EF2GD2GFEF2
由(I)知,∴.………10分 ??222
CEAGAGCE
4.如圖,AB是⊙O的一條切線,切點為B,ADE,CFD,CGE
都是⊙O的割線,已知AC?AB,(Ⅰ)證明:AD?AE?AC;(Ⅱ)證明:FG//AC。
7.如圖,在?ABC中,?ABC?900,以BC為直徑的圓O交AC于點D,設E為AB的中點。(1)求證:直線DE為圓O的切線;(2)設CE交圓
O于點F,求證:CD?CA?CF?CE。
O,過點A的直線交⊙O于點P,交BC的延長線于10.(本小題滿分10分)如圖,?ABC內接于⊙
點D,且AB2?AP?AD。(1)求證:AB?AC;
O的半徑為1,(2)如果?ABC?600,⊙
且P為弧AC的中點,求AD的長。
8.在?ABC中,AB?AC,過點A的直線與其外接圓交于點P,交BC延長線于點D。
PCPD
(1)求證:;(2)若AC?3,求AP?AD的值。?
ACBD
解:(1)??CPD??ABC,?D??D,??DPC~?DBA,11.如右上圖,?ABC是直角三角形,?ABC?900,以AB為直徑的圓O交AC于點E,點D是BC
邊的中點,連OD交圓O于點M,(Ⅰ)求證:O,B,D,E四點共圓;(Ⅱ)求證:2DE2?DM?AC?DM?AB。
D
PCPDPCPD
又?AB?AC,?(5分)???
ABBDACBD
(2)??ACD??APC,?CAP??CAP,??APC~?ACD APAC,?AC2?AP?AD?9………(10分)??
ACAD
9.(本小題滿分12分)已知C點在⊙O直徑BE的延長線上,CA切⊙O于A點,CD是?ACB的平分線且交AE于點F,交AB于點D。(1)求?ADF的度數;(2)若AB?AC,求
AC的值。
BC
12.如圖,?ABC的外角?EAC的平分線AD交BC的延長線于點D,延長DA交?ABC的外接圓于點F,連結FB,FC。
(1)求證:FB2?FA?FD;
(2)若AB是?ABC外接圓的直徑,且?EAC?120?,BC?6,求線段AD的長。
可以得知△BFC∽△DGC,△FEC∽△GAC.
BFEFBFCFEFCF
∴BF?EF.∵G是AD的中點,∴DG?AG.∴?∴??..
DGAGDGCGAGCG
(Ⅱ)連結AO,AB.∵BC是?O的直徑,∴?BAC?90°.
在Rt△BAE中,由(Ⅰ)得知F是斜邊BE的中點,∴AF?FB?EF.
∴?FBA??FAB.又∵OA?OB,∴?ABO??BAO.∵BE是?O的切線,∴?EBO?90°.∵?EBO??FBA??ABO??FAB??BAO??FAO?90°,∴PA是?O的切線.
15.如圖,⊙O是?ABC的外接圓,D是弧AC的中點,BD交AC于E。(I)求證:CD2?DE?DB。(II)若CD?O到AC的距離為1,求⊙O的半徑。
AB?1,圓O的2
割線MDC交圓O于點D,C,過點M作AM的垂線交直線AD,AC分別于點E,F,證明:(Ⅰ)?MED??MCF;(Ⅱ)ME?MF?3。
13.如圖:AB是圓O的直徑(O為圓心),M是AB延長線上的一點,且MB?證明:(Ⅰ)連接BC得?ACB?90,所以?ACB??BMF?90,∴B,C,F,M四點共圓,∴?CBA??CFM,又∵?CBA??CDA??EDM ∴?EDM??CFM,在?EDM與?CFM中可知?MED??MCF。6分(Ⅱ)由?MED??MCF,得E,F,C,D四點共圓,∴ME?MF?MD?MC,又∵MD?MC?MB?MA?3,∴ME?MF?3。┈┈┈┈┈10分
A
F
??
C
D
E
16.如圖所示,已知PA與?O相切,A為切點,PBC為割線,D為?O上的點,且AD=AC,AD,M
O
14.如圖, 點A是以線段BC為直徑的圓O上一點,AD?BC于點D,BC相交于點E。(Ⅰ)求證:AP//CD;(Ⅱ)設F為CE上的一點,且?EDF??P,求證:CE?EB?FE?
EP.過點B作圓O的切線,與CA的延長線相交于點E, 點G是AD的中點,連結CG并延長與BE相交于點F, 延長AF與CB的延長線相交于點P.(Ⅰ)求證:BF?EF;
(Ⅱ)求證:PA是圓O的切線;
證明:(Ⅰ)∵BC是?O的直徑,BE是?O的切線,∴EB?BC.又∵AD?BC,∴AD∥BE.