第一篇:高頻開關電源技術教學要點
《高頻開關電源技術》教學要點
一、課堂講授
1、電力電子器件
電力半導體器件基礎;電力MOSFET與IGBT器件簡介。
2、DC/DC變換
Buck,Boost,Buck/Boost,Cuk,Sepic,Zeta,forword,flyback,Full-bridge原理介紹。開關的旋轉與拓撲結構的關系。
3、軟開關變換電路
ZVS-QRC,ZCS-QRC,ZVS-PWM,ZCS-PWM,ZVT,ZCT,Full-bridge,Phase-shift原理介紹。RDCLI。
4、基于3842的反激式變換電路設計,基于TOPSWITCH的電源電路設計,基于3852的單相功率因數校正電路的設計,基于3875的移相式全橋電路的設計。
5、電源電路的計算機仿真。
二、實驗 1、3842單端反激電路實驗 2、3875仿真實驗
三、學時數
每次3學時,10次,總共30學時
中國礦業大學(北京)信電系 2006-7-17
第二篇:開關電源技術課程設計教學大綱1
《開關電源技術》課程設計教學大綱
英文名稱:Switching Power Supply Technology 適用專業:電氣工程及其自動化 設計周數:2 學 分:2 講授學時:4學時
實驗(上機)學時:16學時
一、課程設計的性質、目的和任務:
本課程設計是在學習完《開關電源技術》課程之后進行的一個重要的實踐性教學環節,是工程技術應用型人才培養目標的重要組成部分。在教師指導下讓學生獨立完成,一方面鞏固課程知識,加深對理論知識的理解,一方面訓練學生綜合運作所學的理論知識,掌握一定的設計方法和設計思想,能初步解決一些實際問題;培養學生查閱資料,獨立獲取新知識、新信息的能力。
課程性質:《開關電源技術課程設計》是一門綜合運用電子技術、微機原理、自動控制原理、電力電子技術及仿真技術等課程知識,進行開關電源電路和系統設計的課程,是本專業的一門重要的專業實踐課。
目的:培養學生以下幾個方面的能力:
1.綜合運用所學知識,進行開關電源電路和系統設計的能力。2.了解與熟悉常用的電力電子電路的電路拓撲、控制方法。
3.理解和掌握常用的開關電源電路及系統的主電路、控制電路和保護電路的設計方法,掌握元器件的選擇計算方法。
4.具有一定的開關電源電路及系統仿真實驗和調試的能力。
二、課程的教學基本要求
依據以上的教學內容和教學環節,在本課程設計的實施過程中應遵循以下的基本要求:
(一)題目布置和人員配置
依據實驗條件,選取合適的課程設計題目,根據學生數量,選取適當的題目數量,以使學生能夠得到充分的訓練和提高。
(二)學生設計和實驗過程中的指導
在設計和實驗過程中,教師既不能包辦代替,也不能放任自流。重點解決學生的疑難問題,重點在于指導。
(三)考核
考核形式采用設計報告、實驗和答辯三方面綜合評定成績的方式,重點考核學生的設計態度,綜合運用所學的能力和創新的能力,以及實際動手、文字表達和表述能力等。
三、課程內容與要求
教學內容
本課程設計既要立足實驗室現有條件,充分挖掘潛力,又要達到綜合運用所學,培養和提高學生的分析問題和解決問題的能力的設計目的。在以下的幾種中選擇若干題目,讓學生分組進行設計。
1、正激型開關電源電路設計;
2、反激型開關電源電路設計;;
3、半橋型開關電源電路設計;
4、全橋型開關電源電路設計;
5、推挽型開關電源電路設計;
學生在了解與熟悉常用的開關電源電路及系統的電路拓撲、控制方法的基礎上,理解和掌握常用的開關電源電路及系統的主電路、控制電路和保護電路的設計方法,掌握元器件的選擇計算方法。包括以下的教學環節:
1、指導教師根據學生情況進行分組,布置設計題目;
2、指導教師下達課程設計任務書,編制課程設計指導書;
3、在教師的指導下,學生根據設計題目和設計任務書復習所學,查閱相關資料進行設計;
4、設計、計算完畢,經指導教師審查認可后學生在實驗室進行實驗驗證;
5、學生整理設計資料和數據,撰寫課程設計報告; 指導教師審閱報告,進行答辯以檢查學生的設計情況。要求:
學生能夠根據指導教師的要求,進行符合專業規范的設計和實驗工作,能夠發現問題,解決問題,有一定的創新和獨立思考。
四、理論教學學時分配
本課程除指導教師必要的布置設計和實驗任務外,一般不進行理論教學。
五、實驗名稱與學時安排
根據實際設計題目確定實驗和調試內容。學生設計大概在1周,實驗(上機)0.5周,撰寫報告和考核0.5周。
六、考核方式與評分辦法
在整個課程設計階段,教師應注意對學生的引導,以利于培養學生的設計技能及創造能力。學生成績的評定以草圖成績、正規圖成績、說明書成績、答辯成績等進行綜合評定。
七、教材及參考書
1.侯振義 等,直流開關電源技術及應用,電子工業出版社,2006年4月 2.楊旭 等,開關電源技術,機械工業出版社2004年3月
3.張占松,蔡宣三。開關電源的原理與設計,電子工業出版社,1998
第三篇:開關電源的電磁兼容性技術
開關電源的電磁兼容性技術 引言
電磁兼容是一門新興的跨學科的綜合性應用學科。作為邊緣技術,它以電氣和無線電技術的基本理論為基礎,并涉及許多新的技術領域,如微波技術、微電子技術、計算機技術、通信和網絡技術以及新材料等。電磁兼容技術應用的范圍很廣,幾乎所有現代化工業領域,如電力、通信、交通、航天、軍工、計算機和醫療等都必須解決電磁兼容問題。其研究的熱點內容主要有:電磁干擾源的特性及其傳輸特性、電磁干擾的危害效應、電磁干擾的抑制技術、電磁頻譜的利用和管理、電磁兼容性標準與規范、電磁兼容性的測量與試驗技術、電磁泄漏與靜電放電等。
電磁兼容的英文名稱為Electromagnetic Compatibility,簡稱EMC。所謂電磁兼容是指設備(分系統、系統)在共同的電磁環境中能一起執行各自功能的共存狀態。這里包含兩層意思,即它工作中產生的電磁輻射要限制在一定水平內,另外它本身要有一定的抗干擾能力。這便是設備研制中所必須解決的兼容問題。電磁兼容技術涉及的頻率范圍寬達0 GHz ~400GHz,研究對象除傳統設備外,還涉及芯片級,直到各種艦船、航天飛機、洲際導彈甚至整個地球的電磁環境。
電磁兼容三要素是干擾源(騷擾源)、耦合通路和敏感體。切斷以上任何一項都可解決電磁兼容問題,電磁兼容的解決常用的方法主要有屏蔽、接地和濾波。2 電磁兼容技術名詞(1)電磁兼容性
電磁兼容性是指設備或者系統在其電磁環境中能正常工作,且不對該環境中任何事物構成不能承受的電磁騷擾的能力。(2)電磁騷擾
電磁騷擾是指任何可能引起設備、裝備或系統性能降低或者對有生命或者無生命物質產生損害作用的電磁現象。電磁騷擾可引起設備、傳輸通道或系統性能的下降。它的主要要素有自然和人為的騷擾源、通過公共地線阻抗/內阻的耦合、沿電源線傳導的電磁騷擾和輻射干擾等。電子系統受干擾的路徑為:經過電源,通過信號線或控制電纜、場滲透,經過天線直接進入;通過電纜耦合,從其他設備來的傳導干擾;電子系統內部場耦合;其他設備的輻射干擾;電子設備外部耦合到內部場;寬帶發射機天線系統;外部環境場等(3)電磁環境
電磁環境是一種明顯不傳送信息的時變電磁現象,它可能與有用信號疊加或組合。(4)電磁輻射
電磁輻射是指電磁波由源發射到空間的現象?!半姶泡椛洹币辉~的含義有時也可引申,將電磁感應現象也包含在內。RFI/EMI可以通過任何一種設備機殼的開口、通風孔、出入口、電纜、測量孔、門框、艙蓋、抽屜和面板以及機殼的非理想連接面等進行輻射。RFI/EMI也可由進入敏感設備的導線和電纜進行輻射,任何一個良好的電磁能量輻射器也可以作為良好的接收器。(5)脈沖
脈沖是指在短時間內突變,隨后又迅速返回至其初始值的物理量。(6)共模干擾和差模干擾
電源線上的干擾有共模干擾和差模干擾兩種方式。共模干擾存在于電源任何一相對大地或電線對大地之間。共模干擾有時也稱縱模干擾、不對稱干擾或接地干擾。這是載流導體與大地之間的干擾。差模干擾存在于電源相線與中線及相線與相線之間。差模干擾也稱常模干擾、橫模干擾或對稱干擾。這是載流導體之間的干擾。共模干擾提示了干擾是由輻射或串擾耦合到電路中的,而差模干擾則提示了干擾是源于同一條電源電路。通常這兩種干擾是同時存在的,由于線路阻抗的不平衡,兩種干擾在傳輸中還會相互轉化,所以情況十分復雜。干擾經長距離傳輸后,差模分量的衰減要比共模大,這是因為線間阻抗與線-地阻抗不同的緣故。出于同一原因,共模干擾在線路傳輸中還會向鄰近空間輻射,而差模則不會,因此共模干擾比差模更容易造成電磁干擾。不同的干擾方式要采取不同的干擾抑制方法才有效。判斷干擾方法的簡便方法是采用電流探頭。電流探頭先單獨環繞每根導線,得出單根導線的感應值,然后再環繞兩根導線(其中一根是地線),探測其感應情況。如感應值是增加的,則線路中干擾電流是共模的;反之則是差模的。(7)抗擾度電平和敏感性電平
抗擾度電平是指將某給定的電磁騷擾施加于某一裝置、設備或者系統并使其仍然能夠正常工作且保持所需性能等級時的最大騷擾電平。也就是說,超過此電平時該裝置、設備或者系統就會出現性能降低。而敏感性電平是指剛剛開始出現性能降低的電平。所以,對某一裝置、設備或者系統而言,抗擾度電平與敏感性電平是同一數值。(8)抗擾度裕量
抗擾度裕量是指裝備、設備或者系統的抗擾度電平限值與電磁兼容電平之間的插值。3 開關電源的電磁兼容性
開關電源因工作在高電壓大電流的開關工作狀態下,引起電磁兼容性問題的原因是相當復雜的。從整機的電磁性講,主要有共阻抗耦合、線間耦合、電場耦合、磁場耦合及電磁波耦合幾種。共阻耦合主要是騷擾源與受騷擾體在電氣上存在的共同阻抗,通過該阻抗使騷擾信號進入受騷擾體。線間耦合主要是產生騷擾電壓及騷擾電流的導線或 PCB線因并行布線而產生的相互耦合。電場耦合主要是由于電位差的存在,產生感應電場對受騷擾體產生的場耦合。磁場耦合主要是指在大電流的脈沖電源線附近,產生的低頻磁場對騷擾對象產生的耦合。電磁場耦合主要是由于脈動的電壓或電流產生的高頻電磁波通過空間向外輻射,對相應的受騷擾體產生的耦合。實際上,每一種耦合方式是不能嚴格區分的,只是側重點不同而已。在開關電源中,主功率開關管在很高的電壓下,以高頻開關方式工作,開關電壓及開關電流均接近方波,從頻譜分析知,方波信號含有豐富的高次諧波。該高次諧波的頻譜可達方波頻率的1000次以上。同時,由于電源變壓器的漏電感及分布電容以及主功率開關器件的工作狀態非理想,在高頻開或關時,常常產生高頻高壓的尖峰諧波震蕩。該諧波震蕩產生的高次諧波,通過開關管與散熱器間的分布電容傳入內部電路或通過散熱器及變壓器向空間輻射。用于整流及續流的開關二極管,也是產生高頻騷擾的一個重要原因。因整流及續流二極管工作在高頻開關狀態,二極管的引線寄生電感、結電容的存在以及反向恢復電流的影響,使之工作在很高的電壓及電流變化率下,且產生高頻震蕩。整流及續流二極管一般離電源輸出線較近,其產生的高頻騷擾最容易通過直流輸出線傳出。開關電源為了提高功率因數,均采用了有源功率因數校正電路。同時,為了提高電路的效率及可靠性,減少功率器件的電應力,大量采用了軟開關技術。其中零電壓、零電流或零電壓/零電流開關技術應用最為廣泛。該技術極大的降低了開關器件所產生的電磁騷擾。但是,軟開關無損吸收電路多數利用L、C進行能量轉移,利用二極管的單向導電性能實現能量的單向轉換,因此,該諧振電路中的二極管成為電磁騷擾的一大騷擾源。
開關電源一般利用儲能電感及電容器組成L、C濾波電路,實現對差模及共模騷擾信號的濾波。由于電感線圈的分布電容,導致了電感線圈的自諧振頻率降低,從而使大量的高頻騷擾信號穿過電感線圈,沿交流電源線或直流輸出線向外傳播。濾波電容器隨著騷擾信號頻率的上升,引線電感的作用導致電容量及濾波效果不斷的下降,甚至導致電容器參數改變,也是產生電磁騷擾的一個原因。4 電磁兼容性的解決方法
從電磁兼容的三要素講,要解決開關電源的電磁兼容性問題,可從三個方面入手:第一,減小騷擾源產生的騷擾信號;第二,切斷騷擾信號的傳播途徑;第三,增強受騷擾體的抗騷擾能力。在解決開關電源內部的兼容性時,可以綜合利用上述三個方法,以成本效益比及實施的難易性為前提。因而,開關電源產生的對外騷擾,如電源線諧波電流、電源線傳導騷擾、電磁場輻射騷擾等只能用減小騷擾源的方法來解決。一方面,可以增強輸入/輸出濾波電路的設計,改善APFC電路的性能,減小開關管及整流、續流二極管的電壓、電流變化率,采用各種軟開關電路拓撲及控制方式等;另一方面,加強機殼的屏蔽效果,改善機殼的縫隙泄漏,并進行良好的接地處理。而對外部的抗騷擾能力(如浪涌、雷擊)應優化交流電輸入及直流輸出端口的防雷能力。通常,對1.2/50?s開路電壓及8/20?s短路電流的組合雷擊波形,因能量較小,通常采用氧化鋅壓敏電阻與氣體方電管等的組合方法來解決。對于靜電放電,通常在通信端口及控制端口的小信號電路中,采用TVS管及相應的接地保護、加大小信號電路與機殼等的電距離來解決或選用具有抗靜電騷擾的器件??焖偎沧冃盘柡泻軐挼念l譜,很容易以共模的方式傳入控制電路內,采用與防靜電相同的方法并減小共模電感的分布電容、加強輸入電路的共模信號濾波(加共模電容或插入損耗型的鐵氧體磁環等)來提高系統的抗擾性能。
減小開關電源的內部騷擾,實現其自身的電磁兼容性,提高開關電源的穩定性及可靠性,應從以下幾個方面入手:①注意數字電路與模塊電路PCB布線的正確分區;②數字電路與模擬電路電源的去耦;③數字電路與模擬電路單點接地、大電流電路與小電流特別是電流電壓取樣電路的單點接地以減小共阻騷擾,減小地環地影響,布線時注意相鄰線間的間距及信號性質,避免產生串擾,減小輸出整流回路及續流二極管回路與支流濾波電路所包圍的面積,減小變壓器的漏電、濾波電感的分布電容,運用諧振頻率高的濾波電容器等。5 濾波器結構
濾波是一種抑制傳導干擾的方法。例如,在電源輸入端接上濾波器,可以抑制來自電網的噪聲對電源本身的侵害,也可以抑制由開關電源產生并向電網反饋的干擾。電源濾波器作為抑制電源線傳導干擾的重要單元,在設備或系統的電磁兼容設計中具有極其重要的作用。它不僅可以抑制傳輸線上的傳導干擾,同時對傳輸線上的輻射發射也具有顯著的抑制效果。在濾波電路中,選用穿心電容、三端電容、鐵氧體磁環,能夠改善電路的濾波特性。進行適當的設計或選擇合適的濾波器,并正確的安裝濾波器是抗干擾技術的重要組成部分。在交流電輸入端加裝的電源濾波器電路如圖1所示。圖中Ld、Cd用于抑制差模噪聲,一般取Ld為100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪聲,可根據實際情況加以調整。所有電源濾波器都必須接地(廠家特別說明允許不接地的除外),因為濾波器的共模旁路電容必須在接地時才起作用。一般的接地方法是除了將濾波器與金屬外殼相接之外,還要用較粗的導線將濾波器外殼與設備的接地點相連。接地阻抗越低,濾波效果越好。濾波器盡量安裝在靠近電源入口處。濾波器的輸入及輸出端要盡量遠離,避免干擾信號從輸入端直接耦合到輸出端。
如在電源輸出端加輸出濾波器、加裝高頻電容、加大輸出濾波電感的電感量及濾波電容的容量,則可以抑制差模噪聲。如果把多個電容并聯,則效果會更好。6 EMI濾波器選用與安裝
開關電源EMI濾波器中的4只電容器用了兩種不同的下標“x”和“y”,不僅說明了它們在濾波網絡中的作用,還表明了它們在濾波網絡中的安全等級。無論是選用還是設計EMI濾波器,都要認真的考慮Cx和Cy的安全等級。在實際應用中,Cx電容接在單相電源線的L和N之間,它上面除加有電源額定電壓外,還會疊加L和N之間存在的EMI信號峰值電壓。因此,要根據EMI濾波器的應用場合和可能存在的EMI信號峰值,正確選用適合安全等級的Cx電容器。Cy電容器是接在電源供電線L、N與金屬外殼(E)之間的,對于220V、50Hz電源,它除符合250V峰值電壓的耐壓要求外,還要求這種電容器在電氣和機械性能方面具有足夠的安全裕量,以避免可能出現的擊穿短路現象。7 結語
在開關電源設計中,為了少走彎路和節省時間,應充分考慮并滿足抗干擾性的要求,避免在設計完成后去進行抗干擾的補救措施。
第四篇:開關電源電磁干擾抑制技術
開關電源電磁干擾抑制技術
0 引言
隨著現代電子技術和功率器件的發展,開關電源以其體積小,重量輕,高性能,高可靠性等特點被廣泛應用于計算機及外圍設備通信、自動控制、家用電器等領域,為人們的生產生活和社會的建設提供了很大幫助。但是,隨著現代電子技術的快速發展,電子電氣設備的廣泛應用,處于同一工作環境的各種電子、電氣設備的距離越來越近,電子電路工作的外部環境進一步惡化。由于開關電源工作在高頻開關狀態,內部會產生很高的電流、電壓變化率,導致開關電源產生較強的電磁干擾。電磁干擾信號不僅對電網造成污染,還直接影響到其他用電設備甚至電源本身的正常工作,而且作為輻射干擾闖入空間,造成電磁污染,制約著人們的生產和生活。國內在20世紀80一90年代,為了加強對當前國內電磁污染的治理,制定了一些與CISPR標準、IEC801等國際標準相對應的標準。自從2003年8月1日中國強制實施3C認證(china compulsory certification)工作以來,掀起了“電磁兼容熱”,近距離的電磁干擾研究與控制愈來愈引起電子研究人員們的關注,當前已成為當前研究領域的一個新熱點。本文將針對開關電源電磁干擾的產生機理系統地論述相關的抑制技術。
l 開關電源電磁干擾的抑制 形成電磁干擾的三要素是干擾源、傳播途徑和受擾設備。因而,抑制電磁干擾應從這三方面人手。抑制干擾源、消除干擾源和受擾設備之間的耦合和輻射、提高受擾設備的抗擾能力,從而改善開關電源的電磁兼容性能的目的。1.1 采用濾波器抑制電磁干擾 濾波是抑制電磁干擾的重要方法,它能有效地抑制電網中的電磁干擾進入設備,還可以抑制設備內的電磁干擾進入電網。在開關電源輸入和輸出電路中安裝開關電源濾波器,不但可以解決傳導干擾問題,同時也是解決輻射干擾的重要武器。濾波抑制技術分為無源濾波和有源濾波2種方式。
1.1.1 無源濾波技術 無源濾波電路簡單,成本低廉,工作性能可靠,是抑制電磁干擾的有效方式。無源濾波器由電感、電容、電阻元件組成,其直接作用是解決傳導發射。開關電源中應用的無源濾波器的原理結構圖如圖1所示。
由于原電源電路中濾波電容容量大,整流電路中會產生脈沖尖峰電流,這個電流由非常多的高次諧波電流組成,對電網產生干擾;另外電路中開關管的導通或截止、變壓器的初級線圈都會產生脈動電流。由于電流變化率很高,對周圍電路會產生出不同頻率的感應電流,其中包括差模和共模干擾信號,這些干擾信號可以通過2根電源線傳導到電網其他線路和干擾其他的電子設備。圖中差模濾波部分可以減少開關電源內部的差模干擾信號,又能大大衰減設備本身工作時產生的電磁干擾信號傳向電網。又根據電磁感應定律,得E=Ldi/dt,其中:E為L兩端的電壓降;L為電感量;di/dt為電流變化率。顯然要求電流變化率越小,則要求電感量就越大。脈沖電流回路通過電磁感應其他電路與大地或機殼組成的回路產生的干擾信號為共模信號;開關電源電路中開關管的集電極與其他電路之間產生很強的電場,電路會產生位移電流,而這個位移電流也屬于共模干擾信號。圖1中共模濾波器就是用來抑制共模干擾,使之受到衰減。1.1.2 有源濾波技術
有源濾波技術是抑制共模干擾的一種有效方法。該方法從噪聲源出發而采取的措施(如圖2所示),其基本思想是設法從主回路中取出一個與電磁干擾信號大小相等、相位相反的補償信號去平衡原來的干擾信號,以達到降低干擾水平的目的。如圖2所示,利用晶體管的電流放大作用,通過把發射極的電流折合到基極,在基極回路來濾波。R1,C2組成的濾波器使基極紋波很小,這樣射極的紋波也很小。由于C2的容量小于C3,減小了電容的體積。這種方式僅適合低壓小功率電源的情況。另外,在設計和選用濾波器時應注意頻率特性、耐壓性能、額定電流、阻抗特性、屏蔽和可靠性。濾波器的安裝位置要恰當,安裝方法要正確,才能對干擾起到預期的濾波作用。1.2 屏蔽技術和接地技術 采用屏蔽技術可以有效地抑制開關電源的電磁輻射干擾。屏蔽一般分為2種:一種是靜電屏蔽,主要用于防止靜電場和恒定磁場的影響;另一種是電磁屏蔽,主要用于防止交變電場、磁場以及交變電磁場的影響。屏蔽技術分為對發出電磁波部位的屏蔽和受電磁波影響的元器件的屏蔽。在開關電源中,可發出電磁波的元器件是指變壓器、電感器、功率器件等,通常在其周圍采用銅板或鐵板作為屏蔽,以使電磁波產生衰減。此外,為了抑制開關電源產生的輻射向外部發散,為了減少電磁干擾對其他電子設備的影響,應采取整體屏蔽。可完全按照對磁場屏蔽的方法來加工屏蔽罩,然后將整個屏蔽罩與系統的機殼和地連接為一體,就能對電磁場進行有效的屏蔽。然而在使用整體屏蔽時應充分考慮屏蔽材料的接縫、電線的輸入/輸出端子和電線的引出口等處的電磁泄露,且不易散熱,結構成本大幅度增加等因素。為使電磁屏蔽能同時發揮靜電屏蔽的作用,加強屏蔽效果,同時保障人身和設備的安全,應將系統與大地相連,即為接地技術。接地是指在系統的某個選定點與某個接地面之間建立導電的通路設計。這一過程是至關重要的,將接地和屏蔽正確結合起來可以更好地解決電磁干擾問題,又可提高電子產品的抗干擾能力。1.3 PCB設計技術 為更好地抑制開關電源的電磁干擾,其印制電路板(PCB)的抗干擾技術尤為重要。為減少PCB的電磁輻射和PCB上電路間的串擾,要非常注意PCB布局、布線和接地。如減少輻射干擾是減小通路面積,減小干擾源和敏感電路的環路面積,采用靜電屏蔽。而抑制電場與磁場的耦合,應盡量增大線間距離。在開關電源中接地是抑制干擾的重要方法。接地有安全接地、工作接地和屏蔽接地等3種基本類型。地線設計應注意以下幾點:交流電源地與直流電源地分開;功率地與弱電地分開;模擬電路與數字電路的電源地分開;盡量加粗地線。1.4 擴頻調制技術 對于一個周期信號尤其是方波來說,其能量主要分布在基頻信號和諧波分量中,諧波能量隨頻率的增加呈級數降低。由于n次諧波的帶寬是基頻帶寬的n倍,通過擴頻技術將諧波能量分布在一個更寬的頻率范圍上。由于基頻和各次諧波能量減少,其發射強度也應該相應降低。要在開關電源中采用擴頻時鐘信號,需要對該電源開關脈沖控制電路輸出的脈沖信號進行調制,形成擴頻時鐘(如圖3所示)。與傳統的方法相比,采用擴頻技術優化開關電源EMI既高效又可靠,無需增加體積龐大的濾波器件和繁瑣的屏蔽處理,也不會對電源的效率帶來任何負面影響。
1.5 一次整流電路中加功率因數校正(PFC)網絡 對于直流穩壓電源,電網電壓通過變壓器降壓后直接通過整流電路進行整流,所以整流過程中產生的諧波分量作為干擾直接影響交流電網的波形,使波形畸變,功率因數偏低。為了解決輸入電流波形畸變和降低電流諧波含量,將功率因數校正(PFC)技術應用于開關電源中是非常必要的。PFC技術使得電流波形跟隨電壓波形,將電流波形校正成近似的正弦波,從而降低了電流諧波含量,改善了橋式整流電容濾波電路的輸入特性,提高了開關電源的功率因數。其中無源功率因數校正電路是利用電感和電容等元件組成濾波器,將輸入電流波形進行移相和整形過程來實現提高功率因數的。而有源功率因數校正電路是依據控制電路強迫輸入交流電流波形跟蹤輸入交流電壓波形的原理來實現交流輸入電流正弦化,并與交流輸入電壓同步。兩種方法均使功率因數提高,后者效果更加明顯,但電路復雜。結語 本文的設計方法正確,仿真結果正常,克服了傳統方案中所存在的一些問題,使電磁干擾的抑制技術得到進一步優化。從開關電源電磁干擾產生的機理來看,有多種方式可抑制電磁干擾,除本文中分析的幾種主要方法外,還可以采用光電隔離器、LSA系列浪涌吸收器、軟開關技術等。抑制開關電源的電磁干擾,目的是使其能在各領域得到有效應用的同時,盡量減少電磁污染,實現了對電磁污染問題的有效治理。而在實際設計時,應全面考慮開關電源的各種電磁干擾,選用多種抑制電磁干擾的方法加以綜合利用,使電磁干擾降到最低,從而提高電子產品的質量與可靠性。
第五篇:一級學科綜合實驗報告(開關電源技術)
成績
一級學科綜合實驗報告
學 號: 研究生姓名: 指導教師: 專業班級: 院(部):
年 月 日