第一篇:新人教版八年級數(shù)學(xué)下冊《二次根式》教學(xué)反思
在二次根式這一章的學(xué)習(xí)中,重點(diǎn)是熟練掌握二次根式的運(yùn)算,教學(xué)的關(guān)鍵是理解二次根式的性質(zhì),在本章教學(xué)中,存在以下問題:
1、課前沒很好確定學(xué)生的基礎(chǔ)知識情況
高估學(xué)生對學(xué)過知識的掌握,認(rèn)為平方根這一章的知識掌握不錯,所以在二次根式結(jié)果是非負(fù)數(shù)以及二次根式的被開方數(shù)也是非負(fù)數(shù)。我把這兩個結(jié)論草草給出,這樣導(dǎo)致基礎(chǔ)差的學(xué)生根本不知道這兩個結(jié)論的來源。
2、課堂沒完全還給學(xué)生
預(yù)習(xí)時間不充分,大部分學(xué)生是回顧了本章的知識點(diǎn),但還沒來得及思考,易錯點(diǎn)沒有來得及整理展示討論,老師就開始講課,總怕展示時間過多以至于本節(jié)任務(wù)完不成。課堂活動時間也不充分,并且學(xué)生在思考問題時給予提示過多,以至于學(xué)生順著老師的思路走,沒有了自己的思考體系。因為時間不足,所以老師只好代替學(xué)生走了一下過場,訂正答案,還有一部分學(xué)生還沒有做完。這樣就不能真正檢驗學(xué)生掌握情況,不能及時反饋,及時采取措施進(jìn)行補(bǔ)救。
3、課后練習(xí)不能真正落實
學(xué)生不能很熟練地化簡二次根式,以致于二次根式的加減乘除不能順利進(jìn)行。例如不會熟練化成最簡二次根式,導(dǎo)致學(xué)生對二次根式的加減感到很困難。在這里,應(yīng)要求學(xué)生對100以內(nèi)的二次根式化簡熟練掌握,為二次根式的加減打下扎實的基礎(chǔ)。對二次根式的加減,大部分學(xué)生理解同類二次根式,并能夠合并同類二次根式,出現(xiàn)的問題在于二次根式的化簡,學(xué)困生在于整式的加減,整式的乘除,分式的加減和乘除的運(yùn)算的公式和運(yùn)算法則不清,即使把本節(jié)知識聽懂了,由于過去的知識不牢固,造成運(yùn)算結(jié)果不正確。把過去學(xué)過的知識復(fù)習(xí),使學(xué)生能夠獨(dú)立完成二次根式的運(yùn)算。
第二篇:八年級數(shù)學(xué)下冊《二次根式》教學(xué)反思
本節(jié)課的重點(diǎn)是被開方數(shù)相同的二次根式與合并被開方數(shù)相同的二次根式。
這節(jié)是最簡二次根式與合并同類項的知識,所以,最好在課前復(fù)習(xí)一下最簡二次根式的定義,同類項的定義,合并同類項的法則,為這節(jié)課的學(xué)習(xí)作好鋪墊。
同類二次根式:幾個二次根式化成最簡二次根式后,如果它們的被開方數(shù)相同,那么這幾個二次根式叫做同類二次根式。判斷幾個二次根式是否為同類二次根式,關(guān)鍵是先把二次根式準(zhǔn)確地化簡成最簡二次根式,再觀察它們的被開方數(shù)是否相同。
其次,同類二次根式必須同時具備兩個條件:①根指數(shù)是2次;②被開方數(shù)相同,與根式的符號和根號外面的因式?jīng)]有關(guān)系。
如何判斷幾個二次根式是不是同類二次根式,這些題可從課后練習(xí)中選取,但要注意書寫規(guī)范。示范完成后做課后隨堂練習(xí)與習(xí)題中的判斷是不是同類二次根式的題目,做到及時鞏固。
識別同類二次根式是二次根式的加減法的前提,所以,后面的同類二次根式的加減法就順理成章了,也是先選一個題目進(jìn)行板演示范,步驟一定要完整規(guī)范,然后就是學(xué)生進(jìn)行模仿性練習(xí),這樣處理起來,學(xué)生沒有困難,整節(jié)課節(jié)奏緊湊,效果顯著。
學(xué)生在練習(xí)過程中存在的問題:①合并同類二次根式時,二次根式前面的字母因式不加括號,如,應(yīng)該是;②二次根式的系數(shù)是帶分?jǐn)?shù)時,沒寫成假分?jǐn)?shù)的形式,如,應(yīng)該是。這些錯誤要注意引導(dǎo)糾正。
第三篇:八年級數(shù)學(xué)《二次根式》
杰瑞學(xué)院《二次根式》專題訓(xùn)練
一、細(xì)心填一填(每小題3分,共30分)、1、當(dāng)m時,式子3?m有意義.2、若a<0,則a23、計算:3132?3122=.4、計算:3?1113??,?3335、長方形的一邊的長是2,面積為6,則另一邊的長為.6、若(a?2)2?2?a,則a的取值范圍是_______.7、a?2??3?0,則(a-b)2?________.8、計算:(3?2)2005(3?2)2006?
9、當(dāng)?x有最小值.10、觀察下列式子:?111111?2,2??3,3??4?,請你將猜想到的規(guī)律用含自然數(shù)33445
5n(n≥1)的代數(shù)式表示出來的是.二、精心選一選(每小題3分,共30分)
11、下列代數(shù)式中,x能取一切實數(shù)的是()A
1xB.x?1CxDx2?
412、化簡?32的結(jié)果是()
A.3B.-3C.±3D.913、若1?x?3,則?x?(x?3)的值是()
A.-2B.4C.2X-4D.214、若2aa成立,則()?bB.a?0,b?0;C.a?0bD.a?0 bA.a?0,b?0;
15、若x?x?6?x(x?6),則()
A.x≥6B.x≥0C.0≤X≤6D.x為一切實數(shù).16、若x,y都是實數(shù),且2x?1??2x?y?0,則xy的值為()
A、0 B、0.5 C、2D、不能確定
17、下列四個等式中不成立的是()
A.2?1?2(3?1)
(3?1)(?1)?2(?1)??12B.2(2?3)?2?6
C.(1?2)2?3?22D.(?2)2?3?218、計算:48?23?75的結(jié)果是()
AB.1C.5D.6?7519、已知x、y為實數(shù),y?x?2?2?x?4,則yx的值等于()
A.8B.4C.6D.1620、若正三角形的邊長為2cm,則這個正三角形的面積是()
AB.C.5D.53三、認(rèn)真做一做(共40分)
21、化簡或計算(每題5分,共20分)
(1)45?380(2)
2? 7
(3)(3?3)?(4)(2?2)(3?22)822、已知a??2,b?2?
3(6分),求a2b?ab2的值。
23、解方程:x?2?23x(6分)
24、如圖,某水壩的橫斷面是梯形,壩頂寬CD為8米,壩高為20米,斜坡AD的坡比為1:3,斜坡AD的坡比為1:2,求壩底AB的長(精確到0.1米)(8分)
四、努力試一試(共20分)
1、如圖,數(shù)軸上表示12的對應(yīng)點(diǎn)分別為A、B,點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn)C,則C點(diǎn)表示
2、已知m是的整數(shù)部分,n是的小數(shù)部分,則n2-
3、已知實數(shù)a、b滿足4a?b?11?
4、國慶佳節(jié),李老師喬遷新居。一大早他就趕到家具城購買家具,當(dāng)卡車裝滿家具后高4米、寬2.8米。這輛卡車能否通過如圖所示的住宅社區(qū)大門。
21ab1?(?)的值。b?4a?3?0,求2abab3
第四篇:新人教版八年級數(shù)學(xué)下冊《二次根式》教學(xué)反思2
教學(xué)中強(qiáng)調(diào)了前面學(xué)過的運(yùn)算法則和運(yùn)算律對二次根式同樣適用,反映了數(shù)學(xué)理論的一貫性,使學(xué)生在學(xué)習(xí)中感到所學(xué)并不難。在教學(xué)中,充分利用教材內(nèi)容,結(jié)合實際問題提高學(xué)生的學(xué)習(xí)積極性教學(xué)中不僅要抓整體,更要注意一些重要細(xì)節(jié)。在學(xué)生做題過程中讓學(xué)生用心總結(jié)一些簡單值和特殊值的乘除和化簡的方法。教材中淡化計算過程,這里也透露出教材的一個特點(diǎn):很重視學(xué)生思維上的培養(yǎng),卻忽視了基本計算能力的訓(xùn)練,似乎認(rèn)為每個學(xué)生都能達(dá)到一學(xué)就會的理想境界。基礎(chǔ)好和反應(yīng)快的學(xué)生沒有問題,但并不是都是這樣,教師就要讓學(xué)生了解計算過程每一步的由來。
第五篇:八年級下冊二次根式教學(xué)設(shè)計
教學(xué)目標(biāo):
掌握二次根式的概念;根據(jù)二次根式的概念掌握被開方數(shù)的取值范圍。
教學(xué)重難點(diǎn):
重點(diǎn):二次根式的概念以及二次根式有意義的條件;
難點(diǎn):根據(jù)要求求滿足條件的字母的取值范圍。
教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練
課時安排:一課時
教學(xué)過程:
1、知識回顧
1、算數(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫做a的算數(shù)平方根。
2、正數(shù)的算數(shù)平方根是正數(shù),0的算數(shù)平方根是0,負(fù)數(shù)沒有平方根。
2、板書課題
3、出示學(xué)習(xí)目標(biāo)
4、出示自學(xué)指導(dǎo)
自學(xué)教材2、3頁,完成下列各題:
1、完成第二頁思考題,找出二次根式的概念;
2、明確二次根式的特點(diǎn);
3、式子有意義的條件;
4、完成《基礎(chǔ)訓(xùn)練》課前預(yù)習(xí)。
5、檢測
1、二次根式的概念
2、二次根式的特點(diǎn)
3、式子有意義的條件
4、課前預(yù)習(xí)講解
6、練習(xí)
1、教材3頁練習(xí)題;
2、習(xí)題16.1第1、7題;
3、《基礎(chǔ)訓(xùn)練》課堂練習(xí)
7、小結(jié)
談?wù)勀銓Χ胃降恼J(rèn)識......8、作業(yè)
1、課本19頁第一題
2、《基礎(chǔ)訓(xùn)練》課后練習(xí)
3、思考學(xué)習(xí)拓展。
9、教學(xué)反思
1、因為學(xué)生已學(xué)習(xí)過算數(shù)平方根,所以對本節(jié)課知識能較快掌握;
2、本節(jié)課的關(guān)鍵在于掌握二次根式有意義的條件:被開方數(shù)大于等于0。同時結(jié)合之前所學(xué)知識能解答式子有意義時字母的取值范圍。
3、學(xué)習(xí)之初應(yīng)加強(qiáng)練習(xí),把課堂還給學(xué)生,發(fā)揮學(xué)生主動型。