第一篇:BAF工藝在城市污水處理廠中的應用大全
BAF工藝在城市污水處理廠中的應用-污水處理
摘要:曝氣生物濾池簡稱BAF,它具有運行可靠、出水水質好、占地面積小及運行能耗低的特點,因此,在污水處理中得到廣泛的應用。本文結合了具體的工程實例,就BAF工藝在城市污水處理廠中的應用進行了探討,詳細介紹了BAF的工藝流程以及各處理單元設計參數,并對設計過程中著重考慮的問題以及調試運行情況進行了說明。以期能為BAF工藝更好地應用于城市污水處理廠中提供參考。關鍵詞:BAF工藝;城市污水處理廠;應用
隨著城市化進程的不斷加快和城市規模的不斷加大,城市人口也在不斷增長,并且城市工藝也得到了一定的發展,與之而來的是污水的排放量明顯增加。為了更好地處理城市污水,曝氣生物濾池在此方面得到了廣泛的應用。所謂的曝氣生物濾池,簡稱BAF,是20世紀80年代末90年代初在普通生物濾池的基礎上,借鑒給水濾池工藝而開發的一種污水處理新工藝。這種工藝具有運行可靠、出水水質好、占地面積小及運行能耗低的特點,在目前污水排放量增大的情況下,可以更好地處理城市污水。工程概況
污水處理廠設計總規模為,本期工程建設規模為,總占地面積3hm2。主要建構筑物包括進水泵房、污水處理間以及脫水機房和除臭間。其中,進水泵房1座,本期土建規模,設備安裝規模;污水處理間2座,單座規模,本期建設1座。脫水機房和除臭間1座,本期土建規模,設備安裝規模。設計進出水水質以及工藝流程
2.1 設計進出水水質
工程設計進水中,生活污水量和工業廢水量的比例為3:1,其中工業廢水水質達到CJ343―2010《污水排入城市下水道水質標準》后方可接入污水收集系統。工程出水指標按GB18918―2002《城鎮污水廠污染物排放標準》中一級A標準執行。設計進出水水質詳見表1。
2.2 設計工藝流程
根據工程占地面積小,建設標準高、自動化程度要求高等特點,選用曝氣生物濾池工藝,其主要工藝流程見圖1。主要構筑物設計
3.1 粗格柵進水泵房
粗格柵與進水泵房合建,1座,土建規模。粗格柵共設2組,格柵前后設有閘門備作檢修和切換用。本期工程2組格柵,1用1備,待擴建至規模時,2組格柵同時使用。進水泵房選用5臺潛污泵,本期工程安裝3臺潛污泵,2用1備,其中1臺變頻。遠期增加2臺泵。主要設計參數:總變化系數:Kz=1.5;設計流量:Qmax=;過柵流速:Vmax=0.6m/s;柵條間隙:b=25mm。
3.2 污水處理間
設計污水處理間為旋流沉砂池、水解沉淀池、曝氣生物濾池以及紫外消毒渠的合建體。合建體共2座,其中一期工程1座。合建體采用封閉式,其各部分設計如下。
3.2.1 細格柵旋流沉砂池
細格柵2臺,旋流沉砂池2座,采用成套設備并配套砂水分離器。主要設計參數:總變化系數:Kz=1.5;單槽設計流量:過柵流速:Vmax=0.6m/s;柵條間隙:b=5mm;旋流沉砂池最大設計流量時停留時間:36s。
3.2.2水解沉淀池
水解沉淀池2格。每格設有機械混合區、絮凝反應區以及水解濃縮區。絮凝劑采用PAC,助凝劑采用PAM。有效水深為7.1m。主要設計參數:總變化系數:Kz=1.5;設計流量:Qmax=625m3/h;機械混合時間:2min;絮凝反應時間:12min;分離區表面負荷:
3.3.3曝氣生物濾池
曝氣生物濾池分為2段:DN生物濾池段以及N曝氣生物濾池段。另外,還有反沖洗清水池、反沖洗排水緩沖池以及鼓風機房等配套設施。
(1)DN生物濾池段
DN生物濾池共4格,池內承托濾板下部為配水室,使來水由配水室經承托濾板上的濾頭均勻布置于整個濾池截面;承托濾板上部填裝有輕質球型生物陶粒,作為微生物的載體;上部為清水區。
(2)N曝氣生物濾池段
N曝氣生物濾池共6格,池內承托濾板下部為配水室,使來水由配水室經承托濾板上的濾頭均勻布置于整個濾池截面;承托濾板上部填裝有輕質球型生物陶粒,作為微生物的載體;輕質球型生物陶粒層底部安裝有單孔膜空氣擴散器,以供給微生物氧分。上部為清水區。
(3)回流水池
回流水池1座,主要功能是儲存N曝氣生物濾池段的出水,以回流至DN生物濾池段。設置3臺回流泵,2用1備。
(4)紫外消毒渠
紫外消毒渠1座,1格,設計流量。單元格管道寬0.92m,設紫外模塊組,采用低壓高強紫外燈,模塊帶自動清洗裝置。
(5)清水池
清水池1座,主要功能為儲存反沖洗用水及中水回用用水。設置3臺反沖洗泵,2臺出水回用泵。
(6)反沖洗排水緩沖池
反沖洗排水緩沖池1座,主要功能為儲存反沖洗排水。內設2臺潛污泵,將反沖洗廢水由緩沖池提升至混凝沉淀單元。同時,設置2臺攪拌器以防止沉淀。
(7)鼓風機房
為降低土建費用,將鼓風機全部置于曝氣生物濾池的管廊內。主要設計參數:氧利用率EA=30%;空氣總量;濾池反沖洗氣量為。
3.3 脫水機房
脫水機房1座,土建規模,本期設備按規模安裝。污泥由污泥螺桿泵提升至離心脫水機,脫水干污泥由無軸螺旋輸送機直接裝車外運。建有污泥池2座,水解沉淀池產生的剩余污泥經污泥泵提升入污泥池。主要設計參數為污泥脫水機工作制為16h/d;污泥總量為7.10t/d(干污泥),其中近期3.35t/d;進泥含水率為98%;脫水后含水率為80%。
3.4 生物除臭
生物除臭間與脫水機房合建。本工程設計對粗格柵進水泵房、細格柵沉砂池、水解沉淀池、超細格柵、曝氣生物濾池缺氧段產生的臭氣進行收集處理。其中,對進水泵房地面以下廢氣收集,其余設備和構筑物加蓋收集。換氣次數按每小時3次計。來自不同廢氣源的廢氣經由通風管道,通過離心風機的抽送,進入一體化生物濾池。機械抽風,自然補風。在一體化生物濾池中,臭氣通過濕潤、多孔和充滿活性微生物的濾層,利用微生物細胞對惡臭物質的吸附、吸收和降解功能,將惡臭物質吸附后分解成CO2,H2O,H2SO4,HNO3等簡單無機物。關于部分設計的補充說明
4.1 關于預處理
運用曝氣生物濾池處理污水一般需要對原水進行預處理,其目的是為了使濾池能以較長的周期運行,減少反沖洗次數,降低能耗,否則原水中的大量雜質和SS都將進入曝氣生物濾池,這將會堵塞曝氣、布水系統,給系統的運行帶來嚴重的后果。本工程設計采用沉砂池+水解沉淀池+超細格柵作為曝氣生物濾池的預處理。
4.2 關于脫氮
本工程設計采用前置反硝化的方式進行脫氮,以滿足系統反硝化對碳源的要求。廢水首先經過濾池的缺氧段(DN段),然后通過好氧段(N段),好氧段出水回流至反硝化濾池。
由于在設計時本工程尚無實際進水的水質數據,進水水質存在一定的變數,為防止今后運行過程中反硝化碳源不足,在工程設計中,預留外加碳源投加系統。
4.3 關于除磷
曝氣生物濾池存在一定的生物除磷作用,但其除磷效果有限,去除率約在40%左右,完全依靠生物除磷很難達到排放標準,還必須輔以化學除磷才能解決磷的最終達標問題。
化學除磷藥劑投加點有2種選擇:①在水解沉淀池內以磷為控制指標決定加藥量;②在曝氣生物濾池中投加,實現同步絮凝過濾。為節省投藥量,水解沉淀池的投藥量以滿足其出水SS小于60mg/L為控制要求,磷的達標可在進入曝氣生物濾池前補充投加控制。
4.4 關于出水SS的達標
一般曝氣生物濾池出水ρ(SS)較難穩定達到10mg/L以下。本設計氮曝氣生物濾池段采用2種粒徑濾料,下層3m高濾料粒徑采用3~~5mm,上層1m高濾料粒徑采用2~3mm,上細下粗,使得濾料層的厚度與濾料粒徑之比(L/d)大于1000,滿足給水濾池規范的要求。由此可使出水ρ(SS)小于10mg/L,從而節省深度處理設施。調試運行
工程完工交付后,于2012年5月4日開始進行調試運行。采用純培養掛膜方式,進行生物掛膜培養、馴化。首先對濾料進行沖洗及調試設備的運行及參數,后引進污水原水進行生物掛膜。此過程持續近2個月時間。完成生物掛膜后,逐步增大進水量,目前已接近調試工程尾聲,進水負荷已增至設計負荷的70%。
在調試運行期間,進水ρ(COD)維持在200mg/L左右,出水的ρ(COD)穩定維持在40mg/L以下,去除率平均為84%;進水的ρ(NH3-N)維持在30mg/L左右,出水的ρ(NH3-N)為1~3mg/L,去除率平均為96.2%;進水ρ(SS)為100mg/L左右,出水ρ(SS)低于10mg/L,去除率平均85%;進水ρ(TP)在1.4~4.2mg/L,出水的ρ(TP)值低于0.5mg/L,去除率平均88.3%。
由此,污水處理廠調試運行自2012年5月4日開始至2012年8月30日基本結束,除生物濾池前期掛膜期間出水水質有所波動外,中后期出水水質指標基本穩定達到一級A標準,滿足設計要求。結語
綜上所述,BAF工藝具有運行可靠、出水水質好、占地面積小及運行能耗低的特點,在如今城市污水嚴重污染的情況下,這種工藝得到了廣泛的應用。本文結合了具體的工程實例,詳細介紹了BAF的工藝流程以及各處理單元設計參數,并對設計過程中著重考慮的問題以及調試運行情況進行了說明。相信采用BAF工藝可以更好地應對城市污水的治理。
參考文獻:
[1]龍熙艷.城鎮污水處理廠工程設計實踐[J].城市建設理論研究.2013(07).[2]羅茜、李遠軍、張銳.BAF工藝在污水處理廠的運用[J].西昌學院學報(自然科學版).2006(04)
第二篇:城市污水處理廠工藝選擇
城市污水處理廠工藝選擇,給各位剛入行的朋友,我自己也在學
摘 要: 隨著我國的社會和經濟的高速發展,環境問題日益突出,尤其是城市水環境的惡化,加劇了水資源的短缺,影響著人民群眾的身心健 康,已經成為城市可持續發展的嚴重制約因素。近年來,國家和地方政府非常重視污水處理事業,以前所未有的速度推進城市污水處理工程的建設,有數百座污水處理廠正在工程設計和建設中,預計到2010年,我國要新建城市污水處理廠一千余座,總投資將達1800億元。在這一進程中,城市污水處理工藝的優化原則,將是工程界面臨的首要問題。筆者根據近年來的實踐經驗,并結合課程講授的知識,試對目前我國城市污水處理的主導工藝進行簡要的分析和評述,也是自己工作和學習的一點心得體會。
關鍵詞: 污水處理 主導工藝 分析與評述
1、城市污水處理廠工藝選擇的原則
城市污水處理廠的工藝選擇一般應遵循四條原則:
1)技術合理。
應正確處理技術的先進性和成熟性的辨證關系。一方面,應當重視工藝所具備的技術指標的先進性,同時必須充分考慮適合中國的國情和工程的性質。城市污水處理工程不同于一般點源治理項目,它作為城市基礎設施工程,具有規模大、投資高的特點,且是百年大計,必須確保百分之百的成功。工藝的選擇更注重成熟性和可靠性,因此,我們強調技術的合理,而不簡單提倡技術先進。必須把技術的風險降到最小程度。
2)經濟節能。
節省工程投資是城市污水處理廠建設的重要前提。合理確定處理標準,選擇簡捷緊湊的處理工藝,盡可能地減少占地,力求降低地基處理和土建造價。同時,必須充分考慮節省電耗和藥耗,把運行費用減至最低。對于我國現有的經濟承受能力來說,這
一點尤為重要。
3)易于管理。
城市污水處理是我國的新興行業,專業人才相對缺乏。在工藝選擇過程中,必須充分考慮到我國現有的運行管理水平,盡可能做到設備簡單,維護方便,適當采用可靠實用的自動化技術。應特別注重工藝本身對水質變化的適應性及處理出水的穩定性。
事實上,任何一種工藝總有是有利有敝,關鍵在于適用性如何。在工程實踐中,應該具體情況具體分析,因地制宜,綜合比較,取長補短,作出較為優化的選擇。
2、城市污水處理廠主導工藝述評
1)AB法工藝
AB法工藝由德國BOHUKE教授首先開發。該工藝將曝氣池分為高低負荷兩段,各有獨立的沉淀和污泥回流系統。高負荷段(A段)停留時間約20--40分鐘,以生物絮凝吸附作用為主,同時發生不完全氧化反應,生物主要為短世代的細菌群落,去除BOD達50%以上。B段與常規活性污泥法相似,負荷較低,泥齡較長。
AB法A段效率很高,并有較強的緩沖能力。B段起到出水把關作用,處理穩定性較好。對于高濃度的污水處理,AB法具有很好適 用性的,并有較高的節能效益。尤其在采用污泥消化和沼氣利用工藝時,優勢最為明顯。
但是,AB法污泥產量較達,A段污泥有機物含量極高,污泥后續穩定化處理是必須的,將增加一定的投資和費用。另外,由于A 段去除了較多的BOD,可能造成炭源不足,難以實現脫氮工藝。對于污水濃度較低的場合,B段運行較為困難,也難以發揮
優勢。
目前有僅采用A段的做法,效果要好于一級處理,作為一種過渡型工藝,在性能價格比上有較好的優勢。一般適用于排江、排海場合。
2)SBR工藝
SBR工藝早在20世紀初已有應用,由于人工管理的困難和煩瑣未于推廣應用。此法集進水、曝氣、沉淀在一個池子中完成。一般由多個池子構成一組,各池工作狀態輪流變換運行,單池由撇水器間歇出水,故又稱為序批式活性污泥法。
該工藝將傳統的曝氣池、沉淀池由空間上的分布改為時間上的分布,形成一體化的集約構筑物,并利于實現緊湊的模塊布置,最大的優點是節省占地。另外,可以減少污泥回流量,有節能效果。典型的SBR工藝沉淀時停止進水,靜止沉淀可以獲得較高的沉淀效率和較好的水質。
由SBR發展演變的又有CASS和CAST等工藝,在除磷脫氮及自動控制等方面有
新的特點。
但是,SBR工藝對自動化控制要求很高,并需要大量的電控閥門和機械撇水器,稍有故障將不能運行,一般必須引進全套進口設備。由于一池有多種功能,相關設備不得已而閑置,曝氣頭的數量和鼓風機的能力必須稍大。池子總體容積也不減小。另外,由于撇水深度通常有1.2—2米,出水的水位必須按最低撇水水位設計,故總的水力高程較一般工藝要高1米左右,能耗將有所提高。
SBR工藝一般適用于中小規模、土地緊張、具有引進設備條件的場合。
城市污水處理廠工藝選擇,給各位剛入行的朋友,我自己也在學
摘 要: 隨著我國的社會和經濟的高速發展,環境問題日益突出,尤其是城市水環境的惡化,加劇了水資源的短缺,影響著人民群眾的身心健 康,已經成為城市可持續發展的嚴重制約因素。近年來,國家和地方政府非常重視污水處理事業,以前所
TOP 未有的速度推進城市污水處理工程的建設,有數百座污水處理廠正在工程設計和建設中,預計到2010年,我國要新建城市污水處理廠一千余座,總投資將達1800億元。在這一進程中,城市污水處理工藝的優化原則,將是工程界面臨的首要問題。筆者根據近年來的實踐經驗,并結合課程講授的知識,試對目前我國城市污水處理的主導工藝進行簡要的分析和評述,也是自己工作和學習的一點心得體會。
關鍵詞: 污水處理 主導工藝 分析與評述
1、城市污水處理廠工藝選擇的原則
城市污水處理廠的工藝選擇一般應遵循四條原則:
1)技術合理。
應正確處理技術的先進性和成熟性的辨證關系。一方面,應當重視工藝所具備的技術指標的先進性,同時必須充分考慮適合中國的國情和工程的性質。城市污水處理工程不同于一般點源治理項目,它作為城市基礎設施工程,具有規模大、投資高的特點,且是百年大計,必須確保百分之百的成功。工藝的選擇更注重成熟性和可靠性,因此,我們強調技術的合理,而不簡單提倡技術先進。必須把技術的風險降到最小程度。
2)經濟節能。
節省工程投資是城市污水處理廠建設的重要前提。合理確定處理標準,選擇簡捷緊湊的處理工藝,盡可能地減少占地,力求降低地基處理和土建造價。同時,必須充分考慮節省電耗和藥耗,把運行費用減至最低。對于我國現有的經濟承受能
力來說,這一點尤為重要。
3)易于管理。
城市污水處理是我國的新興行業,專業人才相對缺乏。在工藝選擇過程中,必須充分考慮到我國現有的運行管理水平,盡可能做到設備簡單,維護方便,適當采用可靠實用的自動化技術。應特別注重工藝本身對水質變化的適應性及處理出水的穩定性。
事實上,任何一種工藝總有是有利有敝,關鍵在于適用性如何。在工程實踐中,應該具體情況具體分析,因地制宜,綜合比較,取長補短,作出較為優化的選擇。
2、城市污水處理廠主導工藝述評
1)AB法工藝
AB法工藝由德國BOHUKE教授首先開發。該工藝將曝氣池分為高低負荷兩段,各有獨立的沉淀和污泥回流系統。高負荷段(A段)停留時間約20--40分鐘,以生物絮凝吸附作用為主,同時發生不完全氧化反應,生物主要為短世代的細菌群落,去除BOD達50%以上。B段與常規活性污泥法相似,負荷較低,泥齡較長。
AB法A段效率很高,并有較強的緩沖能力。B段起到出水把關作用,處理穩定性較好。對于高濃度的污水處理,AB法具有很好適 用性的,并有較高的節能效益。尤其在采用污泥消化和沼氣利用工藝時,優勢最為明顯。
但是,AB法污泥產量較達,A段污泥有機物含量極高,污泥后續穩定化處理是必須的,將增加一定的投資和費用。另外,由于A 段去除了較多的BOD,可能造成炭源不足,難以實現脫氮工藝。對于污水濃度較低的場合,B段運行較為困難,也難以發揮優勢。
目前有僅采用A段的做法,效果要好于一級處理,作為一種過渡型工藝,在性能價格比上有較好的優勢。一般適用于排江、排海場合。
2)SBR工藝
SBR工藝早在20世紀初已有應用,由于人工管理的困難和煩瑣未于推廣應用。此法集進水、曝氣、沉淀在一個池子中完成。一般由多個池子構成一組,各池工作狀態輪流變換運行,單池由撇水器間歇出水,故又稱為序批式活性污泥法。
該工藝將傳統的曝氣池、沉淀池由空間上的分布改為時間上的分布,形成一體化的集約構筑物,并利于實現緊湊的模塊布置,最大的優點是節省占地。另外,可以減少污泥回流量,有節能效果。典型的SBR工藝沉淀時停止進水,靜止沉淀可以獲得較高的沉淀效率和較好的水質。
由SBR發展演變的又有CASS和CAST等工藝,在除磷脫氮及自動控制等方
面有新的特點。
但是,SBR工藝對自動化控制要求很高,并需要大量的電控閥門和機械撇水器,稍有故障將不能運行,一般必須引進全套進口設備。由于一池有多種功能,相關設備不得已而閑置,曝氣頭的數量和鼓風機的能力必須稍大。池子總體容積也不減小。另外,由于撇水深度通常有1.2—2米,出水的水位必須按最低撇水水位設計,故總的水力高程較一般工藝要高1米左右,能耗將有所提高。
SBR工藝一般適用于中小規模、土地緊張、具有引進設備條件的場合。
TOP
第三篇:中、小型城市污水處理廠的優選工藝
中、小型城市污水處理廠的優選工藝
城市污水處理廠的規模劃分
根據我國的實際情況,大體上可分為大型、中型和小型污水處理廠。
規模>10×104 m3/d的是大型污水廠,一般建在大城市,基建投資以億元計,年運營費用以千萬元計,目前全國已建成十多座,最大的是北京高碑店污水處理廠,規模達100×104 m3/d。
中型污水處理廠的規模為(1~10)×104 m3/d,一般建于中、小城市和大城市的郊縣,基建投資幾千萬至上億元,年運營費用幾百萬到上千萬元,目前全國已建成幾十座,正建的有上百座,今后一段時間還將大量增加。
規模<1×104 m3/d的是小型污水處理廠,一般建于小城鎮,基建投資幾百萬到上千萬,年運營費用幾十萬到上百萬;由于經濟條件的限制,目前這類污水廠剛剛在沿海地區經濟發達的小城鎮出現,今后會越來越多,最終小型污水廠的數量將超過大中型污水廠。城市污水處理廠的主要工藝
城市污水的主要污染物是有機物,因此目前國內外大多采用生物法。也有采用化學法的,比如四川遂寧市的污水就采用化學強化一級處理,但這種工藝的去除率不高,出水達不到國家規定的標準,只適用于某些特定的對出水水質要求不高的地方。
在生物法中,有活性污泥法和生物濾池兩大類,生物濾池的處理效率不高,衛生條件較差,我國只有少數幾座生物濾池城市污水處理廠,而活性污泥法占絕大多數。
活性污泥法有很多種型式,使用最廣泛的主要有三類:①傳統活性污泥法和它的改進型A/O、A2/O工藝,②氧化溝,③SBR工藝。
傳統活性污泥法是應用最早的工藝,它去除有機物的效率很高,在處理過程中產生的污泥采用厭氧消化方式進行穩定處理,對消除污水和污泥的污染很有效,而且能耗和運行費用都比較低,因而得到廣泛應用。近20年來,水體富營養化的危害越來越嚴重,去除氮、磷列入了污水處理的目標,于是出現了活性污泥法的改進型A/O法和A2/O法。A/O法有兩種,一種是用于除磷的厭氧—好氧工藝,一種是用于脫氮的缺氧—好氧工藝;A2/O法則是既脫氮又除磷的工藝。
氧化溝是活性污泥法的一種變型,在水力流態上不同于傳統活性污泥法,是一種首尾相接的循環流,通常采用延時曝氣,在污水凈化的同時污泥得到穩定。它不設初沉池和污泥消化池,處理設施大大簡化。氧化溝具有傳統活性污泥法的優點,去除有機物的效率很高,也具有脫氮的功能。如果在溝前增設厭氧池,還可同時除磷。氧化溝這種高效、簡單的特點,使它在中小型城市污水處理廠中得到廣泛應用。
SBR是序批式活性污泥法,它的基本特征是在一個反應池中完成污水的生化反應、沉淀、排水、排泥,不僅省去了初沉池和污泥消化池,還省去了二沉池和回流污泥泵房,處理設施比氧化溝還要簡單,而且處理效果好,有的SBR工藝還具有很強的脫氮除磷功能。SBR工藝對自控要求高,過去自控設備不過關,這種工藝無法推廣,近年來自控技術和儀表應用于污水處理已經過關,我國昆明第三、第四污水廠采用SBR工藝已成功運行數年,因而SBR工藝得到大力推廣,成為業內人士十分關注的一種工藝。大型城市污水處理廠的優選工藝
大型城市污水處理廠的優選工藝是傳統活性污泥法及其改進型A/O法、A2/O法。目前世界上絕大多數國家(包括我國)的大型污水廠大多采用傳統活性污泥法、A/O和A2/O法,我國的北京高碑店污水廠、天津紀莊子污水廠和東郊污水廠、沈陽市北部污水廠、鄭州市污水廠、杭州市四堡污水廠、成都市三瓦窯污水廠等都采用這種工藝,這不是偶然的,因為這種工藝對大型污水廠具有難以替代的優點:
①傳統活性污泥法、A/O和A2/O法與氧化溝和SBR工藝相比最大優勢是能耗較低、運營費用較低,規模越大這種優勢越明顯。對于大型污水廠來說,年運營費很可觀,比如規模為40×104 m3/d的污水廠,1 m3污水節省處理費1分錢,一年就節省146萬元。
這種工藝的能耗和運營費低的原因是:a.設置初沉池,利用物理法以最小的能耗和費用去除污水中相當一部分有機物和懸浮物,降低二級處理的負荷,顯著節省能耗;b.污泥采用厭氧消化,它比氧化溝和SBR工藝的同步好氧消化顯著節省能耗,是一種公認的節能工藝。
這種工藝的基建投資一般情況下比氧化溝和SBR工藝高,但隨著規模的增大,氧化溝和SBR的基建費也成倍增加,而常規活性污泥法的投資則以較小的比例增加,兩者的差距越來越小。當污水廠達到一定規模后,常規活性污泥法的投資比氧化溝與SBR還省,所以,污水廠規模越大,常規活性污泥法的優勢就越大。
②常規活性污泥法、A/O和A2/O法的主要缺點是處理單元多,操作管理復雜,特別是污泥厭氧消化要求高水平的管理,消化過程產生的沼氣是可燃易爆氣體,更要求安全操作,這些都增加了管理的難度。但由于大型污水廠背靠大城市,技術力量強,管理水平較高,能滿足這種要求,因而常規活性污泥法的缺點不會成為限制使用的因素。
根據我國目前的現實情況,城市污水處理處于起步階段,法規和制度都不夠健全,對污泥的穩定化要求沒有明確的規定,同時由于排水管網系統不夠完善,大多數城市污水的有機成分不高,加之污泥厭氧消化的管理和沼氣的利用還缺乏成熟的經驗,這些因素都降低了包含污泥厭氧消化工序的常規活性污泥法、A/O和A2/O法的經濟性。因此,對于規模為(10~20)×104 m3/d的城市污水處理廠,有時可能采用SBR和氧化溝工藝更為經濟,在這種情況下,有必要對各種工藝進行詳細的技術經濟比較,以確定最佳工藝。中、小型城市污水處理廠的優選工藝
中、小型城市污水處理廠的優選工藝是氧化溝和SBR,它們的共同特點是:
①去除有機物效率很高,有的還能脫氮、除磷或既脫氮又除磷,而且處理設施十分簡單,管理非常方便,是目前國際上公認的高效、簡化的污水處理工藝,也是世界各國中小型城市污水處理廠的優選工藝。
②在10×104 m3/d規模以下,氧化溝和SBR法的基建費用明顯低于常規活性污泥法、A/O和A2/O法;對于規模為(5~10)×104 m3/d的污水廠,氧化溝與SBR法的基建費用通常要低10%~15%。規模越小,兩者差距越大,這對缺少資金建污水廠的中小城市很有吸引力。
即使在10×104 m3/d規模以下,氧化溝和SBR法的電耗和年運營費用仍高于常規活性污泥法,但如果與基建費用一起來比較,基建費加上20年的運營費總計還是比常規活性污泥法低些。規模越小,低得越多,規模越大,差距越小,當規模為10×104 m3/d時,兩類工藝的總費用大致相當。因此,對于中小型污水廠采用氧化溝與SBR法在經濟上是有利的。
③氧化溝與SBR工藝通常都不設初沉池和污泥消化池,整個處理單元比常規活性污泥法少50%以上,操作管理大大簡化,這對于技術力量相對較弱、管理水平相對較低的中小型污水處理廠很合適。
④氧化溝和SBR工藝的設備基本上實現了國產化,在質量上能滿足工藝要求,價格比國外設備便宜好幾倍,而且也省去了申請外匯進口設備的種種麻煩。
⑤氧化溝和SBR工藝的抗沖擊負荷能力比常規活性污泥法好得多,這對于水質、水量變化劇烈的中小型污水廠很有利。
正是由于上述種種原因,氧化溝和SBR在國內外都發展很快。美國環保局(EPA)把污水處理廠的建設費用或運營費用比常規活性污泥法節省15%以上的工藝列為革新替代技術,由聯邦政府給予財政資助,SBR和氧化溝工藝因此得以大力推廣,已經建成的污水廠各有幾百座。歐州的氧化溝污水廠已有上千座,澳大利亞近10多年建成SBR工藝污水廠近600座。在國內,氧化溝和SBR工藝已成為中小型污水處理廠的首選工藝。氧化溝工藝的主要分類和特點
氧化溝工藝大體上可以分為四類:
①多溝交替式氧化溝,它的特點是合建式,沒有單獨的二沉池,采用轉刷曝氣。它有單溝、雙溝和三溝式,最典型的是邯鄲三溝式氧化溝。這種氧化溝具有SBR工藝的特點,也可算是SBR的一種類型,它的脫氮除磷效果不穩定,如果要求脫氮除磷,需增加一些設施。
②卡魯塞爾氧化溝,它是分建式,有單獨的二沉池,采用表曝機曝氣,溝深大于多溝交替式氧化溝,長沙水質凈化二廠就是這種工藝,它的脫氮除磷效果也不夠理想,如果要求脫氮除磷,也需增加一些設施。
③奧貝爾氧化溝,它也是分建式,有單獨二沉池,采用轉碟曝氣,溝深也較大,現在四川、北京、山東、浙江等地都在采用,它的脫氮效果很好,但除磷效率不夠高,要求除磷時還需采取一些措施。
④一體化氧化溝,是合建式,沉淀池建在氧化溝內,已在四川成都市新都污水廠和山東高密市污水廠應用。它既是連續進出水,又是合建式,且不用倒換功能,從理論上講最經濟合理,但在一些具體技術問題上還不十分成熟,因此影響了它的推廣使用。SBR工藝的主要分類和特點
SBR工藝主要有以下幾種類型:
①傳統式SBR工藝,它的所有操作都是間歇的、周期性的,四川巴中污水廠就是這種工藝。它的脫氮除磷效果不夠穩定,如要求脫氮除磷,需做一些改進。
②ICEAS工藝,即間歇式循環延時曝氣活性污泥法,它用隔墻將反應池分為兩部分,前面是預反應區,后面是主反應區,采用連續進水,間歇曝氣、沉淀、排水、排泥,已用在昆明第三、第四污水廠。它可以脫氮除磷,但效果不夠理想。
③DAT—IAT工藝,即連續曝氣和間歇曝氣相結合的工藝,反應池中部用隔墻分為兩部分,前邊的DAT連續曝氣,后邊的IAT間歇曝氣、沉淀、排水、排泥,已用于天津開發區污水處理廠。它的脫氮除磷功能一般,需增加設施才能提高脫氮除磷效率。
④CAST工藝,即循環式活性污泥法,它的反應池用隔墻分為選擇區和主反應區,進水、曝氣、沉淀、排水、排泥都是間歇周期性運行。它的脫氮除磷效果好,防止污泥膨脹的性能好,目前深圳、天津和云南的一些污水處理廠都采用此種工藝。
⑤UNITANK工藝,是三個矩形池并聯,按照類似三溝式氧化溝的周期運行模式工作,但把轉刷曝氣改為鼓風曝氣,可加大池深,把出水可調堰改為固定堰,簡化了排水,上海石洞口污水處理廠就是采用這種工藝,它的功能和三溝式氧化溝類似。氧化溝和SBR工藝的比較
氧化溝和SBR工藝有很多共同特點,也有各自的特點和適用性,在選定方案時需要仔細分析。
①從基建投資看,SBR工藝是合建式,一般情況下征地費和土建費較氧化溝低,而設備費較氧化溝高,總造價的高低則要視具體情況決定。
a.地價高,對氧化溝不利。
b.進水BOD濃度高,反應容積與沉淀容積的比值高,對氧化溝有利;BOD濃度低,反應容積與沉淀容積的比值低,對SBR有利。
②從運營費用看,SBR工藝通常用鼓風曝氣,氧化溝工藝通常用機械曝氣。一般說來,在供氧量相同的情況下,鼓風曝氣比機械曝氣省電;第二方面,SBR工藝是合建式,不用污泥回流(有的少量回流),氧化溝工藝是分建式要大量回流,電耗較大;第三方面,SBR工藝是變水位運行,增大了進水提升泵站的揚程。綜合考慮,通常氧化溝工藝的電耗要比SBR工藝大些,運營費要高些。
③氧化溝工藝是連續運行,不要求自動控制,只是在要求節能時用自動控制;SBR工藝是周期間歇運行,各個工序轉換頻繁,需要自動控制。
④SBR工藝是靜態沉淀,氧化溝工藝是動態沉淀,因而SBR的沉淀效率更高,出水水質更好。
第四篇:城市污水處理廠工藝設計及計算
第三章 污水處理廠工藝設計及計算
第一節 格柵
進水中格柵是污水處理廠第一道預處理設施,可去除大尺寸的漂浮物或懸浮物,以保護進水泵的正常運轉,并盡量去掉那些不利于后續處理過程的雜物。
擬用回轉式固液分離機。回轉式固液分離機運轉效果好,該設備由動力裝置,機架,清洗機構及電控箱組成,動力裝置采用懸掛式渦輪減速機,結構緊湊,調整維修方便,適用于生活污水預處理。
1.1 設計說明
柵條的斷面主要根據過柵流速確定,過柵流速一般為0.6~1.0m/s,槽內流速0.5m/s左右。如果流速過大,不僅過柵水頭損失增加,還可能將已截留在柵上的柵渣沖過格柵,如果流速過小,柵槽內將發生沉淀。此外,在選擇格柵斷面尺寸時,應注意設計過流能力只為格柵生產廠商提供的最大過流能力的80%,以留有余地。格柵柵條間隙擬定為25.00mm。
1.2
設計流量:
a.日平均流量
Qd=45000m3/d≈1875m3/h=0.52m3/s=520L/s
Kz取1.4 b.最大日流量
Qmax=Kz·Qd=1.4×1875m3/h=2625m3/h=0.73m3/s 1.設計參數:
柵條凈間隙為b=25.0mm
柵前流速ν1=0.7m/s 過柵流速0.6m/s
柵前部分長度:0.5m 格柵傾角δ=60°
單位柵渣量:ω1=0.05m3柵渣/103m3污水
1.設計計算:
1.4.1 確定柵前水深
B12?根據最優水力斷面公式Q?計算得:
2B1?2Q??B2?0.153?0.66m
h?1?0.33m 0.72所以柵前槽寬約0.66m。柵前水深h≈0.33m 1.4.2 格柵計算
說明:
Qmax—最大設計流量,m3/s;
α—格柵傾角,度(°);
h—柵前水深,m;
ν—污水的過柵流速,m/s。
柵條間隙數(n)為
n?Qmaxsin?0.153?sin60?=?30(條)
ehv0.025?0.3?0.6柵槽有效寬度(B)
設計采用?10圓鋼為柵條,即S=0.01m。B?S(n?1)?bn?0.01?(30?1)?0.025?30=1.04(m)
通過格柵的水頭損失h2 h2?K?h0
h0???22gsin?
h0—計算水頭損失;
g—重力加速度;
K—格柵受污物堵塞使水頭損失增大的倍數,一般取3;
ξ—阻力系數,其數值與格柵柵條的斷面幾何形狀有關,對于圓形斷面,??1.79???
0.62?0.01h2?3?1.79???sin60??0.025(m)??0.0252?9.81??所以:柵后槽總高度H H=h+h1+h2=0.33+0.3+0.025=0.655(m)
(h1—柵前渠超高,一般取0.3m)柵槽總長度L
4?3?s?b?4?3B?B11.04?0.66??0.52m
2*tan?12*tan20? L1L2??0.26m
2L1?H1?h?h1=0.3+0.33=0.63 L?L1?L2?1.0?0.5?H10.63?0.52?0.26?1.0?0.5??2.64m tan?tan60?L1—進水渠長,m;
L2—柵槽與出水渠連接處漸窄部分長度,m; B1—進水渠寬,;
α1—進水漸寬部分的展開角,一般取20°。
圖一
格柵簡圖
1.4.3 柵渣量計算
對于柵條間距b=25.0mm的中格柵,對于城市污水,每單位體積污水爛截污物為W1=0.05m3/103m3,每日柵渣量為
W?QmaxW1?864000.153?0.05?86400=0.4m3/d ?Kz?10001.64?1000攔截污物量大于0.3m3/d,宜采用機械清渣。
二、沉砂池
采用平流式沉砂池 1.設計參數
設計流量:Q=301L/s(按2010年算,設計1組,分為2格)設計流速:v=0.25m/s 水力停留時間:t=30s 2.設計計算(1)沉砂池長度:
L=vt=0.25×30=7.5m(2)水流斷面積:
A=Q/v=0.301/0.25=1.204m2
(3)池總寬度:
設計n=2格,每格寬取b=1.2m>0.6m,池總寬B=2b=2.4m(4)有效水深:
h2=A/B=1.204/2.4=0.5m(介于0.25~1m之間)
(5)貯泥區所需容積:設計T=2d,即考慮排泥間隔天數為2天,則每個沉砂斗容積
Q1TX11.3?104?2?3V1???0.26m3 552K102?1.5?10(每格沉砂池設兩個沉砂斗,兩格共有四個沉砂斗)其中X1:城市污水沉砂量3m3/105m3,K:污水流量總變化系數1.5(6)沉砂斗各部分尺寸及容積: 設計斗底寬a1=0.5m,斗壁與水平面的傾角為60°,斗高hd=0.5m,則沉砂斗上口寬:
a?2hd2?0.5?a1??0.5?1.1m
tan60?tan60?沉砂斗容積:
V?hd0.52(2a2?2aa1?2a1)?(2?1.12?2?1.1?0.5?2?0.52)?0.34m3 66
(略大于V1=0.26m3,符合要求)
(7)沉砂池高度:采用重力排砂,設計池底坡度為0.06,坡向沉砂斗長度為L2?L?2a7.5?2?1.1??2.65m 2則沉泥區高度為
h3=hd+0.06L2 =0.5+0.06×2.65=0.659m
池總高度H :設超高h1=0.3m,H=h1+h2+h3=0.3+0.5+0.66=1.46m(8)進水漸寬部分長度: L1?B?2B12.4?2?0.94??1.43m
tan20?tan20?(9)出水漸窄部分長度: L3=L1=1.43m(10)校核最小流量時的流速:
最小流量即平均日流量
Q平均日=Q/K=301/1.5=200.7L/s 則vmin=Q平均日/A=0.2007/1.204=0.17>0.15m/s,符合要求
(11)計算草圖如下: 進水出水圖4平流式沉砂池計算草圖
第三節 沉淀池
3.1 采用中心進水輻流式沉淀池:
圖四
沉淀池簡圖
3.2 設計參數:
沉淀池個數n=2;水力表面負荷q’=1m3/(m2h);出水堰負荷1.7L/s·m(146.88m/m·d);
3h3為緩沖層高度,取0.5m;h5為掛泥板高度,取0.5m。沉淀時間T=2h;污泥斗下半徑r2=1m,上半徑r1=2m;剩余污泥含水率P1=99.2% 3.2.1 設計計算: 3.2.1.1 池表面積
A?Q1042??1042m2 q'13.2.1.2 單池面積
A1042??521m2
(取530m2)n23.2.1.3 池直徑 A單池?D?4?A單池=4?530=25.98m
(取530m)3.14?3.2.1.4 沉淀部分有效水深(h2)混合液在分離區泥水分離,該區存在絮凝和沉淀兩個過程,分離區的沉淀過程會受進水的紊流影響,取h2?3m 3.2.1.5 沉淀池部分有效容積
3.14?262V??h2??3?1591.98m3
443.2.1.6 沉淀池坡底落差(取池底坡度i=0.05)?D??26?h4?i???r1??0.05???2??0.55m
?2??2?3.2.1.7 沉淀池周邊(有效)水深 ?D2H0?h2?h3?h5?3?0.5?0.5?4.0m?4.0m(3.2.1.8 污泥斗容積
D26??6.5?6,滿足規定)H04污泥斗高度h6?(r1?r2)?tg??(2?1)?tg600?1.73m
V1?3.14?1.73?(22?2?1?12)?12.7m3
33池底可儲存污泥的體積為:
?h3.14?0.8V2?4?R2?Rr1?r12??(132?13?2?22)?166.63m3
43?h6?r21?r1r2?r22????共可儲存污泥體積為:V1?V2?12.7?166.63?179.33m33.2.1.9 沉淀池總高度 H=0.47+4+1.73=6.2m
3.3 進水系統計算
3.3.1 單池設計流量521m3/h(0.145m3/s)進水管設計流量:0.145×(1+R)=0.145×1.5=0.218m/s 管徑D1=500mm,v1?
30.218?4D1?2?1.11m/s
3.3.2 進水豎井
進水井徑采用1.2m,2出水口尺寸0.30×1.2m,共6個沿井壁均勻分布 出水口流速
v2?0.218?0.101m/s(?0.15m/s)
0.30?1.2?63.3.3 紊流筒計算
圖六
進水豎井示意圖
筒中流速 v3?0.03~0.02m/s,(取0.03m/s)紊流筒過流面積 f?Q進?3?0.218?7.27m2
紊流筒直徑 0.03D3?4f??4?7.27?3m
3.143.4 出水部分設計
3.4.1 環形集水槽內流量q集=0.145 m3/s 3.4.2 環形集水槽設計
采用單側集水環形集水槽計算。
槽寬b?2?0.9?(k?q集)0.4=0.9??1.4?0.145?=0.48m0.4(其中k為安全系數采用1.2~1.5)
設槽中流速v=0.5m/s 設計環形槽內水深為0.4m,集水槽總高度為0.4+0.4(超高)=0.8m,采用90°三角堰。3.4.3 出水溢流堰的設計(采用出水三角堰90°)
3.4.3.1 堰上水頭(即三角口底部至上游水面的高度)H1=0.04m 3.4.3.2每個三角堰的流量q1
q1?1.343H12.47?1.343?0.042.47?0.0004733m3/s
3.4.3.3三角堰個數n1
n1?Q單q1?0.145?306.4個?設計時取307個?
0.00047333.4.3.4三角堰中心距
L1?L?(D?2b)3.14?(36?2?0.48)???0.358mn1307307
圖七 溢流堰簡圖
六、氧化溝 1.設計參數
擬用卡羅塞(Carrousel)氧化溝,去除BOD5與COD之外,還具備硝化和一定的脫氮除磷作用,使出水NH3-N低于排放標準。氧化溝按2010年設計分2座,按最大日平均時流量設計,每座氧化溝設計流量為
2.6?104Q1′==10000m3/d=115.8L/s。
2?1.3總污泥齡:20d MLSS=3600mg/L,MLVSS/MLSS=0.75 則MLSS=2700 曝氣池:DO=2mg/L NOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3—N還原 α=0.9
β=0.98 其他參數:a=0.6kgVSS/kgBODb=0.07d-1 脫氮速率:qdn=0.0312kgNO3-N/kgMLVSS·d K1=0.23d-
1Ko2=1.3mg/L 剩余堿度100mg/L(保持PH≥7.2): 所需堿度7.1mg堿度/mgNH3-N氧化;產生堿度3.0mg堿度/mgNO3-N還原 硝化安全系數:2.5 脫硝溫度修正系數:1.08 2.設計計算
(1)堿度平衡計算:
1)設計的出水BOD5為20 mg/L,則出水中溶解性BOD5=20-0.7×20×1.42×(1-e-0.23×5)=6.4 mg/L 2)采用污泥齡20d,則日產泥量為:
aQSr0.6?10000?(190?6.4)??550.8 kg/d 1?btm1000?(1?0.05?20)
設其中有12.4%為氮,近似等于TKN中用于合成部分為:
0.124?550.8=68.30 kg/d
即:TKN中有
68.30?1000?6.83mg/L用于合成。
10000
需用于氧化的NH3-N =34-6.83-2=25.17 mg/L
需用于還原的NO3-N =25.17-11=14.17 mg/L
3)堿度平衡計算
已知產生0.1mg/L堿度 /除去1mg BOD5,且設進水中堿度為250mg/L,剩余堿度=250-7.1×25.17+3.0×14.17+0.1×(190-6.4)=132.16 mg/L
計算所得剩余堿度以CaCO3計,此值可使PH≥7.2 mg/L(2)硝化區容積計算:
硝化速率為
?n?0.47e?0.098?T?15???N???O2?????
0.05T?1.158??N?10???KO2?O2??2???2???
?0.47e0.098?15?15???0.05?15?1.158?? 1.3?22?10??????
=0.204 d-1
故泥齡:tw?1?n?1?4.9d 0.20采用安全系數為2.5,故設計污泥齡為:2.5?4.9=12.5d
原假定污泥齡為20d,則硝化速率為:
?n?
單位基質利用率:
u?1?0.05d-1 20?n?ba?0.05?0.05?0.167kgBOD5/kgMLVSS.d
0.6
MLVSS=f×MLSS=0.75?3600=2700 mg/L
(190?6.4)?10000?10994kg
0.167?100010994
硝化容積:Vn??1000?4071.9m3
27004071.9
水力停留時間:tn??24?9.8h
10000
所需的MLVSS總量=(3)反硝化區容積:
12℃時,反硝化速率為:
F??
qdn??0.03()?0.029???T?20?
M??????190
??0.03?()?0.029??1.08?12?20?
16??3600???24??
=0.017kgNO3-N/kgMLVSS.d
14.17?10000?141.7kg/d 1000141.7
脫氮所需MLVSS=?8335.3kg
0.0198335.脫氮所需池容:Vdn??1000?3087.1 m3
27002778.4
水力停留時間:tdn??24?7.4h
1000還原NO3-N的總量=
(4)氧化溝的總容積:
總水力停留時間:
t?tn?tdn?9.8?7.4?17.2h
總容積:
V?Vn?Vdn?4071.9?3087.1?7159m3
(5)氧化溝的尺寸:
氧化溝采用4廊道式卡魯塞爾氧化溝,取池深3.5m,寬7m,則氧化溝總長:71594071.9?292.2m。其中好氧段長度為?166.2m,缺氧段長度為3.5?73.5?73087.1?126.0m。3.5?7?21??66m
22292.2?66則單個直道長:?56.55m
(取59m)
4彎道處長度:3???7???21
故氧化溝總池長=59+7+14=80m,總池寬=7?4=28m(未計池壁厚)。
校核實際污泥負荷Ns?
(6)需氧量計算:
采用如下經驗公式計算:
O2(kg/d)?A?Sr?B?MLSS?4.6?Nr?2.6?NO3
其中:第一項為合成污泥需氧量,第二項為活性污泥內源呼吸需氧量,第三項為硝化污泥需氧量,第四項為反硝化污泥需氧量。
經驗系數:A=0.5
B=0.1
需要硝化的氧量:
Nr=25.17?10000?10-3=251.7kg/d R=0.5?10000?(0.19-0.0064)+0.1?4071.9?2.7 +4.6?251.7-2.6?141.7 =2806.81kg/d=116.95kg/h 取T=30℃,查表得α=0.8,β=0.9,氧的飽和度Cs(30?)=7.63 mg/L,Cs(20?)=9.17 mg/L
采用表面機械曝氣時,20℃時脫氧清水的充氧量為:
R0?QSa10000?190??0.014kgBOD/kgMLSS?d XV3600?7159????Cs(T)?C??1.024?T?20?RCs(20?)
116.95?9.17
0.80??0.9?1?7.63?2??1.024?30?20?
?217.08kg/h?查手冊,選用DY325型倒傘型葉輪表面曝氣機,直徑Ф=3.5m,電機功率N=55kW,單臺每小時最大充氧能力為125kgO2/h,每座氧化溝所需數量為n,則
n?R0217.08??1.74
取n=2臺 125125(7)回流污泥量:
可由公式R?X求得。
Xr?X式中:X=MLSS=3.6g/L,回流污泥濃度Xr取10g/L。則:
R?3.6?0.56(50%~100%,實際取60%)
10?3.6考慮到回流至厭氧池的污泥為11%,則回流到氧化溝的污泥總量為49%Q。
(8)剩余污泥量:
Qw?550.8240?0.25??10000?1334.4kg/d 0.751000
如由池底排除,二沉池排泥濃度為10g/L,則每個氧化溝產泥量為:
1334.4?133.44m3/d 10(9)氧化溝計算草草圖如下:
備用曝氣機欄桿可暫不安裝
上走道板進水管接自提升泵房及沉砂池走道板上出水管至流量計井及二沉池鋼梯圖5 氧化溝計算草圖 七、二沉池
該沉淀池采用中心進水,周邊出水的幅流式沉淀池,采用刮泥機。1.設計參數
設計進水量:Q=10000 m3/d(每組)
表面負荷:qb范圍為1.0—1.5 m3/ m2.h,取q=1.0 m3/ m2.h 固體負荷:qs =140 kg/ m2.d 水力停留時間(沉淀時間):T=2.5 h 堰負荷:取值范圍為1.5—2.9L/s.m,取2.0 L/(s.m)2.設計計算(1)沉淀池面積: 按表面負荷算:A?Q10000??417m2 qb1?244A?4?417?23m?16m 3.14(2)沉淀池直徑:D??
有效水深為
h=qbT=1.0?2.5=2.5m<4m
(3)貯泥斗容積:
D23??9.2(介于6~12)h12.為了防止磷在池中發生厭氧釋放,故貯泥時間采用Tw=2h,二沉池污泥區所需存泥容積:
2Tw(1?R)QX?X?Xr2?2?(1?0.6)?10000?360024?706m3
3600?10000
Vw?
則污泥區高度為
h2?
(4)二沉池總高度:
取二沉池緩沖層高度h3=0.4m,超高為h4=0.3m 則池邊總高度為
h=h1+h2+h3+h4=2.5+1.7+0.4+0.3=4.9m 設池底度為i=0.05,則池底坡度降為
h5?
則池中心總深度為
H=h+h5=4.9+0.53=5.43m
(5)校核堰負荷:
徑深比
D23??8.28
h1?h32.9Vw706??1.7m A417b?d23?2i??0.05?0.53m 2
2堰負荷
D23??5.22
h1?h2?h34.6Q10000??138m3/(d.m)?1.6L/(s.m)?2L/(s.m)?D3.14?23以上各項均符合要求
(6)輻流式二沉池計算草圖如下:
出水進水圖6 輻流式沉淀池排泥
出水進水圖7 輻流式沉淀池計算草圖
八、接觸消毒池與加氯間 采用隔板式接觸反應池 1.設計參數
設計流量:Q′=20000m3/d=231.5 L/s(設一座)
水力停留時間:T=0.5h=30min 設計投氯量為:ρ=4.0mg/L平均水深:h=2.0m 隔板間隔:b=3.5m 2.設計計算(1)接觸池容積:
V=Q′T=231.5?10-3?30?60=417 m3
?表面積A?V4172
??209m h2 隔板數采用2個,則廊道總寬為B=(2+1)?3.5=10.5m 取11m 接觸池長度L=L? 長寬比
A209??19.9m 取20m B10.5L20??5.7 b3.5 實際消毒池容積為V′=BLh=11?20?2=440m3
池深取2+0.3=2.3m(0.3m為超高)經校核均滿足有效停留時間的要求(2)加氯量計算:
設計最大加氯量為ρmax=4.0mg/L,每日投氯量為
ω=ρmaxQ=4?20000?10-3=80kg/d=3.33kg/h 選用貯氯量為120kg的液氯鋼瓶,每日加氯量為3/4瓶,共貯用12瓶,每日加氯機兩臺,單臺投氯量為1.5~2.5kg/h。
配置注水泵兩臺,一用一備,要求注水量Q=1—3m3/h,揚程不小于10mH2O(3)混合裝置:
在接觸消毒池第一格和第二格起端設置混合攪拌機2臺(立式),混合攪拌機功率N0
1.06?10?4?0.2315?60?5002N0???0.25kW 223?5?103?5?10?QTG2實際選用JWH—310—1機械混合攪拌機,漿板深度為1.5m,漿葉直徑為0.31m,漿葉寬度0.9m,功率4.0Kw 解除消毒池設計為縱向板流反應池。在第一格每隔3.8m設縱向垂直折流板,在第二格每隔6.33m設垂直折流板,第三格不設(4)接觸消毒池計算草圖如下:
圖8 接觸消毒池工藝計算圖
第五篇:城市污水處理廠工藝設計及計算
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 第三章 污水處理廠工藝設計及計算
第一節 格柵
進水中格柵是污水處理廠第一道預處理設施,可去除大尺寸的漂浮物或懸浮物,以保護進水泵的正常運轉,并盡量去掉那些不利于后續處理過程的雜物。
擬用回轉式固液分離機。回轉式固液分離機運轉效果好,該設備由動力裝置,機架,清洗機構及電控箱組成,動力裝置采用懸掛式渦輪減速機,結構緊湊,調整維修方便,適用于生活污水預處理。
1.1 設計說明
柵條的斷面主要根據過柵流速確定,過柵流速一般為0.6~1.0m/s,槽內流速0.5m/s左右。如果流速過大,不僅過柵水頭損失增加,還可能將已截留在柵上的柵渣沖過格柵,如果流速過小,柵槽內將發生沉淀。此外,在選擇格柵斷面尺寸時,應注意設計過流能力只為格柵生產廠商提供的最大過流能力的80%,以留有余地。格柵柵條間隙擬定為25.00mm。
1.2
設計流量:
a.日平均流量
Qd=45000m3/d≈1875m3/h=0.52m3/s=520L/s
Kz取1.4 b.最大日流量
Qmax=Kz·Qd=1.4×1875m3/h=2625m3/h=0.73m3/s 1.設計參數:
柵條凈間隙為b=25.0mm
柵前流速ν1=0.7m/s 過柵流速0.6m/s
柵前部分長度:0.5m 格柵傾角δ=60°
單位柵渣量:ω1=0.05m3柵渣/103m3污水
1.設計計算:
1.4.1 確定柵前水深
B12?根據最優水力斷面公式Q?計算得:
2B1?2Q??B2?0.153?0.66m
h?1?0.33m 0.72所以柵前槽寬約0.66m。柵前水深h≈0.33m 1.4.2 格柵計算
說明:
Qmax—最大設計流量,m3/s;
α—格柵傾角,度(°);
h—柵前水深,m;
ν—污水的過柵流速,m/s。
柵條間隙數(n)為
n?Qmaxsin?0.153?sin60??30(條)=
0.025?0.3?0.6ehv柵槽有效寬度(B)
設計采用?10圓鋼為柵條,即S=0.01m。
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang B?S(n?1)?bn?0.01?(30?1)?0.025?30=1.04(m)
通過格柵的水頭損失h2 h2?K?h0
h0???22gsin?
h0—計算水頭損失;
g—重力加速度;
K—格柵受污物堵塞使水頭損失增大的倍數,一般取3;
ξ—阻力系數,其數值與格柵柵條的斷面幾何形狀有關,對于圓形斷面,??1.79???
0.62?0.01h2?3?1.79???sin60??0.025(m)??0.0252?9.81??所以:柵后槽總高度H H=h+h1+h2=0.33+0.3+0.025=0.655(m)
(h1—柵前渠超高,一般取0.3m)柵槽總長度L
4?3?s?b?4?3B?B11.04?0.66??0.52m
2*tan?12*tan20? L1L2??0.26m
2L1?H1?h?h1=0.3+0.33=0.63 L?L1?L2?1.0?0.5?H10.63?0.52?0.26?1.0?0.5??2.64m tan?tan60?L1—進水渠長,m;
L2—柵槽與出水渠連接處漸窄部分長度,m; B1—進水渠寬,;
α1—進水漸寬部分的展開角,一般取20°。
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
圖一
格柵簡圖
1.4.3 柵渣量計算
對于柵條間距b=25.0mm的中格柵,對于城市污水,每單位體積污水爛截污物為W1=0.05m3/103m3,每日柵渣量為
W?QmaxW1?864000.153?0.05?86400=0.4m3/d ?Kz?10001.64?1000攔截污物量大于0.3m3/d,宜采用機械清渣。
二、沉砂池
采用平流式沉砂池 1.設計參數
設計流量:Q=301L/s(按2010年算,設計1組,分為2格)設計流速:v=0.25m/s 水力停留時間:t=30s 2.設計計算(1)沉砂池長度:
L=vt=0.25×30=7.5m(2)水流斷面積:
A=Q/v=0.301/0.25=1.204m2
(3)池總寬度:
設計n=2格,每格寬取b=1.2m>0.6m,池總寬B=2b=2.4m(4)有效水深:
h2=A/B=1.204/2.4=0.5m(介于0.25~1m之間)
(5)貯泥區所需容積:設計T=2d,即考慮排泥間隔天數為2天,則每個沉砂斗容積
Q1TX11.3?104?2?3V1???0.26m3 552K102?1.5?10(每格沉砂池設兩個沉砂斗,兩格共有四個沉砂斗)其中X1:城市污水沉砂量3m3/105m3,K:污水流量總變化系數1.5(6)沉砂斗各部分尺寸及容積:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 設計斗底寬a1=0.5m,斗壁與水平面的傾角為60°,斗高hd=0.5m,則沉砂斗上口寬:
a?2hd2?0.5?a1??0.5?1.1m
tan60?tan60?沉砂斗容積:
V?hd0.52(2a2?2aa1?2a1)?(2?1.12?2?1.1?0.5?2?0.52)?0.34m3 66
(略大于V1=0.26m3,符合要求)
(7)沉砂池高度:采用重力排砂,設計池底坡度為0.06,坡向沉砂斗長度為L2?L?2a7.5?2?1.1??2.65m 2則沉泥區高度為
h3=hd+0.06L2 =0.5+0.06×2.65=0.659m
池總高度H :設超高h1=0.3m,H=h1+h2+h3=0.3+0.5+0.66=1.46m(8)進水漸寬部分長度: L1?B?2B12.4?2?0.94??1.43m
tan20?tan20?(9)出水漸窄部分長度: L3=L1=1.43m(10)校核最小流量時的流速:
最小流量即平均日流量
Q平均日=Q/K=301/1.5=200.7L/s 則vmin=Q平均日/A=0.2007/1.204=0.17>0.15m/s,符合要求
(11)計算草圖如下:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 進水出水圖4平流式沉砂池計算草圖
第三節 沉淀池
3.1 采用中心進水輻流式沉淀池:
圖四
沉淀池簡圖
3.2 設計參數:
沉淀池個數n=2;水力表面負荷q’=1m3/(m2h);出水堰負荷1.7L/s·m(146.88m/m·d);
3沉淀時間T=2h;污泥斗下半徑h3為緩沖層高度,取0.5m;h5為掛泥板高度,取0.5m。r2=1m,上半徑r1=2m;剩余污泥含水率P1=99.2% 3.2.1 設計計算: 3.2.1.1 池表面積
A?Q1042??1042m2 q'13.2.1.2 單池面積
A單池?A10422??521m2
(取530m)n24?A單池3.2.1.3 池直徑
D? ?=4?530=25.98m
(取530m)3.145 污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 3.2.1.4 沉淀部分有效水深(h2)混合液在分離區泥水分離,該區存在絮凝和沉淀兩個過程,分離區的沉淀過程會受進水的紊流影響,取h2?3m 3.2.1.5 沉淀池部分有效容積
3.14?262V??h2??3?1591.98m3
443.2.1.6 沉淀池坡底落差(取池底坡度i=0.05)?D2?D??26?h4?i???r1??0.05???2??0.55m
?2??2?3.2.1.7 沉淀池周邊(有效)水深
H0?h2?h3?h5?3?0.5?0.5?4.0m?4.0m(3.2.1.8 污泥斗容積
D26??6.5?6,滿足規定)H04污泥斗高度h6?(r1?r2)?tg??(2?1)?tg600?1.73m
V1??h63?r421?r1r2?r22??3.14?1.73?(22?2?1?12)?12.7m3 3池底可儲存污泥的體積為:
V2??h4?R2?Rr1?r12???3.14?0.8?(132?13?2?22)?166.63m3 3 共可儲存污泥體積為:V1?V2?12.7?166.63?179.33m33.2.1.9 沉淀池總高度 H=0.47+4+1.73=6.2m
3.3 進水系統計算
3.3.1 單池設計流量521m3/h(0.145m3/s)污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 進水管設計流量:0.145×(1+R)=0.145×1.5=0.218m/s 管徑D1=500mm,v1?
30.218?4D1?2?1.11m/s
3.3.2 進水豎井
進水井徑采用1.2m,2出水口尺寸0.30×1.2m,共6個沿井壁均勻分布 出水口流速
v2?0.218?0.101m/s(?0.15m/s)
0.30?1.2?63.3.3 紊流筒計算
圖六
進水豎井示意圖
筒中流速 v3?0.03~0.02m/s,(取0.03m/s)紊流筒過流面積 f?Q進?3?0.218?7.27m2
紊流筒直徑 0.03D3?4f??4?7.27?3m
3.143.4 出水部分設計
3.4.1 環形集水槽內流量q集=0.145 m3/s 3.4.2 環形集水槽設計
采用單側集水環形集水槽計算。
槽寬b?2?0.9?(k?q集)0.4=0.9??1.4?0.145?=0.48m0.4(其中k為安全系數采用1.2~1.5)
設槽中流速v=0.5m/s 設計環形槽內水深為0.4m,集水槽總高度為0.4+0.4(超高)=0.8m,采用90°三角堰。3.4.3 出水溢流堰的設計(采用出水三角堰90°)
3.4.3.1 堰上水頭(即三角口底部至上游水面的高度)H1=0.04m 3.4.3.2每個三角堰的流量q1
q1?1.343H12.47?1.343?0.042.47?0.0004733m3/s
3.4.3.3三角堰個數n1
n1?Q單q1?0.145?306.4個?設計時取307個?
0.00047333.4.3.4三角堰中心距
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
L1?L?(D?2b)3.14?(36?2?0.48)???0.358mn1307307
圖七 溢流堰簡圖
六、氧化溝 1.設計參數
擬用卡羅塞(Carrousel)氧化溝,去除BOD5與COD之外,還具備硝化和一定的脫氮除磷作用,使出水NH3-N低于排放標準。氧化溝按2010年設計分2座,按最大日平均時流量設計,每座氧化溝設計流量為
2.6?104Q1′==10000m3/d=115.8L/s。
2?1.3總污泥齡:20d MLSS=3600mg/L,MLVSS/MLSS=0.75 則MLSS=2700 曝氣池:DO=2mg/L NOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3—N還原 α=0.9
β=0.98 其他參數:a=0.6kgVSS/kgBODb=0.07d-1 脫氮速率:qdn=0.0312kgNO3-N/kgMLVSS·d K1=0.23d-
1Ko2=1.3mg/L 剩余堿度100mg/L(保持PH≥7.2): 所需堿度7.1mg堿度/mgNH3-N氧化;產生堿度3.0mg堿度/mgNO3-N還原 硝化安全系數:2.5 污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 脫硝溫度修正系數:1.08 2.設計計算
(1)堿度平衡計算:
1)設計的出水BOD5為20 mg/L,則出水中溶解性BOD5=20-0.7×20×1.42×(1-e-0.23×5)=6.4 mg/L 2)采用污泥齡20d,則日產泥量為:
aQSr0.6?10000?(190?6.4)??55.08 kg/d 1?btm1000?(1?0.05?20)
設其中有12.4%為氮,近似等于TKN中用于合成部分為:
0.124?550.8=68.30 kg/d
即:TKN中有
68.30?1000?6.83mg/L用于合成。
10000
需用于氧化的NH3-N =34-6.83-2=25.17 mg/L
需用于還原的NO3-N =25.17-11=14.17 mg/L
3)堿度平衡計算
已知產生0.1mg/L堿度 /除去1mg BOD5,且設進水中堿度為250mg/L,剩余堿度=250-7.1×25.17+3.0×14.17+0.1×(190-6.4)=132.16 mg/L
計算所得剩余堿度以CaCO3計,此值可使PH≥7.2 mg/L(2)硝化區容積計算:
硝化速率為
?n?0.47e?0.098?T?15???N???O2?????
0.05T?1.158??N?10???KO2?O2??2???2?
?0.47e0.098?15?15??? ?0.05?15?1.158???2?101.3?2??????
=0.204 d-1
故泥齡:tw?1?n?1?4.9d 0.20采用安全系數為2.5,故設計污泥齡為:2.5?4.9=12.5d
原假定污泥齡為20d,則硝化速率為:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
?n?
單位基質利用率:
u?1?0.05d-1 20?n?ba?0.05?0.05?0.167kgBOD5/kgMLVSS.d
0.6
MLVSS=f×MLSS=0.75?3600=2700 mg/L
(190?6.4)?10000?10994kg
0.167?100010994?1000?4071.9m
3硝化容積:Vn?27004071.9?24?9.8h
水力停留時間:tn?10000
所需的MLVSS總量=(3)反硝化區容積:
12℃時,反硝化速率為:
F??
qdn??0.03()?0.029???T?20?
M??????190
??0.03?()?0.029??1.08?12?20?
16??3600???24??
=0.017kgNO3-N/kgMLVSS.d
14.17?10000?141.7kg/d 1000141.7?8335.3kg
脫氮所需MLVSS=
0.0198335.3?1000?3087.1 m3
脫氮所需池容:Vdn?27002778.4?24?7.4h
水力停留時間:tdn?1000還原NO3-N的總量=
(4)氧化溝的總容積:
總水力停留時間:
t?tn?tdn?9.8?7.4?17.2h
總容積:
V?Vn?Vdn?4071.9?3087.1?7159m3
(5)氧化溝的尺寸:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
氧化溝采用4廊道式卡魯塞爾氧化溝,取池深3.5m,寬7m,則氧化溝總長:71594071.9?292.2m。其中好氧段長度為?166.2m,缺氧段長度為3.5?73.5?73087.1?126.0m。3.5?7?21??66m
22292.2?66則單個直道長:?56.55m
(取59m)
4彎道處長度:3???7???21
故氧化溝總池長=59+7+14=80m,總池寬=7?4=28m(未計池壁厚)。
校核實際污泥負荷Ns?
(6)需氧量計算:
采用如下經驗公式計算:
O2(kg/d)?A?Sr?B?MLSS?4.6?Nr?2.6?NO3
其中:第一項為合成污泥需氧量,第二項為活性污泥內源呼吸需氧量,第三項為硝化污泥需氧量,第四項為反硝化污泥需氧量。
經驗系數:A=0.5
B=0.1
需要硝化的氧量:
Nr=25.17?10000?10-3=251.7kg/d R=0.5?10000?(0.19-0.0064)+0.1?4071.9?2.7 +4.6?251.7-2.6?141.7 =2806.81kg/d=116.95kg/h 取T=30℃,查表得α=0.8,β=0.9,氧的飽和度Cs(30?)=7.63 mg/L,Cs(20?)=9.17 mg/L
采用表面機械曝氣時,20℃時脫氧清水的充氧量為:
R0?QSa10000?190??0.014kgBOD/kgMLSS?d XV3600?7159????Cs(T)?C??1.024?T?20?RCs(20?)
116.95?9.17
0.80??0.9?1?7.63?2??1.024?30?20?
?217.08kg/h? 11 污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang 查手冊,選用DY325型倒傘型葉輪表面曝氣機,直徑Ф=3.5m,電機功率N=55kW,單臺每小時最大充氧能力為125kgO2/h,每座氧化溝所需數量為n,則
n?R0217.08??1.74
取n=2臺 125125(7)回流污泥量:
可由公式R?X求得。
Xr?X式中:X=MLSS=3.6g/L,回流污泥濃度Xr取10g/L。則:
R?3.6?0.56(50%~100%,實際取60%)
10?3.6考慮到回流至厭氧池的污泥為11%,則回流到氧化溝的污泥總量為49%Q。
(8)剩余污泥量:
Qw?550.8240?0.25??10000?1334.4kg/d 0.751000
如由池底排除,二沉池排泥濃度為10g/L,則每個氧化溝產泥量為:
1334.4?133.44m3/d 10(9)氧化溝計算草草圖如下:
備用曝氣機欄桿可暫不安裝
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
上走道板進水管接自提升泵房及沉砂池走道板上出水管至流量計井及二沉池鋼梯圖5 氧化溝計算草圖 七、二沉池
該沉淀池采用中心進水,周邊出水的幅流式沉淀池,采用刮泥機。1.設計參數
設計進水量:Q=10000 m3/d(每組)
表面負荷:qb范圍為1.0—1.5 m3/ m2.h,取q=1.0 m3/ m2.h 固體負荷:qs =140 kg/ m2.d 水力停留時間(沉淀時間):T=2.5 h 堰負荷:取值范圍為1.5—2.9L/s.m,取2.0 L/(s.m)2.設計計算(1)沉淀池面積: 按表面負荷算:A?Q10000??417m2 qb1?24(2)沉淀池直徑:D?4A??4?417?23m?16m 3.1有效水深為
h=qbT=1.0?2.5=2.5m<4m
(3)貯泥斗容積:
D23??9.2(介于6~12)h12.5污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
為了防止磷在池中發生厭氧釋放,故貯泥時間采用Tw=2h,二沉池污泥區所需存泥容積:
2Tw(1?R)QX?X?Xr2?2?(1?0.6)?10000?360024?706m3
3600?10000
Vw?
則污泥區高度為
h2?
(4)二沉池總高度:
取二沉池緩沖層高度h3=0.4m,超高為h4=0.3m 則池邊總高度為
h=h1+h2+h3+h4=2.5+1.7+0.4+0.3=4.9m 設池底度為i=0.05,則池底坡度降為
h5?
則池中心總深度為
H=h+h5=4.9+0.53=5.43m
(5)校核堰負荷:
徑深比
D23??8.28
h1?h32.9b?d23?2i??0.05?0.53m 22Vw706??1.7m A417
堰負荷
D23??5.22
h1?h2?h34.6Q10000??138m3/(d.m)?1.6L/(s.m)?2L/(s.m)?D3.14?23以上各項均符合要求
(6)輻流式二沉池計算草圖如下:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
出水進水圖6 輻流式沉淀池排泥
出水進水圖7 輻流式沉淀池計算草圖
八、接觸消毒池與加氯間 采用隔板式接觸反應池 1.設計參數
設計流量:Q′=20000m3/d=231.5 L/s(設一座)
水力停留時間:T=0.5h=30min 設計投氯量為:ρ=4.0mg/L平均水深:h=2.0m 隔板間隔:b=3.5m 2.設計計算 污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang(1)接觸池容積:
V=Q′T=231.5?10-3?30?60=417 m3
?表面積A?V417??209m2 h2 隔板數采用2個,則廊道總寬為B=(2+1)?3.5=10.5m 取11m 接觸池長度L=L? 長寬比
A209??19.9m 取20m B10.5L20??5.7 b3.5 實際消毒池容積為V′=BLh=11?20?2=440m3
池深取2+0.3=2.3m(0.3m為超高)經校核均滿足有效停留時間的要求(2)加氯量計算:
設計最大加氯量為ρmax=4.0mg/L,每日投氯量為
ω=ρmaxQ=4?20000?10-3=80kg/d=3.33kg/h 選用貯氯量為120kg的液氯鋼瓶,每日加氯量為3/4瓶,共貯用12瓶,每日加氯機兩臺,單臺投氯量為1.5~2.5kg/h。
配置注水泵兩臺,一用一備,要求注水量Q=1—3m3/h,揚程不小于10mH2O(3)混合裝置:
在接觸消毒池第一格和第二格起端設置混合攪拌機2臺(立式),混合攪拌機功率N0
1.06?10?4?0.2315?60?5002N0???0.25kW 223?5?103?5?10?QTG2實際選用JWH—310—1機械混合攪拌機,漿板深度為1.5m,漿葉直徑為0.31m,漿葉寬度0.9m,功率4.0Kw 解除消毒池設計為縱向板流反應池。在第一格每隔3.8m設縱向垂直折流板,在第二格每隔6.33m設垂直折流板,第三格不設(4)接觸消毒池計算草圖如下:
污泥減量微生物制劑招商 http://blog.sina.com.cn/wunijianliang
圖8 接觸消毒池工藝計算圖17